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This paper describes AntHocNet, an algorithm for routing in mobile ad hoc networks
based on ideas from the Ant Colony Optimization framework. In AntHocNet a source
node reactively sets up a path to a destination node at the start of each communication
session. During the course of the session, the source node uses ant agents to proactively
search for alternatives and improvements of the original path. This allows to adapt to
changes in the network, and to construct a mesh of alternative paths between source and
destination. The proactive behavior is supported by a lightweight information bootstrap-
ping process. Paths are represented in the form of distance-vector routing tables called
pheromone tables. An entry of a pheromone table contains the estimated goodness of
going over a certain neighbor to reach a certain destination. Data are routed stochasti-
cally over the different paths of the mesh according to these goodness estimates. In an
extensive set of simulation tests, we compare AntHocNet to AODV, a reactive algorithm
which is an important reference in this research area. We show that AntHocNet can
outperform AODV for different evaluation criteria in a wide range of different scenarios.
AntHocNet is also shown to scale well with respect to the number of nodes.
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1. Introduction

Mobile Ad Hoc Networks (MANETs)1 are communication networks in which all

nodes are mobile and communicate with each other via wireless connections. There

is no fixed infrastructure. All nodes are equal and there is no central control or

overview. There are no designated routers: all nodes can serve as routers for each

other, and data packets are forwarded from node to node in a multi-hop fashion.

MANETs can be applied in situations where no fixed network infrastructure is avail-

able, such as military activities in enemy territory and disaster recovery operations.

Routing is the task of directing data flows from sources to destinations maxi-

mizing network performance. This is particularly difficult in MANETs. Due to the

mobility of the nodes, the topology of the network changes constantly, and paths
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which were initially efficient can quickly become inefficient or even infeasible. This

means that routing information should be updated more regularly than for instance

in wired networks. However, this can be a problem in MANETs, since the band-

width of the network is limited by the fact that the wireless medium is shared: nodes

can only send or receive data if no other node is sending in their immediate neigh-

borhood (see2 for a theoretical analysis of this problem). The access to the shared

channel is controlled by protocols at the Medium Access Control layer (MAC), such

as ANSI/IEEE 802.11 DCF3 (the most commonly used in MANETs), which create

extra overhead, lowering the effective available bandwidth.

Many MANET routing algorithms have been proposed.4 All these algorithms

deal with the dynamic aspects of MANETs in their own way, using reactive or

proactive behavior or a combination of both. Reactive behavior means that an algo-

rithm only gathers routing information in response to an event, usually one which

triggers the need for new routes, such as the start of a data session or the failure of

an existing route. Proactive behavior means that the algorithm also gathers routing

information at other times, so that it is readily available when the event happens.

In this work we present AntHocNet, a MANET routing algorithm based on

the framework of Ant Colony Optimization (ACO)5. ACO reverse-engineers the

pheromone laying-following behavior of ants, which allows the colony as a whole to

find a shortest path between the nest and a food source.6 For wired networks, a

number of successful ACO routing algorithms exist (e.g. ABC7 and AntNet8). The

main idea is to repeatedly sample paths with small control packets, called ants, in

order to adaptively estimate the quality of each local routing choice. This results

in a collective and distributed learning of routing tables. ACO routing algorithms

exhibit some desirable properties for MANETs: they work in a distributed way, are

highly adaptive and robust, and provide automatic load balancing. AntHocNet is an

attempt to create an ACO routing algorithm which works efficiently in MANETs,

combining reactive path finding and repairing with proactive path maintenance and

improvement. AntHocNet also features the use of multiple paths and stochastic data

load spreading. The AntHocNet algorithm presented here is a revised and improved

version of the algorithms described in9,10. The differences mainly concern proactive

path maintenance and improvement, for which we use for the first time in ACO a

combination of ant-based path sampling and information bootstrapping (see 3.2).

This paper is organized as follows. Section 2 presents related work in MANET

and ACO routing. In section 3 our algorithm is described in detail and in section 4

it is compared to a state-of-the-art algorithm in a number of simulation studies.

2. Related work

This section contains an overview of some of the literature which is related to the

work presented in this paper. Subsection 2.1 provides a short introduction to the

vast amount of research in the area of MANET routing. Subsection 2.2 contains a

description of ACO routing and of some of its earlier implementations in MANETs.
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2.1. Routing in MANETs

In the MANET literature, the classical distinction is between table-driven, demand-

driven and hybrid algorithms.1 Table-driven algorithms, such as e.g. DSDV11, are

purely proactive: all nodes try to maintain routes to all other nodes at all times.

This means that they need to keep track of all topology changes, which can become

difficult if there are a lot of nodes or if they are very mobile. Demand-driven algo-

rithms, such as AODV12 and DSR13, are purely reactive: nodes only gather routing

information when a data session to a new destination starts, or when a route which

is in use fails. Reactive algorithms are in general more scalable since they greatly

reduce the routing overhead,14 but they can suffer from oscillations in performance

because they are never prepared for disruptive events. In practice, many algorithms

are hybrid algorithms (e.g. ZRP15), using both proactive and reactive components

in order to try to combine the best of both worlds.

AntHocNet is a hybrid routing algorithm, using ant agents to combine a reactive

path setup phase with proactive path improvement efforts based on bootstrapping

techniques. Bootstrapping is a characteristic of dynamic programming (see16), in

which nodes calculate the estimated quality of a path based on estimates made by

neighboring nodes. This is the typical mode of operation in Bellman-Ford routing

algorithms (e.g. see17), to which table-driven algorithms like DSDV belong, and

some reinforcement learning inspired approaches to routing, like SAMPLE18. The

idea of continuously improving existing paths is quite rare in MANETs, although

it has been explored to some extent in19. On the other hand, the use of multiple

paths for data forwarding is an idea which has received a lot of attention in the

MANET literature (see20 for an overview). Very few algorithms however try to

keep an updated estimate of the path qualities, and adapt their data load spreading

to this.21 Stochastic data spreading is to the best of our knowledge unexplored

outside the area of ACO routing algorithms.

2.2. ACO routing

The basic idea behind ACO algorithms for routing5,22 is the acquisition of routing

information through path sampling using ant agents. These lightweight agents are

generated concurrently and independently by the nodes, with the task to try out a

path to an assigned destination. An ant going from source s to destination d collects

information about the quality of the path (e.g. end-to-end delay and number of

hops), and, retracing its way back from d to s, uses this information to update the

routing tables at intermediate nodes. Ants always sample complete paths.

The routing tables, called pheromone tables, contain for each destination a vec-

tor of real-valued entries, one for each known neighbor node. These entries, the

pheromone variables, are a measure of the goodness of going over that neighbor on

the way to the destination. They are continually updated according to the quality

of the paths sampled by the ants. The repeated and concurrent generation of ants

results in the availability at each node of a bundle of paths, each with an estimated
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measure of quality. In turn, the ants use the pheromone tables to find their way to

their destination: at each node they stochastically choose a next hop, giving higher

probability to those next hops which are associated with higher pheromone values.

Data packets are routed more or less in the same way as ants: packets are routed

stochastically, choosing with a higher probability those links associated with higher

pheromone values. This way data for a same destination are adaptively spread over

multiple paths (but with a preference for the best paths), resulting in load balancing.

For data packets, mechanisms are usually adopted to avoid low quality paths, while

ants are more explorative, so that also less good paths are occasionally sampled and

maintained as backup paths in case of failure or sudden congestion. In this way path

exploration is kept separate from the use of paths by data. If enough ants are sent

to the different destinations, nodes can keep up-to-date information about the best

paths, and automatically adapt their data load spreading to this.

Ant-based routing algorithms have a number of properties which are desirable in

MANETs: they are highly adaptive to network changes, use active path sampling,

are robust to agent failures, provide multipath routing, and take care of data load

spreading. However, the fact that they crucially rely on repeated path sampling can

cause significant overhead if not dealt with carefully. There have been a number

of attempts to design ant-based routing algorithms for MANETs. Examples are

ARA23, PERA24, ANSI25 and Termite26. In general, however, most of all these

algorithms move quite far away from the original ACO routing ideas trying to

obtain the efficiency needed in MANETs, and many of them are not very different

from single-path on-demand algorithms.

3. Description of the algorithm

AntHocNet is a multipath routing algorithm consisting of both reactive and proac-

tive components. The algorithm is reactive in the sense that nodes only establish

paths when there is a need for them. When a communication session is started at

a source node s, this node starts a reactive path setup phase, in which ant agents

called reactive forward ants are spread over the network in order to find the destina-

tion d of the session. They follow existing routing information if available, and are

otherwise broadcast. The first ant to find d becomes a reactive backward ant which

returns to s, setting up entries in the pheromone tables of intermediate nodes indi-

cating a path between s and d. They indicate in a node the quality of going over

a certain next hop to reach a certain destination. During the duration of a com-

munication session, the algorithm tries to proactively improve the existing paths. To

facilitate this process, nodes include pheromone information they have about active

destinations in their hello messages. A node is considered an active destination if

data have recently been forwarded to it. Hello messages are short messages broad-

cast to all neighbors at regular intervals. The pheromone information forwarded

from node to node in hello messages spreads over the network in a process which we

call pheromone diffusion, in analogy with the volatile and diffusive character of ant
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pheromone in nature (e.g. see27). The pheromone diffusion creates a field indicating

possible paths to the destinations. This field, which is built up of bootstrapped in-

formation, contains potentially unreliable information, and it is important to verify

it before it can be used safely by data. To this end, the source node of each com-

munication session periodically sends out proactive forward ants during the course

of the session, which follow the diffused pheromone in order to find new and better

paths. In this way, the single path which is set up during the route setup phase is

extended to a mesh of multiple paths. Data are spread concurrently across these

paths, with a strong preference for the best path. Link failures are dealt with either

by using local route repair or by warning preceding nodes on the paths.

3.1. Reactive path setup

When a source node s starts a communication session with a destination node d, and

it does not have routing information for d available, it broadcasts a reactive forward

ant F s
d . Due to this initial (and further) broadcasting, different instances of the same

original ant will travel through the network, and we will refer to the set of ants which

originated from the same initial ant as an ant generation. The task of the ants of one

generation is to find a path connecting s and d. At each node, an ant is either unicast

or broadcast, according to whether or not the current node has routing information

for d. The routing information of a node i is represented in a pheromone table T i.

The entry T i
nd ∈ R of this table is the pheromone value indicating the estimated

goodness of going from i over neighbor n to reach destination d. If pheromone

information is available, the ant chooses its next hop n with the probability Pnd:

Pnd =
(T i

nd)
β1

∑

j∈N i

d

(T i
jd)

β1

, β1 ≥ 1, (1)

where N i
d is the set of neighbors of i over which a path to d is known, and β1 is a

parameter value which can control the exploratory behavior of the ants (although

in current experiments β1 is kept to 1).

If an ant arrives in a node where there is no pheromone information available

for d, it is broadcast. Due to this broadcasting, an ant generation can proliferate

quickly over the network, with different ant instances following different paths to the

destination. If an ant arrives in a node which was already visited by a different ant

of the same generation, it is discarded, and at the destination d only the first ant of

a generation is processed. This way, only one path is set up. In previous versions of

AntHocNet more than one reactive forward ant could be accepted at the destination,

creating a mesh of multiple paths in this phase.9,10 But for efficiency reasons (due

to the overhead involved in the parallel forwarding of multiple ant instances) it

turned out to be better to construct only one path during the reactive setup phase

and leave the creation of multiple paths to the proactive path maintenance and

improvement phase (see subsection 3.2).
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Each forward ant keeps a list P = [1, 2, . . . , d] of the nodes it has visited. Upon

arrival at the destination d, it is converted into a backward ant, which travels back

to the source retracing P. At each intermediate node i ∈ P (i < d), the backward

ant calculates the local estimate T̂ i
i+1 of the time it takes to reach the neighbor i+1

the ant is coming from. This local estimate is used to incrementally compute an

estimate of the time T̂ i
d it would take a data packet to reach d from i over P, which

is in turn used to update the pheromone tables:

T̂ i
d =

∑

i≤j<d, j∈P

T̂
j
j+1 . (2)

The value of the estimate T̂ i
i+1 is defined as the product of the estimate of the

average time to send one packet, T̂ i
mac, and the current number of packets in queue

(plus one, for the current ant packet) to be sent at the MAC layer, Qi
mac:

T̂ i
i+1 = (Qi

mac + 1)T̂ i
mac . (3)

T̂ i
mac is calculated as a running average of the time elapsed between the arrival of a

packet at the MAC layer and the end of a successful transmission. So if ti
mac is the

time it took to send a packet from node i, then node i updates its estimate as:

T̂ i
mac = αT̂ i

mac + (1 − α)timac, (4)

with α ∈ [0, 1]. Since T̂ i
mac is calculated at the MAC layer it includes channel access

activities, so it takes into account local congestion of the shared medium.

At each intermediate node i ∈ P, the backward ant sets up a path towards

the destination d, creating or updating the pheromone table entry T i
nd in T i. The

pheromone value in T i
nd represents a running average of the inverse of the cost, in

terms of both estimated time and number of hops, to travel from i to d through n.

If T̂ i
d is the travelling time estimated by the ant, and h is the number of hops, the

value τ i
d used to update the running average is defined as:

τ i
d =

(

T̂ i
d + hThop

2

)−1

, (5)

where Thop is a fixed value representing the time to take one hop in unloaded

conditions (e.g. for the 2 Mbps experiments, Thop was set to 0.003 sec). Defining τ i
d

like this is a way to avoid possibly large oscillations in the time estimates gathered

by the ants (e.g., due to local bursts of traffic) and to take into account both end-

to-end delay and number of hops. The value of T i
nd is updated as follows:

T i
nd = γT i

nd + (1 − γ)τ i
d, γ ∈ [0, 1]. (6)

Using this formula, pheromone has the dimension of an inverted time. In the exper-

iments, the parameters γ and α were both set to 0.7.

Once the backward ant makes it back to the source, a full path is set up and

the source can start sending data. If the backward ant for some reason does not

arrive, a timer (set to 1 second in the experiments) will run out at the source, and

the whole process is started again.
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3.2. Proactive path maintenance and exploration

During the course of a communication session, a source node performs proactive

path maintenance and exploration: it takes proactive actions to update the infor-

mation about the currently used paths to the destination, and tries to find new

and better ones when possible. An important role in this process is played by hello

messages. These are short messages broadcast every thello seconds (in our case

thello = 1sec) asynchronously by all nodes. Hello messages are used in many exist-

ing protocols (e.g. in ABR28 and OLSR29), to allow nodes to detect which are their

immediate neighbors. When a node i receives a hello message from a new node n,

it can assume that n is its neighbor. After that, i expects to receive a hello message

from n every thello seconds. After missing a certain number of expected hello’s (set

to 2 here), i assumes that n has moved away, and no longer considers it a neighbor.

In AntHocNet, nodes include in the hello messages they send out routing in-

formation they have about active destinations (also in some other algorithms hello

messages are used to convey extra routing information29). A node n constructing a

hello message consults its pheromone table, and picks a maximum number k (set to

10 in the experiments) of destinations it has routing information for (if more than

k active destinations are available, k of them are picked randomly). For each one

of these destinations d, the hello message contains the address of d and the best

pheromone value T n
m∗d,m

∗ ∈ N n
d , which n has available for d.

A node i receiving the hello message from n first of all registers n as a neighbor

in its neighbor table and adds a one-hop route to n in its routing table. Then it

goes through the list of destinations reported in the hello message. For each listed

destination d, it can derive from the hello message an estimate of the goodness

of going from i to d over n, simply by adding the cost of hopping from i to n to

the reported pheromone value T n
m∗d. We call the obtained estimate the bootstrapped

pheromone variable Bi
nd, since it is built up using an estimate which is non-local to

i. To calculate Bi
nd, we first invert T n

m∗d (since pheromone has the dimensions of an

inverted time), and then add the time to perform the single hop from i to n, which

we calculate like the term between brackets in equation 5:

Bi
nd =

(

(T n
m∗d)

−1 +
T̂ i

n + Thop

2

)−1

(7)

Information obtained via bootstrapping is less reliable than information obtained

via direct sampling, such as pheromone updates performed by ants. This is because

old information could be combined with new information (which is quite likely in

a dynamic environment like a MANET), potentially leading to loops and broken

paths, and because errors can propagate via the iterative process of basing one esti-

mate on the other. On the other hand, spreading information via hello messages is

quite a lightweight process, providing a cheap way of spreading routing information.

In the proactive path maintenance and exploration by the source nodes, we try to

get the best of both worlds by combining the two mechanisms.
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For path maintenance, bootstrapped pheromone is used directly. If i already has

a pheromone entry T i
nd in its routing table for destination d going over neighbor n,

we know that the path from i to d over n has in the past been sampled by ants.

This path can therefore be considered reliable. Bi
nd is then just treated as an update

of the goodness estimate of this reliable path, and is used directly to replace T i
nd.

This way, pheromone on current paths is kept up-to-date.

For path exploration, bootstrapped pheromone is used indirectly. If i does not

yet have a value for T i
nd in its routing table, Bi

nd could indicate a possible new path

from i to d over n. However, this path has never been sampled completely by an

ant: it is at least partially based on information bootstrapping, and is therefore

potentially unreliable. So i does not use Bi
nd to update its pheromone table, but

stores Bi
nd in a second table V i, called virtual pheromone table. The information of

Vi can in turn be forwarded further in hello messages as bootstrapped pheromone.

In that case however, a bit is set in the entry in the hello message to indicate that

this pheromone should not be used for path maintenance as described above (so that

virtual and sampled paths do not mix). Using this system, virtual pheromone can

spread from node to node without causing too much overhead, creating a field over

the whole MANET. This field is then used to guide the proactive path exploration.

Each node which is the source of a communication session periodically (ev-

ery thello seconds) compares the virtual and regular pheromone information it has

available for the destination of each of its sessions. If the best virtual pheromone is

significantly better (in the experiments: at least 10% better) than the best regular

pheromone, a proactive forward ant is sent out. Proactive forward ants are uni-

cast towards the destination, using the same probabilistic routing rule as reactive

forward ants (but with the same routing exponent as data, see eq. 8), considering

both regular and virtual pheromone (while reactive ants and data only follow regu-

lar pheromone). Unlike reactive ants, proactive ants are never broadcast, and when

they arrive at a place where there is no pheromone available they are just discarded.

When a proactive ant arrives at the destination, a backward ant identical to the ones

used during the reactive path setup is sent back to the source. This way, promising

virtual pheromone is investigated, and if the investigation is successful it is turned

into a regular path which can be used for data. This increases the number of paths

available for data routing, which grows to a full mesh, and allows the algorithm to

exploit new routing opportunities in the ever changing topology.

While the reactive path setup phase described in subsection 3.1 is similar to

common practices in traditional reactive routing algorithms, the forwarding of boot-

strapped routing information over the whole network reminds of the typical mode

of operation in proactive algorithms like DSDV, which is based on Bellman-Ford

routing algorithms for wired networks. The problem with such algorithms is that in

general they are only guaranteed to work correctly if all the routing tables are up-

to-date. In dynamic MANETs, this means that nodes should send a lot of routing

updates around, which can quickly congest the network. In the approach we take,

the proactive part is kept lightweight, forwarding the bootstrapped information in
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a delayed fashion, and no guarantees about correctness are given. We do not use

the proactive information for data routing directly, but instead we use it as a guide-

line for finding new and better paths. The proactive ants form a link between the

unreliable proactive information and trusted established data forwarding paths.

From an ACO routing point of view, we have decoupled path maintenance from

path discovery and improvement. While initial paths are set up using ants which

can be broadcast or follow pheromone (subsection 3.1), the updating of pheromone

on existing paths is no longer done via repeated path sampling with ants, but via

a lightweight bootstrapping process which can dramatically reduce the overhead in

MANETs. Exploring new paths is again done using ants. They are guided however

by the virtual pheromone field set up using bootstrapping. The virtual pheromone

field can be seen as the result of natural diffusion of previously placed pheromone.

3.3. Stochastic data routing

The path setup phase together with the proactive path improvement actions create

a mesh of paths between source and destination, indicated in the pheromone tables

of the nodes. Data are forwarded according to the values of the pheromone entries.

Nodes in AntHocNet forward data stochastically. When a node has multiple next

hops for the destination d of the data, it randomly selects one of them, with proba-

bility Pnd. Pnd is calculated in the same way as for reactive forward ants, but with

a much higher exponent, in order to be greedy with respect to the better paths:

Pnd =
(T i

nd)
β2

∑

j∈N i

d

(T i
jd)

β2

, β2 ≥ β1 . (8)

In the experiments, β2 was set to 20. Setting the routing exponent so high means

that if several paths have similar quality, data will be spread over them. However, if

one path is clearly better than another, it will almost always be preferred. According

to this strategy, we do not have to choose a priori how many paths to use: their

number will be automatically selected in function of their quality.

The probabilistic routing strategy leads to data load spreading according to the

estimated quality of the paths. If estimates are kept up-to-date (which is done using

the bootstrapped pheromone as described in subsection 3.2), this leads to automatic

load balancing. When a path is clearly worse than others, it will be avoided, and

its congestion will be relieved. Other paths will get more traffic, leading to higher

congestion, which will make their end-to-end delay increase. By adapting the data

traffic, the nodes try to spread the data load evenly over the network.

3.4. Link failures

Nodes can detect link failures (e.g., a neighbor has moved away) when unicast

transmissions (of data packets or ants) fail, or when expected hello messages were

not received (see subsection 3.2). When a neighbor is assumed to have disappeared,
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the node takes a number of actions. In the first place, it removes the neighbor from

its neighbor list and all the associated entries from its routing table.

Further actions depend on the event which was associated with the discovered

disappearance. If the event was a failed transmission of a control packet, the node

broadcasts a link failure notification message. Such a message contains a list of the

destinations to which the node lost its best path, and the new best estimated end-

to-end delay and number of hops to this destination (if it still has entries for the

destination). All its neighbors receive the notification and update their pheromone

table using the new estimates. If they in turn lost their best or their only path to a

destination due to the failure, they will broadcast the notification further, until all

concerned nodes are notified of the new situation.

If the event was the failed transmission of a data packet, the node does not

include the destination of the data packet in question in the link failure notification.

For this destination, the node starts a local route repair. The node broadcasts a

route repair ant that travels to the involved destination like a reactive forward ant:

it follows available routing information when it can, and is broadcast otherwise. One

important difference is that it has a maximum number of broadcasts (which we set

to 2 in our experiments), so that its proliferation is limited. The node waits for a

certain time (in the experiments set to 5 times the estimated end-to-end delay of

the lost path), and if no backward repair ant is received by then, it concludes that it

was not possible to find an alternative path to the destination. Packets which were

in the meantime buffered for this destination are discarded, and the node sends a

new link failure notification about the lost destination.

Link failure notifications keep routing tables on paths up-to-date about upstream

link failures. However, they can sometimes get lost and leave dangling links. A

data packet following such a link arrives in a node where no further pheromone is

available. The node will then discard the data packet and unicast a warning back

to the packet’s previous hop, which can remove the wrong routing information.

4. Experimental results

We evaluate our algorithm in a number of simulation tests. We compare its perfor-

mance with AODV (with local repair), a state-of-the-art MANET routing algorithm

and a de facto standard. In 4.1 we describe the simulation environment and the test

scenarios, and in 4.2 we show and discuss the results.

4.1. Simulation Environment

As simulation software, we use Qualnet, a commercial simulation package.30 We

run simulation tests on three different scenarios. All three scenarios are run for 900

seconds. Nodes are initially placed randomly on the surface area and then they move

according to the random waypoint mobility model (RWP),13 with speed ranging

between 0 and 20 m/s (under RWP, nodes iteratively choose a random destination,
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move there in a straight line with a randomly chosen speed, and then wait there

for a certain pause time). The pause time is set differently in different experiments.

Data traffic is generated by 20 constant bit rate (CBR) sources using UDP at the

transport layer. The sources start sending at a random time between 0 and 180

seconds after the start of the simulation, and keep sending until the end. At the

physical layer a two-ray signal propagation model is used. At the MAC layer we use

the popular 802.11b DCF protocol, with only one channel for communications.

In the first scenario, 100 nodes move in an area of 3000 × 1000 m2. Each data

source sends one 64-byte packet per second. The data rate at the physical layer is

2Mbit/s and the radio range 300 meters. We ran tests for different pause times,

ranging between 0 and 480 seconds (under RWP, lower pause time means higher

mobility). In the second scenario, we investigate what happens under more intense

data traffic, using higher bandwidth: each data source sends eight 64-byte packets

per second. The bandwidth of the wireless interface is raised to 11Mbit/s. Since

higher bandwidth implies shorter radio ranges (now 110 meters), we reduce the

area of the MANET: 100 nodes move in an area of 1000 × 1000 m2. We use the

same pause times as before. In the third scenario, we investigate the scalability of

the algorithm. We keep the same data rate and bandwidth as in the second scenario,

and vary the number of nodes, ranging from 50 to 500. The MANET area is adapted

accordingly, ranging from 750×750 m2 to 2250×2250 m2, to keep the node density

constant on 1 node per 100×100 m2. The pause time is kept constant on 30 seconds.

4.2. Simulation Results

In these tests, we measure the average end-to-end delay for data packets and the

ratio of correctly delivered versus sent packets. These are standard measures of

effectiveness in MANETs. We also report delay jitter, the average difference in

inter-arrival time between packets. This is an important metric in quality-of-service

networks and also provides a measure of the stability of the algorithm’s response to

topological changes in MANETs. Finally, we consider routing overhead, as measure

of efficiency. We calculate it as the number of control packet transmissions (counting

every hop) per data packet delivered. Each reported data point is an average over

10 randomly generated initial node placements. The parameters of AntHocNet were

set to the values mentioned in section 3 for all tests. These values were obtained

from empirical experience, without tuning them separately for each scenario (the

algorithm is quite robust with respect to the setting of most parameters). Figures

1-3 show the average end-to-end delay and the delivery ratio for AntHocNet and

AODV in each of the three different scenarios, while table 1 reports the average delay

jitter for both algorithms in all three scenarios, and table 2 reports the overhead.

In the first scenario, with 100 nodes and light traffic load (figure 1 and tables 1a

and 2a), AntHocNet’s average end-to-end delay is about half that of AODV for low

pause times, and around one third for high pause times. In terms of delivery ratio,

the difference is less striking but still significant. The drop in delivery ratio for the
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Fig. 1. Average delay and delivery ratio for various pause times in a scenario with 100 nodes in
a 3000 × 1000 m

2 area under light traffic load (20 sources sending 1 packet per second)
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Fig. 2. Average delay and delivery ratio for various pause times in a scenario with 100 nodes in
a 1000 × 1000 m

2 area under heavy traffic load (20 sources sending 8 packets per second)

highest pause times is due to connectivity issues. Under RWP, the node density is

defined by a movement component and a pause component: moving nodes tend to

pass through the middle of the area, leading to higher densities there, while pausing

nodes are spread out uniformly.31 When pause times are high, the pause component

dominates: nodes do not cluster in the center, leading to lower node density and

less good connectivity (e.g., increasing the pause time from 0 to 480 seconds, the

average number of neighbors decreases from about 11 to 8). When we look at delay

jitter, we can again see a large advantage of AntHocNet over AODV. The better

performance of AntHocNet is partly paid for with more overhead, although the

difference is quite small. For both jitter and overhead, the loss of connectivity for

high pause times has a strong effect. In terms of overhead, this effect is less strong

for AODV since AntHocNet waits for a shorter time before retrying a path setup

in case the previous attempt failed (see subsection 3.1).

In the second scenario, with 100 nodes and heavier traffic load (figure 2 and

tables 1b and 2b), we can see the same trends. The difference in delay is smaller for

low pause times, but for high pause times AntHocNet’s average delay is again three

times lower than AODV’s. The drop in AntHocNet’s average delay is likely due to

the proactive path improvements in combination with the fact that pheromone is
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Fig. 3. Average delay and delivery ratio for an increasing number of nodes (and increasing area
keeping node density constant) under heavy traffic load (20 sources sending 8 packets per second)

Table 1. Average delay jitter in the different scenarios: table (a) refers to the scenario with 100
nodes and light traffic load, table (b) to the one with 100 nodes and heavy traffic load, and table
(c) to the scenario with increasing number of nodes

(a)

Pause AntHocNet AODV
0 0.439 0.754
15 0.452 0.759
30 0.472 0.794
60 0.504 0.822
120 0.536 0.851
240 0.695 1.009
480 1.498 1.754

(b)

Pause AntHocNet AODV
0 0.265 0.271
15 0.272 0.286
30 0.277 0.304
60 0.278 0.306
120 0.345 0.377
240 0.500 0.566
480 0.853 0.894

(c)

Nodes AntHocNet AODV
50 0.233 0.258
100 0.280 0.304
150 0.385 0.430
225 0.441 0.510
300 0.550 0.616
400 0.605 0.686
500 0.723 0.890

Table 2. Overhead in the different scenarios, with tables referring to scenarios like in table 1

(a)

Pause AntHocNet AODV
0 23.52 20.69
15 24.11 20.65
30 24.24 20.42
60 24.21 19.9
120 24.63 19.42
240 26.69 18.43
480 36.72 21.12

(b)

Pause AntHocNet AODV
0 6.66 5.83
15 6.77 5.69
30 6.83 5.58
60 6.72 5.27
120 7.02 4.98
240 7.83 4.69
480 11.66 6.10

(c)

Nodes AntHocNet AODV
50 3.01 2.31
100 6.55 5.58
150 12.14 11.09
225 20.19 20.30
300 30.26 31.32
400 44.99 48.81
500 58.45 66.36

based on path delay, which is more important in more congested traffic conditions. In

terms of delivery ratio and jitter, the difference between both algorithms is smaller,

although AntHocNet retains an advantage. In terms of overhead, the difference is

more or less the same as before.

The third scenario (figure 3 and tables 1c and 2c) shows the scalability of Ant-

HocNet: the differences in average end-to-end delay, delivery ratio and jitter grow

with increasing network size. More importantly, while AntHocNet has slightly higher

overhead than AODV in the small scenarios, it actually generates less overhead in

the large scenarios. This is an indication that AntHocNet scales better with respect

to the number of nodes than AODV. It seems that in larger MANETs AntHocNet’s

mechanisms of path maintenance, path improvement and local repair pay off more.
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5. Conclusions

We have described AntHocNet, an ACO routing algorithm for MANETs. AntHoc-

Net combines a reactive path setup phase with proactive path maintenance and

improvement, and also makes use of a local repair mechanism. In the proactive be-

havior, ant based sampling is combined with a lightweight information bootstrap-

ping mechanism to obtain an efficient and reliable process. In a series of simulation

experiments we compare AntHocNet with AODV, a reactive algorithm which is an

important reference. We show that AntHocNet can outperform AODV in terms of

delivery ratio, average delay and jitter, without causing much more overhead. Ant-

HocNet also seems more scalable than AODV: increasing the number of nodes, its

performance advantage increases and its overhead grows slower than AODV’s.

In future work, we plan to use more complex metrics as pheromone, taking into

account more than path delay and number of hops. In particular, we think it is

important to include information about the quality of wireless links. This could be

obtained from information about the relative position and movement of nodes, and

from measures taken at the physical and MAC layer. Another aspect we plan to

work on is the reliability of the bootstrapping process, e.g. by including a mechanism

of destination sequence numbers like in DSDV.
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