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Abstract

Although anticipation is an important part of creating believ-
able behaviour, it has had but a secondary role in the field of
life-like characters. In this paper, we show how a simple an-
ticipatory mechanism can be used to control the behaviour of
a synthetic character implemented as a software agent, with-
out disrupting the user’s suspension of disbelief. We describe
the emotivector, an anticipatory mechanism coupled with a
sensor, that: (1) uses the history of the sensor to anticipate
the next sensor state; (2) interprets the mismatch between the
prediction and the sensed value, by computing its attention
grabbing potential and associating a basic qualitative sensa-
tion with the signal; (3) sends its interpretation along with the
signal. When a signal from the sensor reaches the process-
ing module of the agent, it carries recommendations such as:
“you should seriously take this signal into consideration, as
it is much better than we had expected” or “just forget about
this one, it is as bad as we predicted”. We delineate several
strategies to manage several emotivectors at once and show
how one of these strategies (meta-anticipation) transparently
introduces the concept of uncertainty. Finally, we describe
an experiment in which an emotivector-controlled synthetic
character interacts with the user in the context of a word-
puzzle game and present the evaluation supporting the ade-
quacy of our approach.

Introduction
Artificial Intelligence has long sought to construct auto-
nomous creatures. The thought of these entities brings spe-
cial delight when they are imagined to project a sense of
being “really there”. This sensation gave birth to the con-
cept of believability. Although the notion falls prey to its
subjective nature, more than two decades of research have
followed the seminal definition forwarded by Bates (1994),
outlining a believable character as one able to maintain the
user’s “suspension of disbelief”. Even the most unrealistic
behaviour of a synthetic character must be consistent with
the expectations created in the user through the character’s
presentation. As such, anticipation plays an important part
in the creation of believability.
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The quest for believability has sent researchers on two dif-
ferent paths: a pragmatical approach inspired in Arts such as
drama and character animation (Thomas & Johnston 1994),
and another that strives for higher levels of autonomy by
providing the synthetic creation with biologically plausi-
ble (Blumberg 2002) or psychologically sound behaviour
(Gratch & Marsella 2003). Both paths emphasize the con-
cept of believability as a dimension of synthetic performance
closely related to the adequate expression of emotion. As a
result, most believable characters have some affective model
(Picard 1997) underlying their behaviour.

Several models of emotions have been proposed to aid
achieving believability. However, none explicitly inte-
grates the concept of anticipation in the creation of life-
like behaviour. Anticipation is usually found diluted in the
planning mechanisms of the synthetic character (Gratch &
Marsella 2003) or disguised as an emotion by itself, one that
involves pleasure in considering some expected or longed-
for good event, or irritation at having to wait, as in Plutchik’s
theory of emotions (Plutchik 1991). Anticipation has had
but a secondary role in the creation of believable characters.

In this paper, we show how a simple anticipatory mech-
anism — that we call emotivector — can lead to believable
behaviour. We describe the emotivector, how it monitorizes
the sensor history of the agent, anticipates the next sensor
state and extracts salience and qualitative information from
the mismatch between prediction and the sensed value. Un-
like approaches such as Breazeal and Scassellati’s motiva-
tion driven perceptual maps (Breazeal & Scassellati 1999),
we compute salience by anticipating the sensor state rather
than by just reacting to it.

We delineate strategies to manage several emotivectors
at once and show how meta-anticipation can represent the
concept of uncertainty. Finally, we describe an experiment
where the information produced by the emotivector was
used to control a synthetic character and show how the eval-
uation asserted the adequacy of the approach to produce be-
lievable behaviour.

Anticipation and Emotion
Rosen (1985) defined an anticipatory system as one that con-
tains a predictive model of itself and/or its environment,
which allows it to change state at an instant in accordance
with the model’s predictions pertaining to a latter instant.
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Anticipatory systems possess two interesting features
(Martinho et al. 2005). First, surprise is an inherent char-
acteristic of anticipatory systems, as purely reactive systems
cannot be surprised. Surprise essentially arises as a mis-
match between what is expected to be perceived and what
is actually perceived. Second, the basal functionality of an
anticipatory system relies on its ability to predict whether
the system is going in the “desired” or “undesired” direc-
tion, which is but the simplest form of valenced affective
reaction.

The idea behind the concept of emotivector is to capture
these two features in their most basic form, and assess their
potential in the creation of believable behaviour.

Emotivector
The emotivector is an anticipatory mechanism attached
to a sensor. Each emotivector is associated with a one-
dimensional aspect of perception, and all emotivectors are
kept together in a salience module, responsible for their
management as a whole. Figure 1 shows the agent archi-
tecture.

Figure 1: Agent Architecture

When a percept is sent to the processing module, the asso-
ciated emotivector catches its value and performs the follow-
ing steps: (1) using the history of percepts, the emotivector
computes the next expected value of the sensor, relying on a
hybrid algorithm based on the Kalman filter and the general-
ized recirculation algorithm; (2) by confronting the expecta-
tion with the actual sensed value, and using a model inspired
in the psychology of attention, the emotivector computes a
preliminary salience for the percept, and; (3) a sensation
is generated according to a model inspired in the psychol-
ogy of emotion. The combination of both “attentional” and
“emotional” interpretation is added to the percept. When a
percept reaches the processing module, it carries recommen-
dations such as “you should seriously take this signal into
consideration, as it is much better than we had expected” or
“just forget about this one, it is as bad as we predicted”

The following sections describe each step. For the sake of
simplicity, all sensor values are normalized to [0, 1].

Percept Salience (Attention Model)
The computation of an a-priori salience for a percept is
based on a model of attention inspired by Posner’s exoge-
nous (automatic reflexive control) and endogenous (volun-
tary control) systems (Posner 1980) and how these systems
interact according to Müller’s hypothesis (1989).

Our model of attention is implemented as follows. At time
t−1, the emotivector value is xt−1 ∈ [0, 1]. Using its history
at time t− 1, the emotivector estimates a value for next time
t (x̂t), and predicts that its value will change by ∆x̂t = x̂t−
xt−1. At time t, a new value is sensed (xt), and a variation
∆xt = xt − xt−1 is actually verified (see Figure 2).

Figure 2: Computing Salience

The exogenous component at time t (EXOt) is based on
the estimation error and reflects the principle that the least
expected (i.e. more surprising in terms of mismatch) is more
likely to attract the attention:

EXOt = (xt − x̂t)2

If no further information is given to the emotivector,
the exogenous component is the only factor contributing to
salience. However, if a “searched” value (st) exists at time
t, the endogenous component (ENDt) of the percept is com-
puted as:

∆st = (xt − st)2

∆ŝt = (x̂t − st)2

ENDt = ∆ŝt − ∆st

ENDt reflects whether the change in the distance to the
“searched” value is better or worse than the expectation and
the level of mismatch (see Figure 2). Unlike EXOt, which
is always nonnegative, ENDt is valenced: an increase in the
expected search distance is assumed negative, while a reduc-
tion is modeled by a positive value.

The combination of both exogenous and endogenous
components define the salience of the percept. However, an
emotivector with a search value can also provide a qualita-
tive interpretation of the percept, as explained in the next
section.
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Percept Sensation (Emotion Model)
Our affective model is inspired by early behavioural theories
and models of emotion.

We assume that emotions are conditioned responses of
primary sensations (Harlow & Stagner 1933) and concen-
trate our model in the generation of these sensations. Emo-
tions per se are left to be handled by the processing module
of the agent.

Sensations are defined across two dimensions (Young
1961): valence and change. As such, our model considers
four basic sensations: positive increase, positive reduction,
negative increase and negative reduction. The emotivec-
tor estimation is used to anticipate a reward or punishment
which, when confronted with the actual reward or punish-
ment (Hammond 1970), triggers one of the four basic sensa-
tions. The intensity of each emotion is given by the endoge-
nous component of the percept.

Thus, our model considers the following four primary
sensations1:

S+ (positive increase) If reward is anticipated and the ef-
fective reward is stronger than the expected, an S+ sensa-
tion is thrown.

$+ (positive reduction) If reward is anticipated but the ef-
fective reward is weaker than the expected, a $+ sensation
is thrown.

S- (negative increase) If punishment is anticipated and the
effective punishment is stronger than expected, an S- sen-
sation is thrown.

$- (negative reduction) If punishment is anticipated but
the effective punishment is weaker than expected, a $-
sensation is thrown.

Following our nomenclature, the expected reward (R̂t) for
time t and the sensed reward (Rt) at time t are computed as
follows:

R̂t = ∆st−1 − ∆ŝt

Rt = ∆st−1 − ∆st

Table 1 shows the eliciting conditions for each basic sen-
sation. Each sensation has an intensity defined by the en-
dogenous component ENDt.

predicted sensed sensation

R̂t > 0 Rt > R̂t S+
R̂t > 0 Rt < R̂t $+
R̂t < 0 Rt < R̂t S−
R̂t < 0 Rt > R̂t $−

Table 1: Computing Sensation

1We follow Millenson’s symbolism to name our sensations, as
symbols are not connoted with an exact word which, by itself,
would imply a certain intensity.

Percept Prediction (Anticipatory Model)
The computation of the emotivector salience relies on the
capacity of the emotivector to predict its next state. Before
anything else, we define the model that we expect the sensed
data to follow – if the signals are totally random, no predic-
tion strategy can be evaluated for adequacy.

Model
As there is no a-priori knowledge of the signal, we follow
a simple assumption: that the intensity i of a signal will
change by a random small amount ∆i ∈ [−ε, ε] at each dis-
crete time step (defined by the sensor rate), for a random
time slice ∆t ∈]0,∆tmax], before suddenly changing to a
random new value in the interval [0, 1]. In other words, the
sensed value will tend to remain constant except for certain
points in time.

Kalman Filtering
A possible estimator for such a signal is the Kalman filter
(Kalman 1960), a set of mathematical equations that pro-
vides efficient computational recursive means to estimate the
state of a process in a way that minimizes the mean of the
squared error.

A Kalman filter estimating a random constant was imple-
mented. The filter is composed of two sets of equations:
the time update equations, that project forward (in time) the
current state and error covariance estimates to obtain the a-
priori estimate for the next time step and; the measurement
update equations, that are responsible for the feedback i.e.
for incorporating a new measurement into the a-priori es-
timate to obtain an improved a posteriori estimate. In the
following equations, R is the measurement noise covariance
and Q is the process noise covariance:

1. Time update equations

(a) Project the state ahead: x̂−
t = x̂t−1

(b) Project the error covariance ahead: P−
t = Pt−1 + Q

2. Measurement update equations

(a) Compute the Kalman gain: Kt = P−
t /(P−

t + R)
(b) Update estimate: x̂t = x̂−

t + Kt(xt + x̂−
t ) (1)

(c) Update the error covariance: Pt = (1 − Kt)P−
t

The need for parameters Q and R to be initially fine tuned
suggested another path.

Simple Predictor
We rewrote x̂t from Equation 1 as:

x̂t = x−
t−1

R

Pt−1 + Q + R
+ xt

Pt−1 + Q

Pt−1 + Q + R

and then made the following substitutions:

α =
Pt−1 + Q

Pt−1 + Q + R
, β =

R

Pt−1 + Q + R

Noticing that α + β = 1, we rewrote x̂t as:

x̂t = x̂t−1(1 − α) + xtα
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Figure 3: Simple Predictor

Figure 3 shows this simple predictor graphically. The pre-
dictor is a function of the estimated value and the sensed
value, both competing in the contribution to the prediction.

This result resembles to the generalized recirculation al-
gorithm (Hinton & McClelland 1988), an algorithm that en-
abled back-propagation to be implemented in a more biolog-
ically plausible manner, by adopting two activation phases:
the minus phase, where the outputs of the system represent
the expectation of the system, as a function of the standard
activation settling process in response to a given input pat-
tern; the plus phase, where the environment is responsible
for providing the target output activation. In this algorithm,
the learning is essentially the delta rule (Widrow & Hoff
1960) confronting the expectation with the sensed value.

Similarly, we used the delta rule with a learning rate set to
the endogenous salience, in such a way that stimuli sensed
under strong sensations are more relevant in terms of predic-
tion. Hence, ∆αt is computed as follows:

∆αt = ξt(xk − x̂k−1)αt

where ξt = END2
t .

Even if this predictor is not as optimal as the ones it is
inspired by, it provides a good efficiency/adaptation relation
that performs well in real-time over unpredictable signal di-
mensions, and does not require any previous fine tuning to
work.

Emotivector Management
In this section, we discuss how the salience module selects
among all percepts which are a-priori more relevant to the
processing module of the agent.

Winner-Takes-All
The most immediate approach is to use a winner-takes-
all strategy, and select only the percept with the highest
salience.

Although this may be a convenient approach when pro-
cessing power is a crucial factor, the highest percept can eas-
ily hide other percepts, which are just “a little less salient”,
but in fact more important to the processing module.

Salience Ordering
To allow for more than one percept to reach the processing
module at the time, an alternative strategy is salience or-
dering: all percepts are ordered by salience and sent to the

processing module. The central processing module will then
attend to the most relevant percept, then the second, and so
on, until no more processing resources are available.

Although using the full processing power of the system
on which it is built, the agent will usually spend most of its
processing time dealing with percepts of very low signifi-
cance and waste precious processing power unnecessarily,
which is something that one wants to avoid as to allow for
other more demanding processes (e.g. graphics and physics)
to perform at their best.

Of course, a minimum threshold could be set, below
which the percepts would not be sent for processing. The
other percepts would continue to be processed by salience
order. However, how is the threshold value chosen? It de-
pends on the setting context and may vary dynamically ac-
cording to the situation. Another approach would be to only
process the first N most relevant percepts, but again, we
would fall into the same fallacy.

In the end, this strategy may work, but fine-tuning would
make it inelegant.

Meta Anticipation

Our approach is to use a meta-predictor, whose role is to
assess the salience of its associated predictor. The meta-
predictor is perfectly identical to all other predictors. The
only difference is that the meta-predictor receives prediction
errors, while the other predictors receive percepts.

Each time a new value is sensed, there is usually a mis-
match between the prediction and the sensed value. This
prediction error is fed to the meta-predictor. Based on the
history of prediction errors, the meta-predictor computes the
next expected error, using the same mechanism the average
predictor uses to compute its next prediction. When a new
value is sensed, the prediction error is computed and sent to
the meta-predictor that will compare it with its error expecta-
tion. If the prediction error is higher than the meta-predictor
estimated error, the percept sensed by the emotivector is
marked as relevant to the processing module. Otherwise,
the percept is marked as non-relevant.

This emotivector management strategy has the advantage
of not requiring parameter fine-tuning, and was chosen for
our experiment.

Uncertainty
An interesting side-effect of meta-prediction is that it pro-
vides an error margin for estimation. In other words, when
a predictor estimates a value, the meta-predictor estimates
how trustworthy the prediction is. As such, meta-prediction
models the concept of uncertainty.

Uncertainty allows us to add an “as expected” parameter
to our model of sensations, transforming our initial set of
four sensations (S+, $+, S- and $-) into a full set of nine ba-
sic sensations, where sensations as “this percept is as bad as
we expected it to be” allow the enrichment of the vocabu-
lary of sensations associated with a percept. Table 2 shows
the relation between the nine-sensation model and the four-
sensation model presented earlier.
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sensed

expected more R as expected more P

reward (R) stronger R (S+) expected R weaker R ($+)

negligible unexpected R negligible unexpected P

punishment (P) weaker P ($-) expected P stronger P (S-)

Table 2: Extended Sensation Model

Experiment
Believability is a difficult concept to experimentally assess.
It is usually measured through questionnaires evaluating the
satisfaction of the subjects, and relating the satisfaction level
to the suspension of disbelief provoked by the experiment.

Although a questionnaire is invaluable, we designed an
interactive task where the user success depends on the con-
sistent and believable behaviour of a synthetic character, in
such a way that the observation of the task itself provides
less subjective measurements regarding believability.

We created a word puzzle game in which Aini, a synthetic
flower built with our emotivector model, helped the user to
uncover a four-letter word solely by reacting to her actions.
To construct the word, the player must use a set of letter-
boxes, each one with an alphabet letter drawn onto it. The
word is constructed by placing the boxes onto wooden plat-
forms representing the word letters and their relative posi-
tion in the word, a tridimensional version of the hangman
dashes. Only some of the letter-cubes are relevant, others
act as distractors. To allow for a more intuitive interaction
with the letter-boxes, the simulation is fully tridimensional
and physics-based. Figure 4 shows the applicational setting.

Figure 4: Experiment Application

Emotivector Control
Our first use of the emotivectors was to control Aini’s focus
of attention, a task that only required the exogenous compo-
nent. We provided Aini with a 5× 5 grid of sensors (and as-
sociated emotivectors) measuring the distance to the nearest
objects in Aini’s field of view. The strongest salience des-
ignates the target of Aini’s gaze and the intensity controls
the speed of movement. This approach automatically im-
plemented the “casual look around” as well as the “quickly
look at something new” behaviours.

Our second use of the emotivector was to monitor the
progress of the word completion task. A single emotivec-
tor was regularly fed with a measure of completeness of the
task. A search value, corresponding to the task being com-
pleted, activated the endogenous component. When salient,
the sensations created by the emotivector triggered different
expressive behaviours.

Consider the example of a user trying to uncover the word
“LIFE”. Initially, Aini is in a neutral state. Because the user
has now been playing for quite a while without trying any
letter, the margin of prediction error has dropped, and Aini
is pretty sure nothing is going to happen.

Suddenly, the user places her first guess (“L”) in a wrong
placeholder. As a result, Aini expresses an “unexpected P”
sensation. It stops moving and lowers its head. Aini expects
more punishment to come but is not sure about it. Seeing
the negative reaction of the flower, the user removes the let-
ter “L” from the word. As the completeness increases by a
significant amount, Aini expresses a “weaker P” sensation:
it rises its head and waves it encouragingly. Notice that if
the user placed the “L” in the same wrong place again, Aini
would react differently from the first time, as the conditions
would have changed.

Now, the user places the “L” in the correct position. As
it is still under great uncertainty, an “expected R” sensation
is triggered: the agent now looks confident about the user
capabilities. Afterward, the user places the “I” in the right
position. As the margin of error now diminished, the value
is outside the predictive margin and launches a “stronger R”
sensation, expressing total bewilderment.

This example shows the richness of situations that can
be obtained from the use of the emotivector basic sensation
alone, and how perception history and timing triggers differ-
ent basic sensations in response to the same user’s action.

Evaluation
To evaluate our model, we asked users to play the word puz-
zle with four different synthetic characters (presented in dif-
ferent orders) sharing the same appearance but having dis-
tinct behaviours. Two control characters, with idle and ran-
dom behaviour respectively, confirmed that the task is im-
possible to complete without consistent help. Two other
characters evaluated the adequacy of our model: one used
our emotivector control; the other implemented an approach
used by the current generation of computer games, such as
Fable2 and Oblivion3. In our game, it translates to: look at
the nearest object or latest word change and use a positive or
negative expression depending on action appraisal.

After interacting with each character, each subject an-
swered a questionnaire evaluating the following aspects:
the smoothness of the animation, the naturalness of the be-
haviour, the level of expectation of the subject regarding the
provided behaviour, the similarity with the behaviour of a
person in the same situation, the ease of understanding the
displayed attention and emotion, and the general impression
left by the synthetic character.

2Fable: The Lost Chapters, Lionhead Studios, 2005.
3The Elders Scrolls IV: Oblivion, Bethesda Softworks, 2006.
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A total of 280 puzzles were played by both male and fe-
male subjects from 5 to 79 years-old, with different levels
of familiarity with computers. No subject finished the game
with the control characters: although it would be possible to
use a brute force approach, the presence of an inconsistent
character led the user to quit. All subjects managed to fin-
ish the task with the emotivector-based character, but only
20.6% of the subjects were successful with the game-based
approach. Unexpectedly, the game-based behaviour induced
the feeling of “being cheated on” and made the user quit.
Only users experimenting with one letter at a time, while all
other letters were kept far away, were successful.

To reach a better understanding of the results, we per-
formed a 2-dimension HOMALS on the data from the ques-
tionnaires, that accounted for 73.6% of the variance. From
the HOMALS quantification, two variables were identified
as totally unrelated to believability: “smoothness” and “pre-
vious knowledge of the word”. A Fisher test strengthened
(exact sig 0.678) that the real challenge is to understand
the expression of the synthetic character. Indeed, even the
younger subjects were able to discover unknown words.
93.7% of subjects rated “guessing a known word without
help” as very difficult (5 in 5 degree Likert scale) while only
6.4% of the subjects think that “finding an unknown word
with help” is difficult (4 or 5 in 5 degree Likert scale).

The HOMALS first dimension stated that a subject who
succeeded at the task generally enjoyed the experience and
found that attention and emotion were easy to perceive. The
second dimension suggests that when a subject evaluates
emotion recognition or task difficulty as “extreme” (in the
sense of very good or very bad) this evaluation is reflected
in a more “extreme” assessment of believability.

During the experiments, two unexpected results were
found. First, the exogenous component based synthetic
“vision” provided the user with a natural way to interact
with the agent (e.g. by waving a box to attract attention
to it). Second, the endogenous component of the task-
completeness emotivector allowed a rich and non-repetitive
behaviour of the synthetic character that seemed to account
for the past history of interaction in a meaningful manner.

Believability seems to be influenced by all evaluated as-
pects of the experience except for the smoothness of the an-
imation. It is congruent with the fact that more complex
animation does not necessarily means more believable. Our
results confirm that both the focus of attention and emotional
state play a more important role in the definition of believ-
ability.

Conclusion and Future Work
In this paper we discussed how a simple anticipatory mech-
anism, the emotivector, can be used to produce believable
behaviour. We described the emotivector mechanism, in-
spired by theories of attention and emotion, and how it was
successfully used in a concrete interactive experiment.

Our model does not intend to substitute any current ap-
proach but rather complement the agent architecture for life-
like characters: the salience module exists “outside” the ba-
sic agent components, and as such, can be added or removed

from an agent with a low cost. Another approach for emo-
tivector integration in more complex models is to substitute
each sensor by a “sensor+emotivector” combination. We are
currently using this approach to integrate emotivectors in
agents with higher-level cognitive theories of emotion and
anticipation implemented at the processing level to model
cautiousness.

References
Bates, J. 1994. The role of emotion in believable agents.
Technical report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.
Blumberg, B. 2002. Exploring Artificial Intelligence in the
new Millennium. Morgan Kaufmann Publishers. chapter
D-Learning: What learning in dogs tells us about building
characters that learn what they ought to learn.
Breazeal, C., and Scassellati, B. 1999. A context-
dependent attention system for a social robot. In Proceed-
ings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence.
Gratch, J., and Marsella, S. 2003. Modeling coping be-
havior in virtual humans: Don’t worry, be happy. In Pro-
ceedings of Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems. ACM Press.
Hammond, L. 1970. Conditioned emotional state. In Phys-
iological Correlates of Emotion. Academic Press.
Harlow, H., and Stagner, R. 1933. Theory of emotions.
Psychological Reviews.
Hinton, G., and McClelland, J. 1988. Learning representa-
tions by recirculation. In Anderson, D., ed., Neural Infor-
mation Processing Systems. American Institute of Physics.
Kalman, R. E. 1960. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of
Basic Engineering 82(Series D):35–45.
Martinho, C.; Micelli, M.; Dias, J.; Paiva, A.; and Castel-
franchi, C. 2005. Anticipation and emotion. Technical
report, MindRACES Technical Report.
Muller, H., and Rabbit, P. 1989. Reflexive orienting of
visual attention: time course of activation and resistance to
interruption. Journal of Experimental Psychology: Human
Perception and Performance, (15).
Picard, R. 1997. Affective Computing. MIT Press.
Plutchik, R. 1991. Emotion and evolution. In Strongman,
K. T., ed., International review of studies of emotions, vol
1. Chichester: Wiley.
Posner, M. 1980. Orienting of attention. Quaterly Journal
of Experimental Psychology (32).
Rosen, R. 1985. Anticipatory Systems. Pergamon Press.
Thomas, F., and Johnston, O. 1994. The Illusion of Life.
Hyperion Press.
Widrow, B., and Hoff, M. 1960. Adaptive switching cir-
cuits. IRE WESCON Convention Record.
Young, P. 1961. Motivation and Emotion. Wiley.

180


