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For assigning subjects to treatments the point of intersection of within-group regression lines is 
ordinarily used as the critical point. This decision rule is critized and, for several utility functions 
and any number of treatments, replaced by optimal monotone, nonrandomized (Bayes) rules. Both 
treatments with and without mastery scores are considered. Moreover, the effect of unreliable 
criterion scores on the optimal decision rule is examined, and it is illustrated how qualitative 
information can be combined with aptitude measurements to improve treatment assignment de- 
cisions. Although the models in this paper are presented with special reference to the aptitude- 
treatment interaction problem in education, it is indicated that they apply to a variety of situations 
in which subjects are assigned to treatments on the basis of some predictor score, as long as there 
are no allocation quota considerations. 
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Many modern instructional programs can be characterized by the fact that they allow 
students to reach the same learning objectives in different ways. These programs are often 
qualified by words like "adaptive" or "individualized". Examples are the Pittsburgh Indi- 
vidually Prescribed Instruction (IPI) project [Glaser, 1968], Flanagan's Program for 
Learning in Accordance with Needs (PLAN) [Flanagan, 1967] and Computer-Assisted 
Instruction (CAI) [Atkinson, 1968; Suppes, 1966; Suppes, Smith & Beard, Note 1]. Al- 
though Learning for Mastery [Block, 1971; Bloom, 1968; Bloom, Hastings & Madaus, 
1971, Chap. 3] is primarily group-based, it also offers some individualization in that it 
provides those students who fail a mastery test with diagnostic procedures and alternative 
instructional methods and materials. In a typical individualized program the instruction is 
divided into comparatively small units or modules. In addition, all units are delimited by 
means of clear-cut learning objectives, each student is offered one of the different possible 
routes through a unit (treatments), and all students are, no matter the route they have 
taken, expected to attain the same minimum level of mastery at the end of each unit. At 
several points tests are used for monitoring, guidance, evaluation, feedback, treatment 
assignment, and grading purposes. Reviews of all these testing procedures can be found in 
Glaser and Nitko [1971], Hambleton [1974], and Nitko and Hsu [1974]. In this paper we 
focus exclusively on decision theoretic problems connected with treatment assignment and 
mastery decisions based on unit pretests and posttcsts, respectively. The former are as yet 
an underdeveloped part of the Aptitude Treatment Interaction (ATI) methodology. De- 
cisions of this type are called placement [Cronbach & Gleser, 1965] or diagnostic decisions 
[Nitko & Hsu, 1974]. The latter form the object of the fast growing field of criterion- 
referenced measurement or mastery testing. 
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The aptitude treatment interaction hypothesis and methodology have been motivated 

by differential reactions of students to instructional treatments. There is no universally best 

treatment: students differ in their aptitudes, and a treatment that is better on the average 

for some students may be worse for other students and much better than expected for still 

others. ATI research tries to track down aptitude x treatment interactions and bridges 

what Cronbach [1957, 1975] has called the two disciplines of psychology---experimental 

and correlational research. In ATI research (for a comprehensive overview see Cronbach & 

Snow, 1977), a great variety of aptitudes have been used: from cognitive styles, reasoning 

abilities, and entering behaviors to intelligence factors and achievements in previous in- 

structional units. Cronbach and Snow do justice to this variety and define aptitude simply 

as "any characteristic of a person that forecasts his probability of success under a given 

treatment" [1977, p. 6]. They also define treatment broadly as "any manipulable variable" 

[1977, p. 6]. Salomon [1962] describes a treatment classification which consists of rem- 

edial, compensatory and preferential treatments. Usually, ATI's are identified by means of 

ANOVA and linear regression procedures. The former is suitable when the aptitude is a 

natural polychotomy with a small number of classes. An ATI is supposed to exist when in a 

factorial analysis the combined effect of aptitude and treatment on a postunit criterion 
measurement shows a meaningful and significant disordinal interaction. In the case of 

measurements of a continuous aptitude, ATIresearchers mostly use linear regression pro- 

cedures and define ATI as the crossing of within-group regression lines within the relevant 
interval of the aptitude. Denoting the aptitude measurement by X and the criterion 

measurement after treatment j(j = 0 . . . . .  t) by Y, the within-group regression line for treat- 

mentj is 

E,O' lx )  = + (1) 

where the index j points out that the linear conditional expectation is defined using the 

bivariate distribution of (X, Y) under treatment j. For t = 1, the hypothesis that the two 
regression lines cross each other within the relevant interval and thus show a disordinal 

interaction can be statistically tested with the Johnson-Neyman technique. The technique 
is also applicable when measurements of not one but two aptitudes are available, in which 
case (1) generalizes to a regression plane [Johnson & Neyman, 1936]. Potthoff [1964], and 

Erlander and Gustavson [1965] give tests which use simultaneous instead of successive 
confidence bounds. In all these tests the central statistic is a function of the difference 

between the two estimated regression lines (planes) from (1): 

s = s(X) = (al - ao) + (~1 -/~o)X. (2) 

Borich and Wundeflich [1973] describe a computer program for the Johnson-Neyman 

technique which also tests whether the condition of homogeneity of variance across 
treatments--the Johnson-Neyman technique rests upon this assumption--is met. A dis- 
eussion of the possibilities of using structural equation models for detecting ATI's can be 

found in Cronbach and Snow [1971]. 
The above statistical techniques deal with ATI's as scientific hypotheses in their own 

right. They therefore deserve to be tested. In order for ATI research to be of practical 

importance, however, one must be able to use the results for improving instruction and 

assigning students to the most promising treatments. In that ease ATI data ought to be 
analyzed within the broader framework of decision theory and not with Neyman-Pearson 
rules for hypothesis testing. The decision rule for assigning students to treatments generally 

used in connection with one of the above statistical procedures for hypothesis testing is 
based on the point of intersection of the estimated regression lines. Students with aptitude 
scores to the right of the value of the abscissa of this point are assigned to the treatment 

which has the largest estimated expected criterion scores in this interval, while students on 
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the other side of this value are assigned to the other treatment [Cronbach & Snow, 1977, 

p. 20]. The most serious objections against decision rules of this type are that they are 

based on inadequate utility considerations and that there is no explicit decision-theoretic 

criterion from which it follows that they are optimal. The latter objection can be countered 

by replacing the point of intersection with the Johnson-Neyman rule for testing the ATI 

hypothesis, assigning students to treatments according to the critical predictor (aptitude) 

values (with an appropriate random procedure for the interval for which we cannot accept 

the ATI hypothesis). Hypothesis-testing rules can be conceived as optimal Bayes rules [e.g. 

Lindgren, 1976, Sec. 8.3.3.], but then we have to adopt a utility function which in most 
instances will be an unrealistic representation of the existing treatment assignment prob- 

lem. In a decision-theoretic approach to this problem, a utility function is chosen to 

represent all costs and benefits involved as realistically as possible. In addition, a probabil- 

istic model that gives the relation between the aptitude and criterion scores for each 

treatment is adopted. Both are then combined into an explicit optimization criterion from 

which the optimal decision rule can be derived. We shall elaborate this further. Cronbach 

and Snow [1977, pp. 31-33] refer to this approach when they observe that taking treatment 

costs into account modifies their decision rule and may replace the disordinal interaction 

structure in the aptitude-treatment data by an ordinal utility-treatment structure. They also 

refer to Cronbach and Gleser [1965, Appendix 1], who set forth a model for placement 

decisions that can be applied to the problem of optimal treatment assignment. There may 

be instances in which this model is less realistic in that it assumes that for each treatment 

the expected payoff, which in Cronbach and Gleser's terminology equals the utility minus 

costs of testing, is linear in the aptitude measurement. Cronbach and Gleser also assume 
that the optimal placement rule is monotone [for a definition see, e.g., Ferguson, 1967, See. 
6.1.] without looking into the consequences this has for the probability model and utility 
functions allowed. Finally, they assume that the aptitude measurements are normally dis- 

tributed. This assumption is superfluous; we will show this in our derivations below. It also 

follows from the fact that in Cronbach and Gleser's model the optimal placement rule does 
not contain any reference to this assumption [1965, p. 311, eq. 1.22]. 

In programs of individualized instruction the end-of-unit test is mostly a mastery test, 

a test on the basis of which it is decided whether the student has mastered the instructional 
unit sufficiently so that he may proceed with the next unit, or has to relearn the unit and 

prepare himself for a new test. Procedures for analyzing mastery tests can be derived from 

the fast-growing methodology of criterion-referenced measurement. One of the most im- 

portant problems in mastery testing is finding optimal cut-off scores on criterion-referenced 

tests, and to solve this problem, decision-theoretic procedures are appropriate. For a review 
of the criterion-referenced measurement methodology, see Hambleton, Swaminathan, 

Algina, and Coulson [1978]. Decision-theoretic approaches to the mastery testing problem 
are given and discussed in Hambleton and Novick [19731 Huynh [1976], Mellenbergh, 
Koppelaar, and van der Linden [1977], Swaminathan, Hambleton, and Algina [1975], van 

tier Linden [1980], and van der Linden and Mellenbergh [1977]. That individualized 
instruction end-of-unit tests are usually mastery tests and thus the criterion is a dichotomy 
instead of a continuum has been completely neglected in ATI research. Yet, as will appear 

later, this distinction can have important consequences: optimal treatment assignment 
rules generally differ when the criterion is a dichotomy. 

In this paper we elaborate the decision theoretic aspects of the ATI problem. For a 
number of utility functions the decision rule that optimizes the treatment assignment is 

given. This is done first for the case of two treatments; then the generalization to t > 2 
treatments is presented. Treatments with and without mastery scores are both considered. 

For treatments with mastery score we assume that the observed mastery score is a given 
parameter already optimized using one of the mastery testing procedures referred to above. 
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The models presented in this paper have a larger scope than individualized instruction 

and educational testing. Any situation in which a certain kind of treatment, measure, or 

therapy has to be selected and persons, groups, or institutions can be expected to react 

differentially to each of these actions is a situation in which use of the optimal rules we will 

give can improve the decisions. Areas in which the models may be important are psycho- 

therapy, management sciences, medicine, agricultural sciences, and so forth. 

The Aptitude Treatment Decision (A TD) Problem 

In the following, we shall suppose that the aptitude variable is measured by a test and 

assumes only discrete values. The criterion variable is also considered discrete, but some- 

times we shall idealize and replace it by a continuum. Whenever this may be applicable, the 

results given below can be applied to all combinations of discrete and continuous variables 

upon replacing the summation symbols by appropriate integral signs or vice versa. For a 

glossary of the most important symbols used in this paper, we refer the reader to the 

Appendix. 
We consider a hypothetical experiment consisting of a population of students being 

exposed to each of n possible treatments but where the students are "brain-washed" so that 

the effects of one treatment do not interfere with those of another. (The actual experiment 

needed for parameter estimation and in which different samples of students are assigned to 

the treatments will be described later on.) Furthermore, it is supposed that previous to the 

treatments an aptitude X is measured, that each of the possible treatments is followed by a 

measurement of some criterion Y, and that the relation between the measurement of X and 

the measurement of Y after treatment j can be represented by a probability (density) 
function qj(x, y)(j = 0 . . . . .  t). Since the treatment is between the aptitude and the criterion 

measurement, it will influence the relation between X and Y, and this relation can be 

expected to assume a different shape for each treatment. This is indicated by the index j in 
r/j(x, y). However, because the aptitude measurement takes place previous to the treat- 

ments, the distribution of aptitude scores Aj(x) is the same for all treatments, and 

,tj(x) = ~(x) (3) 

for all values ofj. 
The above experiment being executed, the Aptitude Treatment Decision (ATD) prob- 

lem now consists of choosing a decision rule 6 that assigns treatments to all possible 

aptitude scores such that this assignment procedure is optimal in some sense. Although 

there is a resemblance between the ATD problem and the standard decision problem [for 

the latter, see, e.g., Ferguson, 1967, DeGroot, 1970, and Lindgren, 1976] and we shall 
proceed in a way that can be compared with the normal form of decision analysis [De- 

Groot, pp. 141-142], namely by defining an optimization criterion analogous to the Bayes 
risk and looking for optimal decision rules, it is necessary to note an important difference 

between the two problems. As opposed to the standard problem, the true state (position on 

the criterion Y) is influenced by the chosen treatment. Consequently, the actions may entail 
different priors (probability distributions of Y) and conditional distributions of the aptitude 
X given y. This explains why in the following the two probability (density) functions gj~y) 

and vl(x [y) are indexed byj. 
We first give a general formulation of the ATD problem and then discuss monotone 

decision rules, which will be further examined in this paper. The possibility of randomized 

procedures like behavioral and mixed decision rules [Ferguson, 1967, pp. 22-28] will be 
disregarded. In statistical decision theory these are included to study the full range of 
possibilities and to formulate results with a high level of generality. For each randomized 

rule, however, there exist a nonrandomized Bayes rule that is at least as good [Ferguson, 
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1967, p. 43]. Moreover, randomized rules, when applied in educational settings, entail the 

use of random devices and this will lead to acceptability problems. 

A T Decision Rules 

Generally, the ATD problem consists of partitioning the set of possible X values into a 

collection of t + 1 subsets {So . . . . .  S t . . . . .  St} such that t reatmentj  is assigned to students 

having their X score in St, and this partition is optimal in some way. This partition is what 

we earlier referred to as a (nonrandomized) decision rule: 6 = {So . . . .  , Sj . . . . .  St}. To select 

optimal decision rules out of the many partitions that can be formed, an evaluation of the 

decision o u t c o m e s  or utility function is needed. For  the purpose of this paper, it is suf- 

ficiently general to consider the utility U as a function of the criterion Y, which is allowed to 

assume a different shape for each treatment, or 

U = u~(Y). (4) 

Using (4), the expected utility with respect to the bivariate distributions r/j{x, y) for a 

decision rule 6 = {So . . . . .  S~ . . . . .  St) is defined as 

t 

n(6) = E E Y. y). (5) 
j = 0  Sj y=0 

Decision rules are considered optimal when they maximize (5); in other words we shall be 

looking for optimal decision rules 6* such that 

B(6*) = max B(6). (6) 

The expression B(6) can be compared with the Bayes risk in the standard decision problem 

[e.g., Ferguson, 1967, pp. 30-31] but differs in that it uses a different distribution of (X, Y) 

for each action. (Strictly speaking, the Bayes risk is not an expected utility but an expected 

loss, which, consequently, must be minimized instead of maximized. We have chosen the 

utility terminology to keep in line with ATI literature earlier referred to.) Throughout this 

paper, however, we shall ordinarily use the name "Bayes risk" to denote expressions like (5). 

M o n o t o n e  Rules  

The maximization in (6) takes place over the class of all possible decision rules or 

partitions of the set of X values. As this may be laborious, it is better to confine ourselves to 

some tractable subclass of rules among which the optimal rule can be found. Besides, in 

educational and psychological testing one is accustomed to using cutting scores for making 

decisions, and decision rules having this form constitute a special subclass known as mon- 

otone rules [Fergus0n, 1967, Sec. 6.1.]. A nonrandomized decision rule is monotone if there 

exists a series of cutting scores b~ on X such that 

0 = b o  <_bl _< " "  <_ b j  <__ " .  <__ bt+ 1 = m. 

where t < m and treatment j is assigned ifb~ < x < b~+t (forj  = t the second inequality is 

not strict). The individual members of the subclass of monotone rules are obtained by 

varying the values of the cutting points subject to the above inequalities. 

For the standard decision problem, it is known that under certain conditions the 

subclass of monotone rules is essentially complete, i.e., that for any nonmonotone rule there 

is a monotone rule that is at least as good [Ferguson, 1967, Sec. 6.1.; Karlin, 1956; Karlin & 

Rubin, 1956a, 1956b]. These conditions are that the probability model relating data to true 

state has monotone likelihood and that the actions can be ordered such that for each two 
adjacent actions the utility functions have a point of intersection in which the difference 

between the utilities changes sign. It follows that for the ATD problem with probability 
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functions vs(x [y) which may vary in form across the treatments, the subclass of monotone 

rules is essentially complete if the following ratio of likelihoods 

v,(y; x) (7) 

vj+l(y'; x) 

is monotone nondecreasing in x for every pair of values for y and y' with y > y' and 

an ordered series of values, Y0 -< "'" < Ys < " "  -< 3',- 1, exists for which the utility functions 

satisfy --  --  

uj(Y)-uj+l(Y)>_O for Y<YJ  (8) 

us(Y)-uj+l(Y)<_O for Y > yj 

(j = 0, 1, . . . ,  t - 1). Thus, for distributions and utility functions obeying these two con- 

ditions, we know that the optimal nonrandomized (Bayes) rule is one of the monotone type 

and may ignore rules with a different shape. The condition formulated in (7) is met when- 

ever the functions vj(xly) belong to the same family having monotone likelihood (e.g., if 

they are--possibly different--members of the exponential family). The reason for giving (7) 

instead of an ordinary likelihood ratio is, however, that in principle members of different 
families could be found satisfying condition (7)--a statistical problem that, to our know- 

ledge, has yet to be investigated. To establish if the condition formulated in (8) is met, that 

is, if each two adjacent utility functions have a point of intersection in which the difference 

between the utilities changes sign, it wilt usually be necessary to rearrange the treatments. 

Throughout this paper, we shall assume that the treatments are in the appropriate order 

indicated by their value ofj. 

Optimal Assignment with Monotone Utility Functions 

We consider the general case with probability functions vj{x I Y) and utility functions 
uj(Y) obeying (7) and (8), respectively. In most applications it will be realistic to assume that 

these utility functions are monotone nondecreasing in Y (an increase in the criterion score 

will never lead to a decrease in utility) and possibly contain a constant indexed by j 

representing the (fixed) amount of treatment costs. This assumption is not needed for the 

next few steps, however. For the case of two treatments (t = 1) we may replace equation (5) 

by 

b - 1  

x + 
x = O  y = O  x = b  y = O  

b = bl being the boundary point indicating the monotone rules or partitions to which we 

may confine ourselves. From (9) it follows that 

B(b) = ~ Eo[uo(Y)] x]2(x) + EI[Ul(Y) I x]2(x) 
x = O  x = b  

= ~ eo[uo(Y)lx)]2(x) + ~ {EI[u~(Y)IX] - Eo[uo(Y) l x]}2(x), (10) 
x=O  x = b  

where Ej indicates that the expectation has been taken over a distribution indexed by j. 

Since the first term is a constant and 2(x) _ 0 for all values of x, b is optimal for the smallest 

(integer) value of x for which 

EI[Ul(Y) l x] -- Eo[uo(Y) l x] (11) 

is positive. The comparison of the conditional expected utilities in (11) is a general solution 

which, for given utility functions and distributions, can be found numerically by choosing 



WIM J. VAN DER LINDEN 263 

trial values for x, computing both conditional expectations and determining the smallest x 

value for which the difference between these expectations is positive. If the next trial value is 
always chosen to be the middle of the interval in which the optimal x value has now been 

determined to lie, this can be accomplished within log2(m + 1) steps. (When this is not an 

integer, rounding off upwards gives the required upper bound.) The solution can also be 

found graphically by having a computer plot both conditional expectations. However, these 

procedures may be cumbersome and it seems better to introduce additional restrictions and 

to took for analytical solutions. 

It is first supposed that, still obeying (8), uj(Y) has a linear shape: 

u,(Y) = f~ Y + gj. (12) 

The parameter gj can, for instance, represent the constant amount of costs of treatment j 

and will in that case have a nonpositive value. The connection between utility and criterion 

score is also determined by the parameterfj. Note that this parameter is indexed by j;  

hence, function (12) can represent the utility structure of situations in which, next to a 
constant amount of treatment costs, variable amounts of treatments costs are involved 

depending upon the performance of the student. An example is a treatment in which 

remedial teaching is offered as a function of the student's level of functioning. Cronbach and 

Snow [1977, p. 31-33] call attention to the fact that taking (a constant amount of) treat- 

ment costs into account translates the within-group regression lines and may change a 
disordinal interaction into an ordinal one. Their translation amounts to applying (12) with 

fi = t for all values ofj  to the regression lines. 

Using utility function (12), expression (11) is replaced by 

f l E l ( Y l x )  - f o E o ( Y l x )  + Ox - go. (13) 

For the case where the regression functions can be assumed linear it follows that the 
optimal value of b is equal to 

b* = in t (  g° ----O-L+f° a°--fl~q.~ 
flflX - fo f lo  / + 1 (14) 

where ~j and flj are the regression parameters from (1) and the function indicated by the 

mnemonic "int" replaces the value of its argument by the greatest integer not greater than 
this value. 

Note that (14) is unstable for 

fo [30 "~- f:[3,. (15) 

This can be interpreted for the casefo = f l  = 1, because (14) then takes the form 

b * =  in t (  0 ° - g l  + ~to - a l )  
P: [30 + 1 (16) 

and (15) reduces to Po ~- 31. Formula (16) yields the (Bayes, randomized) decision rules for 

situations that Cronbach and Snow have described by their translation of the regression 
lines to allow for (fixed amounts of) treatment costs. Whenfo =fx = 1, condition (15) 

amounts to approximately parallel regression lines and the optimal cut-off score b* shows, 

dependent upon the sign of the numerator of (16), a tendency to go to its maximal or 
minimal possible value. If in addition ao = al, then both regression lines coincide and the 

optimal cut-off score takes on its minimal possible value forgo < 01, its maximal value for 

go > 01, and it is indefinite for go = 01- Thus, in this ease we always assign students to the 
cheapest treatment and cannot make up our minds if both treatments are equally expensive. 

The following numerical example illustrates the procedure: Suppose that the fixed 

amounts of costs for both treatments are about equal but that treatment j = 1, unlike 



264 PSYCHOMETRIKA 

treatment j -- 0, offers a quantity of remedial instruction and alternative materials that 

depend on the student's achievement. This might be represented by the parameter values 

go = gl = fo  = 1 and f l  = .5. Also suppose that the distributions of (X, Y) yield regression 

lines with So = 22.8, ~t t = 17.1, flo = -0 .3 ,  and fll = 1.7. Finally, assume n = 25. From (14) 

it follows that the optimal cut-off b* = 13. Using the classical regression approach, on the 

other hand, would have resulted in b* = 3. The difference arises from the fact that f2 was 

chosen to be equal to .5 instead of 1. This was done, just as in the examples below, to 
highlight the possibly large effect on the cut-off score of utility functions different from the 

ones being implied by the regression approach. 

Lindley [1976] and Novick and Lindley [1978], following Berhold [1973], make a 

plea to choose distribution functions as utility functions. There can be situations in which 

these functions are realistic in that they are bounded and nondecreasing, and moreover, 

they can sometimes be readily combined with the probability model involved. Note that the 

linear utility function given in (12) is proportional to the uniform c.d.f. In order to shed 

some more light on the use of distribution functions as utility functions, a continuous 

idealization of Y is considered and the normal ogive utility function 

uj{Y) = O ( ~ ' ~ ,  (17) 
\ aj / 

is chosen where • is the standard normal c.d.f, with parameters #j and oj. Lindley [1976] 

and Novick and Lindley [1978] show that 

a ~  E ~ Y t x ) -  BJ ~ (18) 
Ej[uj(Y) [ x] = Y [ [va r j (y  I x) + a]] l /2J '  

under the assumption that the conditional p.d.f, a~j(Y I x) is normal with conditional mean 

and variance Ej(YIx) and varj(Y [ x), respectively. Expression (11) is now replaced by 

(I) ( [varl(Y] x) + cr1211/2J - ¢ (19) ( [varo(V I x) + ~o211/~J ' 

and the smallest integer for which expression (19) is positive is also the value for which 

Ex(Y[x) - #1 Eo(Y[x) - I1o 
[vardYIx)  + cr~] t/2 [var0(YIx) + a02] 1/2 (20) 

is positive for the first time. With known distributions o~j(Y[x) this value can be found 

graphically or numerically. 
For the particular case in which the regression functions are linear and homoscedasti- 

city may be assumed, substitutiofi of (1) into (20) yields 

b * =  i n t [  '°(#~ Z - a ' ) -  el(#° - ct°)] 
eoflt -- elflo + 1 (21) 

with 

and 

ej=-- [varj(Y . X) + o~] 1/2 

vau(Y • X) = {1 - (core(X, Y)]2}var~(Y), (22) 

where core(X, Y) and vary(Y) are the linear correlation coefficient between X and Y and the 

variance of Y under treatment j, respectively. 
As an illustration, suppose again that the decision problem of our previous example is 

given, but that, on the basis of a pilot study of the utility of criterion scores for students and 
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teachers, it seems better to use a normal ogive transformation of the criterion scores and to 

represent the situation by utility function (17) with #o = #1 = O, ao = 1 and al  = .5. With 

the additional information that coro(X, Y) = .81, cort(X • Y) = .70, varo(Y) = 10.0, and 

vart(Y) = 12.9, it follows from formula (21) that now b* = 7. 

Optimal Assignment to Treatments with a Mastery Score 

Next, we introduce a mastery score c on criterion Y so that students with Y > c may 

proceed to the next instructional unit but students with Y < c are retained and receive 

some extra learning time or remedial instruction. One way to formalize this mastery score 

and its consequences for students and instructional program is to introduce a threshold 

utility function with parameter c 

S w + a j  for Y > c  
tlj( Y) (23) 

t v + a ~  for ¥ < c  

in which w and v represent the treatment-independent and a~ the treatment-dependent part 

(e.g. treatment costs) of the utility structure. It will generally hold that w > v. We shall first 

examine the solution for (23), and then introduce some extra conditions yielding analytical 

solutions for the optimal cut-off score b*. 

The Bayes risk can now be written as 

b - I  c - I  b - I  n 

B(b) = E E (v + ao)no(X, y) + E E (w + a0)no(x, y) 
x=O y=O x=O y = c  

x = b  y=O x = b  y = c  

As the value of b that maximizes (24) also maximizes (24) for any linear transformation of 

(23), we can rescale (23) without any loss of generality and put v = 0 and w = 1. This gives 

b - 1  n b - I  

B(b)= ~ Xno(x , y )+ao~ .2 (x )+  ~ ~ ,n l (x ,y )+at~ ,2(x)  
x = 0  y~-C x = O  x = b  y = c  x = b  

= no(X, Y) + ao + I'oJt(YIx) -- O~o(YIx)'l + at - ao 2(x). (25) 
x = O  y=C x = b  

Since the first double sum in (25) is a constant and 2(x) is nonnegative for all values of x, b* 

is that value of x for which 

Ecol(YIx) - Coo(Y I x)] + al -- ao 
¥=c  

o r  

no(el x )  - t~(c I x) + al - ao, (26) 

['l~ being the c.d.f, of  Y Jx, is positive for the first time. 

We now examine the solution for the case in which the treatment-dependent part in 

(23) is approximately equal for both treatments, i.e. when (26) can be replaced by 

~2o(C [ x) - [~l(c [ x). (27) 

If Y given x is normally distributed with (conditional) expectations E~(Y [x) and variances 
varj(Y t x), the solutionui.e,  the smallest value of x which makes (27) positive--is equivalent 

to that which makes 

c - Eo(YIx) e - Ex(¥l x) 

[varo(Y I x)] 1/2 - [varl(Y ] x)] 1/2 (28) 
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positive for the first time. For linear regression functions (1) this results in 

c - ~ o  - P o  x c - ~ ,  - P l x  

[varo(YI x)] 11~ - [varl(Y Ix)] 1/2" 

Under homoscedasticity vau(YI x) reduces to the constant vau(Y. X) given in (22) and 

b* = int {(c - ~0[varo(Y " X)] 1/2 _ (c - ~0)[varl(Y • X)] 1/2~ 

pl[varo(Y x)] 1/2 -/~o[varl(Y " x)] '/2 J + 1. (29) 

Again using the two distributions from our preceding example with ~o = 22.8, 

~t = 17.1, / ~ o = - 0 . 3 ,  p t =  1.7, COro(X, Y)=.81,  cort(X, Y)=.70,  varo(Y)= 10.0, 

varj(Y) = 12.9, and the additional information that criterion Y has a mastery score c = 20, 

it follows from (29) that the optimal cut-offb* = 4. 

Note how in expressions (26)-(29) the optimal decision is a function of the mastery 

score c. In situations in which the treatment assignment is followed by end-of-unit mastery 

decisions and threshold utility is a realistic assumption, this compels the involvement of the 

mastery score in the assignment procedure. There is a particular case for which this does 

not apply, namely when 

varo(YI x) = varl(YIx) (30) 

for all values of x. Then, solving (28) reduces to a comparison between the two regression 

functions, and b* is the first value of x to the right of the intersection of the two functions. 

With linear regression this amounts to 

Optimal Assionment with Utility Defined on the True Criterion 

In the event of unreliable criterion scores or criterion scores that are inefficient esti- 

mators of an underlying true or latent parameter, it seems better to revise the utility 

function (4) and define it as a function of the true criterion score T: 

V = u,(T). (32) 

This amounts to the notion that utilities should not be based on fallible impressions but on 

what the student is actually able to perform. Henceforth we shall assume that T is defined as 

the expected criterion score over replications, a definition that not only corresponds with 

classical test theory but with any test model in which Y is an unbiased estimator of some 

parameter of interest T. Cronbach and Snow's assertion that unreliability of the outcome 

measure does not bias the interpretation of ATI [1977, p. 34] is motivated by their interest 

in testing the disordinality of within-group regression lines and is generally not valid for the 

decision theoretic approach and utility functions examined in this paper. Unlike Cronbach 

and Snow [1977, p. 33], we are not interested in the unreliability of the aptitude measure- 

ments since we shall never be able to use true aptitude scores for treatment assignment; we 

always confine ourselves to the available observed or estimated aptitude scores. Neverthe- 

less, it must be taken into account that in situations where for some treatments the true 

aptitude and criterion scores are stochastically dependent, a reduction in the Bayes risk 

may be gained by improving the reliability of the aptitude measurement. 

As a consequence of(32) we have to replace (9) by 

B(b) = ~ Uo(Z)¢o(X, y, z) dx + ul(x)~Ol(x, y, z) dz, (33) 
x=O y=O x=b y~-O 
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where ~,j(x, y, T) is the probability (density) function of (X, Y, T) under treatment j. Inte- 

grating and summing yields 

b - 1  ra 

B(b) = ~, Eo[uo(T) lx]2(x) + ~ EII 'u,(T) I x]2(x), 
x=O X=~r 

or, on completing the first sum, 

n(b) = eoEuo(T) l x3, (x) + {e , [u , (T)  lx3 - eo[uotT) l x3},Z(x), 
x=O x = b  

which is optimal for the smallest value of x for which 

EI[Ul(T) I x] - Eo[uo(T) l x] (35) 

is positive. We know however that 

E(TIx )  = E (Y  - e lx) = E(YIx ) ,  (36) 

where e is the error of estimation in the unbiased estimator Y of T. We arrive again at the 

solutions given by (14), (20), and (21). 

Analogous to the preceding, we now examine the consequences for treatments with a 

true mastery score and define the threshold loss function as 

~ w + a j  for T > d  
U u j ( T )  (37) 

L v + a j  for T < d ,  

where d denotes the true mastery score. Note that we do not use c again, inasmuch as c may 
differ from d when obtained by decision theoretic optimization procedures which we men- 

tioned in our discussion of mastery testing. Following the same derivation as before, it 
appears that b* is equal to that value ofx  for which 

f "l'01(TI x) - 0o(TIx)] dT + al -- ao (38) 

o r  

®o(dl x) - ®l(dlx) + al - ao (39) 

is positive for the first time, with 0j(T I x) denoting the p.d.f, o fT  given x and ®j its c.d.f. 

Unlike the monotone nondecreasing utility function given in (32), we see that for 

treatments with a mastery score it does matter whether we choose an observed or true 

criterion. ~ This is so even if we would choose c = d, since the difference refers to the c.d.f.'s 
and not to the mastery score used. To determine the consequences for solution (29), we 

again assume normal conditional distributions (now of T given x) with linear regression 

and homoscedasticity. Equation (22) assumes the form 

varj(T • X ) =  {cor~(r, Y ' ) -  [corj(X, Y)]2}var~(Y), (40) 

where corj(Y, Y') is the reliability coefficient of measurement Y after treatment j. Substitut- 

ing (40) instead of (22) into (29) gives the analogue of (29) for utility function (37) (with 

go = gl = g). Both solutions coincide in the event of distributions of criterion measure- 

ments 7rj(y) having corj(Y, Y') = 1 for j = 0, 1. However, this seems unlikely for behavioral 

measurements, and, moreover, in ATI research one normally looks for aptitudes which 
have a differential validity or predictability [Cronbach & Gleser, t967, pp. 57-59; Lord & 

Novick, 1968, pp. 271-273] and this, in combination with condition (3) and for criterion 

measurements with a supposedly constant standard error of measurement, leads to distri- 

butions %@) with different reliabilities. 
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To illustrate the consequences of the attenuation correction in (40) for the solution 

given in (29), we again compute the optimal cut-off score b* using both distributions of our 

preceding examples but now with the additional information that d = c = 20 and the 

criterion measurements have reliabilities coro(Y, Y') = .66 and corl(Y, Y') = .85. It appears 

that b* is equal to 7 instead of 4. 

Generalization to t > 2 

In the foregoing we confined ourselves to assignment decisions with two treatments 

(t = 1). The theory can be readily generalized to t > 2 treatments, however. We shall show 

this below, and in  doing so we still assume that the decision problem has a monotone 

character, that is, that the likelihoods vj(y; x) and ~j(~; x) are monotonic [equation (7)], the 

utilities satisfy the inequalities given in (8), and the optimal decision rule therefore can be 

found in the class of rules having the form of an ordered series of cut-off scores. 

In the preceding sections we obtained the solutions by an optimization method in 

which we arrived at a sum consisting of the partial sum to x = b for some expression and 

from x = b for another. The optimal value of b was found by completing the first partial 

sum and adjusting the second sum correspondingly. The generalization of this method to 

decision rules of the form 

0 = b o < . . . < b  l - < ' ' ' < b t + t = m ,  (41) 

with 2 <_ t _< m, where b~ is the cutting score between treatmentj  and j  + 1, will be illustrated 

with the help ofexpression (27) (threshold utility defined on Y). It can easily be verified that 

for multiple monotone decisions the Bayes risk is the following generalization of (9): 

b l  - I b2 - I 

B(bl , . . . ,  b,) = ~ [1 - f2o(ClX)]2(x ) + ~ I-1 - f~t(clx)]2(x) 
x = O  x ~ b l  

+ . . .  + ~ [1 -- f~t(clx)]A(x). (42) 
X=bj[ 

Completing the first sum and omitting the factor 2(x) because, as a nonnegative quantity 

which does not change sign, it plays no role in optimizing (42), results in 

b2 -- 1 

8db, , . . . ,  b,) = E 13 - ~o(cl x)] + ~ I~o(clx) - f~(clx)]  
x = O  x=bt  

+ " "  + ~ [f~o(Cl x) -- [~t(c I x)]. (43) 
X=b!  

This sum is maximal if each of its terms is maximal; thus, we may conclude that b* is equal 

to the smallest value of x making 

f~o(c I x) - f~l(c I x) (44) 

positive. 

Substituting b* for bt into (42), completing the second sum from bT up to and 

including m, adjusting all following terms, and leaving out 2(x) and all constants yields 

b 3 _ 1  

B2(bz,..., bt) = [1 -- t~x(cl x)] + ~ [f~l(cl x) -- f~2(clx)] 
x : b l *  x = b 2  

+ - . .  + ~ [f~,(cl x) - fl,(clx)]. (45) 
x=bt 
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Now b~ is equal to the first value of x making 

ta~(c I x) - n2(c  I x) 

positive. The values b~', ..., b* are found repeating the same procedure. 

The above procedure shows how rules can be found for the multiple monotone AT 

decision problem. Starting from the lowest cuttino score the results in the precedin# sections 
are applied to each pair of adjacent treatments. 

Using Qualitative Information to Improve A T  Decisions 

Suppose that we are able to classify the students on a qualitative attribute (e.g. pre- 

vious schooling) and that the resulting distribution also shows stochastic dependence with 

the criterion distribution for some treatments. How can this information be used to im- 

prove the treatment assignment ? 

We denote this classification by K, with K = 0 . . . . .  k . . . .  , q, and define 

Pk =- proh{K = k}. 

If Rj is the set of ordered pairs of K and X values leading to treatment j, then the Bayes risk 
(for a utility function defined on T) is equal to 

j : O  Rj y=O 

where ~jk(X, y, Z l k) is the p.(d.)f, of (X, Y, T) given K = k. For conditional distributions 

having monotone likelihood and utility functions satisfying the inequalities given in (8), the 
second coordinates in the t sets Rj show for each possible value of K the partitioning 

corresponding with the monotone decision rules we studied earlier, and the optimal col- 

lection of sets R i are found by applying the preceding theory for each class or subpopula- 

tion of K. The result is thus a series of (t + 1)(q + 1) cut-off scores, namely t + 1 scores bjk 
for each class k. 

In principle, the foregoing suggests lines along which a generalization of the theory in 

this paper to two and more aptitudes can be found. Aptitude measurements are always 

discrete and can therefore be considered a classification consisting of m possible classes. The 
computations involved, however, increase quickly in magnitude with the number of classes 

and the number of aptitudes, and the amount of data required to arrive at stable results 

may be impractical. It seems better to use the extensions we have given here only for 
natural dichotomies or trichotomies. 

The foregoing also suggests an extension to situations in which the test is culturally 

biased against some subpopulations. For this problem there are solutions based on ex- 

pected utility models as well [Gross & Su, 1975; Mellenbergh & van der Linden, 1981; 

Peterson, 1976; Peterson & Novick, 1976]. When there are subpopulations L = 0, ... .  I, . . . ,  
r against which the aptitude or the criterion test may be biased, the Bayes risk can be 
defined analogous to these expected utility models as 

with 

B(6) = E uj#)¢j~(x, y, ~ll)pz dx, 
j=O Q/ y=O 

(47) 

Pj = prob{L = I} 

where ejl(x, y, • II) is the p.(d.)f, of (X, Y, T) given L = l and Qj denotes the set of ordered 
pairs of L and X values for which treatmentj is chosen, The difference between (46) and (47) 

is that in the expected utility models for culturally fair testing the utility function is defined 
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as u~(T) and allowed to assume a different form for each subpopulation. The optimal 

decision rule can, however, be found similarly. 

Discussion 

This paper was mainly motivated by the fact that regression line intersections, al- 

though they are often recommended and used for this purpose, lead to decision rules that in 
many situations are far from optimal. Moreover, as we pointed out earlier, they follow 

from considerations in which utility functions and optimization criterion are not chosen 

explicitly. Looking back, we are now able to indicate some utility functions, types of 

distributions, and an optimization criterion together yielding the point of intersection of 

regression lines as the optimal cut-off point. For two regression lines with parameters as 

designated in (1), the point of intersection has an x coordinate with value (~1 -~o)/(flo 

- ill). This is precisely the argument of the greatest integer function in solution (14) for 

go = g l and fo = fl ,  which means that the use of the point of intersection involves a Bayes 

rule with linear utility under the restriction #o = #l andfo = f l  and distributions with linear 

regresssion. It is also the argument of the greatest integer function in solution (21) for 

~o = et and #o =/~1, and the one in (29) for varo(Y • X) = varl(Y • X). The former implies 

normal ogive utility with equal location, distributions with linear regression, and a re- 

striction on the scale parameter of the normal ogive and the conditional criterion score 

variances. The latter calls for distributions with linear regressions and, for example, homo- 

scedasticity. Other combinations of utilities and distributions may also lead to this decision 

rule. Thus, there are some situations in which the use of the intersection is optimal; the 

point is, however, that the use of the intersection is not universally best as a decision rule 

and that in a situation with different utilities or ih which the required distributional as- 

sumptions are violated much better rules can be found. 

Several techniques are in use to assess utility structures. Most texts on decision theory 

contain sections devoted to utility theory in which lottery methods are proposed for this 

purpose [e.g., Luce & Raiffa, 1957, Chap. 2; for a recent modification, see Novick & 

Lindley, 1979]. But in principle any psychological scaling method can be used. Although 

helpful techniques are available, this does not mean that, for example, in programs of 

individualized instruction the assessment of utilities is always a simple matter. Much de- 

pends on the way the situation to which these techniques are to be applied may be reduced 

beforehand. When several consequences of the decision outcomes have to be taken into 

account, among which less tangible consequences as, for instance, psychic well-being or 

societal effects, the assessment of utilities may be extremely complicated and not possible 

without additional assumptions. On the other hand, when only a few clearly defined 

consequences are deemed important, the situation resembles those in business applications 

of which many successful illustrations are available [e.g., Keeney & Raiffa, 1976]. Else- 

where [van der Linden, 1980] we have indicated that in choosing a utility function fit to the 

decisionmaker's utilities should not be the only requirement. The choice of a utility function 

ought to be a compromise between at least three requirements: (a) fit to the decisionmaker's 

utilities; (b) fit to the psychometric model relating test scores to true future states; and (c) 

robustness of results with respect to its parameters. This last requirement has not received 

much attention (an exception is Vijn, Note 2), but it is very important. Especially to the 
decisionmaker who is uncertain about his parameter specifications, it can be a soothing 

thought that parameter values differing somewhat from the ones that were actually used 

lead to the same decision. For an example in the area of mastery testing, we refer to van der 
Linden 11980]. 

This paper was also motivated by the fact that introducing treatments with mastery 

scores might increase the practical value of the ATD problem. In addition, we have called 
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attention to the fact that in case of unreliable criterion scores utility functions ou.ght to be 

redefined as a function of the underlying true or latent criterion variable. It appears that 

this changes the optimal decision rule for treatments with a mastery score (threshold loss). 
So far the distributions dealt with in our solutions have been model or population 

quantities. In applications these must be estimated, and it is important that the data come 

from the correct experiment and not, for example, from individualized instructional pro- 
grams in which students are already assigned to treatments on the basis of their scores on 

the aptitude in question. In a proper experiment students from the same aptitude score 

distribution are randomly drawn and assigned to treatments, after which their criterion 

performances are measured. This is to guarantee that condition (3) is satisfied. The bivariate 

score distributions that arise in this way can be used to estimate the necessary parameters 

and to test the distributional assumptions and, when needed, the linearity of the regression 
functions. 

The parameters to be estimated are all familiar parameters, such as conditional expec- 

tations (regression functions), variances, and linear regression parameters. Estimation of 

these, for which standard statistical theory provides estimators with favorable properties, 

can yield errors of estimation that propagate in computing the assignment rules of this 
paper. It is therefore recommended not to use too small samples in the foregoing experi- 

ment. This does not mean, however, that small samples necessarily yield inaccurate results. 
The way errors of estimation propagate depends on the whole structure of the rule, involv- 

ing not only distributional parameters but utility parameters as well. One of the referees of 
an earlier draft of this paper suggested the establishment of "regions of indifference" as in 

the Johnson-Neyman technique, i.e., intervals on the aptitude variable for which we are 

indifferent to the two adjacent treatments because of sampling error. A practical way to 
proceed may be to establish (simultaneous) confidence intervals for the parameters, and to 

determine the range of cutting score values associated with these intervals. A large range 
implies that large errors are likely to have crept into the determinations of the cutting score. 

It is recommended that this be done when, for practical reasons, only samples of limited size 
can be used. 

The solutions given in this paper apply to treatment assignment problems with a 

monotone character. The solutions for nonrnonotone problems are still to be examined. It 
is however, always possible to use observed frequencies of Y given x and compute for each 
treatment the conditional average utility given x 

n 

u~(y)Oj(ylx) 
Aj(x) - y=o 

E °~(ylx) 
y-O 

with 0~v I x) denoting the observed frequency of Y given x for treatmentj. (In this empirical 
approach 2(x) plays no role.) The optimal procedure can then consist of assigning those 

treatments to the values of x for which Aj(x) is maximal across j. It should be realized that 

this empirical approach can yield decision rules that are extemely unstable unless based on 
large numbers of cases. Moreover, as already pointed out, the acceptability of nonmono- 

tone rules may be questionable in situations in which the parties involved are used to 

decision rules having the form of cut-off scores. Therefore when possible, it would be 
appropriate to redesign the tests to obtain decision problems that do have a monotone 
character. 

Finally, we repeat that the ATD problem differs from the (Bayes) decision problem 
presented in standard texts [e.g. DeGroot, 1970; Ferguson, 1967; Lindgren, 1976, Chap. 8]. 
In this problem there is the same prior for each action, whereas in the ATD problem the 
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priors are allowed to vary and assume the form which represents the effects of the action on 

the true state. All decision problems in which the true state is a future state influenced by 

the action to be taken have this property. Further examination of the formal structure and 

the statistical aspects of the ATD problem seems therefore a valuable line of research. 

Appendix : Glossary of Symbols 

The most important symbols used in this paper are defined as follows: 

X 

Y 

T 

K 

L 

U 

J 
si 
Ri 

Qj 
b 

c 

d 

,Z(x) 
n(y) 

n(x, y) 
@(x, y, z) 

~(.vi x) 
v(x l Y) 

0(T Ix) 
0~ 

fl 
v, w, a~ 

gj, f j  
#i, a~ 

aptitude measurement; X = 0, . . . .  m; 

criterion measurement: Y --- 0, . . . ,  n; 

true criterion; Te[0, n]; 

qualitative attribute; K = 0, . . . ,  k . . . .  , q; 

subpopulation; L = 0, . . . ,  l . . . . .  r; 

utility; 

treatment; j = 0, . . . .  t; 

set of X values leading to treatment j ;  

set of (K, X) values leading to treatment j ;  

set of (L, K) values leading to treatment j ;  

cut-off score on X;  

mastery score on Y; 

mastery score on T; 

p.f. of X; 

p.(d.)f, of Y; 

p.(d.)f, of (X, Y); 

p.(d.)f, of (X, Y, T); 

p.(d.)f, of Y given X = x; 

p.f. of X given Y = y; 

p.d.f, of T given X = x; 

intercept of the regression line of Y on X; 

slope of the regression line of Y on x; 

parameters in the threshold utility function for treatment j ;  

parameters in the linear utility function for treatment j ;  

parameters in the normal ogive utility function for treatment j. 
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