
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

46 Cheng, Garlan, Schmerl, Sousa, Spitznagel, Steenkiste

embedded systems. Such systems must continue to run with only minimal human

oversight, and cope with variable resources (bandwidth, server availability, etc.),

system faults (servers and networks going down, failure of external components,

etc.), and changing user priorities (high-fidelity video streams at one moment, low

fidelity at another, etc.).

Recently a number of researchers have proposed an approach in which system

models - and in particular, architectural models - are maintained at run time and

used as a basis for system reconfiguration and repair [21] rather than relying on

system-specific built-in mechanisms. Architecture-based adaptation has a number of

nice properties: As an abstract model, an architecture can provide a global perspec

tive on the system. Architectural models can make "integrity" constraints explicit,

helping to ensure the validity of any change. Suitably-designed architectures permit

flexible evolution of systems by providing loose coupling between components.

A key issue in making this approach work is the choice of architectural style

used to represent a system. Previous work in this area has focused on the use of spe

cific styles (together with their associated architecture description languages (ADLs)

and toolsets) to provide intrinsically modifiable architectures, or the use of low-level

architectural adaptation operations. Taylor and colleagues use hierarchical publish

subscribe via C2 [20,23]; Gorlick and colleagues use data-flow style via Weaves

[10]; Magee and colleagues use bi-directional communication links via Darwin [14];

and Wermelinger and colleagues [25] use architectural primitives, independent of

particular architectural styles, to effect architectural changes.

The specialization to particular styles has the benefit of providing strong support

for adapting systems built in those styles. However, it has the disadvantage that a

particular style may not be appropriate for an existing implementation base, or it

may not expose the kinds of properties that are relevant to adaptation. For example,

different styles may be appropriate depending on whether one is using existing cli

ent-server middleware, Enterprise lavaBeans (EJB), or some other implementation

base. Moreover, different styles or views may be useful depending on whether ad

aptation should be based on issues of performance, reliability, or security.

In this paper we show how to generalize architecture-based adaptation by mak

ing the choice of architectural style an explicit design parameter in the framework.

This added flexibility allows system designers to pick an appropriate architectural

style in order to expose properties of interest, provide analytic leverage, and map

cleanly to existing implementations and middleware.

The key technical idea is to make architectural style a frrst-class run time entity.

As we will show, formalized architectural styles augmented with certain run time

mechanisms provide a number of important capabilities for run time adaptation: (1)

they define a set of formal constraints that allow one to detect system anomalies; (2)

they are often associated with analytical methods that suggest appropriate repair

strategies; (3) stylistic constraints can be linked with repair rules whose soundness is

based on corresponding (style-specific) analytical methods; (4) they provide a set of

operators for making high-level changes to the architecture; and (5) they prescribe

what aspects of a system need to be monitored.

In the remainder of this paper we detail the approach, focusing primarily on the

role of architectural styles to interpret system behaviour, identify problems, and

suggest remediation. To illustrate the ideas we describe how the techniques have

been applied to self-repair of an important class of web-based client-server systems,

Using Architectural Style as a Basis/or System Self-repair 47

based on monitoring of performance-related behaviour. As we will show, the selec

tion of an appropriate architectural style for this domain permits the application of

queuing-theoretic analysis to motivate and justify a set of repair strategies triggered

by detection of architectural constraint violations.

2. RELATED WORK

Considerable research has been done in the area of dynamic adaptation at an im

plementation level. There are a multitude of programming languages and libraries

that provide dynamic linking and binding mechanisms, as well as exception han

dling capabilities (e.g., [6, 12, 13, 18]). Systems of this kind allow self-repair to be

programmed on a per-system basis. For self-repair to be useful in a large range of

mobile, defence, or e-commerce systems, it is desirable that application writers not

code specific solutions for each application; nor should users of each application be

burdened with interacting with different change mechanisms. Rather, we require

external, reusable mechanisms that can be added to systems in a disciplined manner.

A more disciplined approach can be found in the area of distributed debugging

systems [11]. However, those systems have focused on user-mediated monitoring,

whereas our research is primarily concerned with automated monitoring and recon

figuration.

Most closely related is the research on architecture-based adaptation, mentioned

earlier. As we noted, the primary difference between our work and earlier research

in this area is the decoupling of style from the system infrastructure so that develop

ers have the flexibility to pair an appropriate style to a system based on its imple

mentation and the system attributes that should drive adaptation. To accomplish this

we must introduce some new mechanisms to allow ''run time" styles to be treated as

design parameters in the run time adaptation infrastructure. Specifically, we must

show how styles can be used to detect problems and trigger repairs. We must also

provide mechanisms that bridge the gap between an architectural model and an im

plementation - both for monitoring and for effecting system changes. In contrast, for

systems in which specific styles are built-in (as with [10,23]) this is less of an issue

because architectures are closely coupled to their implementations by construction.

Finally, there has been some work on formally characterizing architecture styles,

and using them as a basis for static system analysis [7, 22]. Our research extends this

by showing how to turn "style as a design time artefact" into "style as a run time

artefact". As we will see, this requires two significant additions to the usual notion

of style as a set of types and constraints: (1) style-specific repair rules, and (2) style

specific change operators. Some other efforts in this area have investigated formal

foundations for this in terms of graph grammars and protocols, but have not carried

the results through to implementation [2, IS, 25].

3. OVERVIEW OF APPROACH

Our starting point is an architecture-based approach to self-adaptation, similar to

[21] (as illustrated in Figure 1): An executing system (1) is monitored to observe its

run time behaviour (2). Monitored values are abstracted and related to architectural

48 Cheng. Garlan. Schmerl. Sousa. Spitznagel. Steenkiste

..

: Architecture Manager OJ

_,
Monitoring 2 ...

..........•.

• ••• <;?
L..----1 __ --:..., ••

Figure 1. Adaptation Framework.

·
· ·

properties of an architectural model (3). Changing properties of the architectural

model trigger constraint evaluation (4) to determine whether the system is operating

within an envelope of acceptable ranges. Violations of constraints are handled by a

repair mechanism (5), which adapts the architecture. Architectural changes are

propagated to the running system (6).

The key new feature in this framework is the use of style as a first class entity

that determines the actual behaviour of each of the parts. Specifically, style is used

to determine (a) what properties of the executing system should be monitored, (b)

what constraints need to be evaluated, (c) what to do when constraints are violated,

and (d) how to carry out repair in terms of high-level architectural operators. In ad

dition we introduce a style-specific translation component to map high-level archi

tecture operations into lower-level system operations.

To illustrate how the approach works, consider a common class of web-based

client server applications that are based on an architecture in which web clients ac

cess web resources by making requests to one of several geographically distributed

server groups (see Figure 2). Each server group consists of a set of replicated serv

ers, and maintains a queue of requests, which are handled in FIFO order by the serv

ers in the server group. Individual servers send their results back directly to the re

questing client.

The organization that manages the overall web service infrastructure wants to

make sure that two interrelated system qualities are maintained. First, to guarantee

quality of service for the customer, the request-response latency for clients must be

under a certain threshold (e.g., 2 seconds). Second, to reduce costs, the active serv

ers should be kept as loaded as possible, subject to the first constraint.

Since access loads in such a system will naturally change over time, the system

has two built-in low-level adaptation mechanisms. First, we can activate a new

Using Architectural Style as a Basis/or System Self-repair 49

server in a server group or deactivate an existing server. Second, we can cause a

client to shift its communication path from one server group to another.

Figure 2. Deployment Architecture of the Example System.

The challenge is to engineer things so that the system adapts appropriately at run

time. Using the framework described above, here is how we would accomplish this.

First, given the nature of the implementation, we decide to choose an architectural

style based on client-server in which we have clients, server groups, and individual

servers, together with the appropriate client-server connectors (Figure 3(a». Next,

because we are focussing on performance, we adapt that style so that it exposes per

formance related properties and makes explicit constraints about performance (Fig

ure 3(b». Here, client-server latency and server load are the key properties, and the

constraints are derived from the two desiderata listed above. Furthermore, because

of the nature of communication we are able to pick a style for which formal per

formance analyses exist - in this case MIMIm-based queuing theory.

To make the style useful as a run time artefact we now augment the style with

two specifications: (a) a set of style-specific architectural operators, and (b) a col

lection of repair strategies written in terms of these operators associated with the

style's constraints. The operators and repair strategies are chosen based on an ex

amination of the analytical equations, which formally identify how the architecture

must change in order to affect certain parameters (like latency and load).

There are now only two remaining problems. First, we must get information out

of the running system. To do this we employ low-level monitoring mechanisms that

instrument various aspects of the executing system. We can use existing off-the

shelf performance-oriented "system probes." To bridge the gap between low-level

monitored events and architectural properties we use a system of adapters, called

"gauges," which aggregate low-level monitored information and relate it to the ar

chitectural model. For example, we have to aggregate various measurements of the

round-trip time for a request and the amount of information transferred to produce

bandwidth measurements at the architectural level.

The second problem is to translate architectural repairs into actual system

changes. To do this we write a simple table-driven translator that can interpret ar-

50 Cheng, Garlan, Schmerl, Sousa, Spitznagel, Steenkiste

chitectural repair operators in terms of the lower level system modifications that we

listed earlier.

In the running system the monitoring mechanisms update architectural proper

ties, causing re-evaluation of constraints. Violated constraints (high client-server

latencies, or low server loads) trigger repairs, which are carried out on the architec

tural representation, and translated into corresponding actions on the system itself

(adding or removing servers, and changing communication channels). The existence

of an analytic model for performance (MlMlm queuing theory) helps guarantee that

the specific modification operators for this style are sound. Moreover, the matching

of the style to the existing system infrastructure helps guarantee that relevant infor

mation can be extracted, and that architectural changes can be propagated into the

running system.

4. STYLE-BASED ADAPTATION

We now elaborate each aspect of this framework, focussing on the way stylized

architectural models support problem detection and repair. Given limits of space, we

omit details on the monitoring and run time system change infrastructure, which are

described elsewhere [4,9].

4.1 Architectural Models and Styles

The centrepiece of our approach is the use of stylized architectural models. We

adopt an approach in which an architectural model is represented as an annotated,

hierarchical graph.! Nodes in the graph are components, which represent the princi

pal computational elements and data stores of the system. Arcs are connectors,

which represent the pathways of interaction between the components. Components

and connectors have explicit interfaces (termed ports and roles, respectively). To

support various levels of abstraction and encapsulation, we allow components and

connectors to be defined by more detailed architectural descriptions, which we call

representations.

To account for various semantic properties of the architecture, elements in the

graph can be annotated with extensible property lists. Properties associated with a

connector might define its protocol of interaction, or performance attributes (e.g.,

delay, bandwidth). Properties associated with a component might define its core

functionality, performance attributes, etc.

Representing an architecture as an arbitrary graph of generic components and

connectors has the advantage of being extremely general and open ended. However,

in practice there are a number of benefits to constraining the design space for archi

tectures by associating an architectural style with the architecture. An architectural

style typically defines a set of types for components, connectors, interfaces, and

properties together with a set of rules that govern how elements of those types may

be composed.

! This is, in fact, the core architectural representation scheme adopted by a number of ADLs,

including Acme [8], xADL [5], and SADL [17].

Using Architectural Style as a Basis for System Self-repair 51

Requiring a system to conform to a style has many benefits, including support

for analysis, reuse, code generation, and system evolution [7,23,24]. Moreover, the

notion of style often maps well to widely-used component integration infrastructures

(such as EJB, lll.A, CORBA), which prescribe the kinds of components allowed

and the kinds of interactions that may take place between them.

As a result a number of ADLs and their toolsets have been created to support

system development and execution for specific styles. For example, C2 [23] sup

ports a style based on hierarchical publish subscribe; Wright [1, 2] supports a style

based on formal specification of connector protocols; MetaH [24] supports a style

based on real-time avionics control components.

In our research we adopt the view that while choice of style is critical to sup

porting system design, execution, and evolution, different styles will be appropriate

for different systems. For example, a client-server system, such as the one in our

example, will most naturally be represented using a client-server style. In contrast, a

signal processing system would probably adopt a pipe-filter style. While one might

encode these systems in some other style, the mapping to the actual system would

become much more complex, with the attendant problems of making sure that any

observation derived from the architecture has a bearing on the system itself.

For this reason, two key elements of our approach are the explicit definition of

style and its accessibility at run time for system adaptation. Specifically, we define a

style as a system of types, plus a set of rules and constraints. The types are defined

in Acme [8], a generic ADL that extends the above structural core framework with

the notion of style. The rules and constraints are defined in Armani [16], a first-order

predicate logic similar to UML's OCL [19], augmented with a small set of architec

tural functions. These functions make it easier to define logical expressions that re

fer to things like connectedness, type conformance, and hierarchical relationships.

We say that a system conforms to a style if it satisfies all of the constraints defined

by the style (including type conformance).

To illustrate, Figure 3(a) contains a partial description of the style used to char

acterize the class of web-based systems of our example. The style is actually defined

in two steps. The first step specifies a generic client-server style (called a family in

Acme). It defines a set of component types: a web client type (Client1), a server

group type (ServerGroup1), and a server (Server1). It also defines a connector type

(Link1). Constraints on the style (appearing in the definition of Link1) guarantee that

the link has only one role for the server and more than one role for the client. Other

constraints, not shown, define further structural rules (for example, each client must

be connected to a server).

There are many possible kinds of analysis that one might carry out on client

server systems built in this style. Since we are concerned with overall system per

formance in this example, we augment the client-server style to include perform

ance-oriented properties. These include the response time and degree of replication

for servers and the delay time over links. This style extension is shown in Figure

3(b). Constraints on this style capture the desired performance related behaviour of

the system. The first constraint, associated with PAServerGroupT, specifies that a

server group cannot be under-utilized. The second constraint, as part of PAClien

tRoleT, indicates that the latency on this role should be below some specified maxi

mum.

52 Cheng, Garlan, Schmerl, Sousa, Spituulgel, Steenkiste

Having defined an appropriate style, we can now define a particular system con

figuration in that style, such as the one illustrated in Figure 4.

fImIIy CllenlS8IV8CFam = {
Component Type CllentT = (... J;
Component Type ServerT = { ... J;

Component Type ServerGroupT = (... J;

Roll Type CllentRoieT = { ... J;

Connactar Type UnkT = (

J;
J;

Invariant slze(select r : role In Sell. Roles I
declaresType(r, ServerRoleT) == 1;

Invariant slze(select r : role In Self.RoIes I
declaresType(r, CllentRoIeT) >= 1;

Roll CllentRoiel : CllenlRoIeT;
Roll ServerRoie : ServerRoIeT;

(a)

FIgUre 3. (a) Client-Server Style Definition
in Acme,' (b) Client- Server Style Ex
tended/or Performance Analysis.

FImIIy PerformanceCIlentS8IV8Ifam axtandI
CIIentServarFam with {

J;

Component Type PACllentT axtendl CllentT with (

J;

Propartlal {

J;

Reques\s : sequence <any>;
ResponseTime : float;
ServicaTime :

Connector Type PAUnkT axtendl UnkT with (
Propartlal ,

DelayTime : float;
);

J;
Component Type PAServerGroupT axtendI

ServerGroupT with (

J;

Propartlas {

J;

Repllcallon : Int «default : In! = 1 ;»;
Requests: sequence <any>;
ResponseTime : float;
ServlceTime : float;
AvgLoad : float;

invariant AvgLoad > mlnLoad;

Roll Type PACIlentRoieT axtands ClIentRoIeTwlth,
Properly avarageLatency : float
invariant averageLatency < maxLatency;

J;

Property maxLatency : float;
Property mlnLoad : float;

(b)

4.2 Style-specific Analytical Methods

As we argued above, one of the main benefits of style-based development is the

ability to use analytical methods to evaluate properties of a system's architectural

design. For example, systems in the MetaH style use real-time schedulability analy

sis, while those in Wright can use protocol model checking [1, 2, 24].

To illustrate how this works, consider our web style example. The use of buff

ered request queues, together with replicated servers, suggests the use of queuing

theory as a basis for under-standing the performance characteristics of systems built

in this style. As we have shown elsewhere [22], for certain architectural styles

queuing theory is useful for determining various architectural properties including

system response time, server response time (Ts), average length of request queues

(Qs), expected degree of server utilization (Us), and location of bottlenecks.

Using Architectural Style as a Basis for System Self-repair

Component ServerGrpl
(ServerGrpRep)

Figure 4. Architectural Model of the Example System.

53

In the case of our example style, we have an ideal candidate for MIMIm analysis.

The MIM indicates that the probability of a request arriving at component s, and the

probability of component s finishing a request it is currently servicing, are assumed

to be exponential distributions (also called "memoryless," independent of past
events); requests are further assumed to be, at any point in time, either waiting in

one component's queue, receiving service from one component, or travelling on one
connector. The m indicates the replication of component s; that is, component sis
not limited to representing a single server, but rather can represent a server group of
m servers that are fed from a single queue. Given estimates for clients' request gen
eration rates and servers' service times (the time that it takes to service one request),

we can derive performance estimates for components according to Table 1. To cal
culate the expected system response time for a request, we must also estimate the
average delay Dc imposed by each connector c, and calculate, for each component s
and connector c, the average number of times (vs, Vc) it is visited by that request.
(Given Vs and the rates at which client components generate requests, we can derive
rather than estimate Rs, the rate at which requests arrive at server group S.)

Applying MIMIm theory to our style tells us that with respect to the average la

tency for servicing client requests, the key design parameters in our style are (a) the

replication factor m of servers within a server group, (b) the communication delay D

between clients and servers, (c) the arrival rate R of client requests and (d) the serv

ice time S of servers within a server group.

In previous work [22] we showed how to use that analysis to provide an initial

configuration of the system based on estimates of these four parameters. In particu

lar, Equation (5) in Table 1 indicates for each server group a design trade-off be
tween utilization (underutilized servers waste resources) and response time. Utiliza

tion is in turn affected by service time and replication. Thus, given a range of ac
ceptable utilization and response time, if we choose service time then replication is

constrained to some range (or vice versa). As we show in the Section 4.3, we can
also use this observation to determine sound adaptation policies.

54 Cheng, Garlan, Schmerl, Sousa, Spitznagel, Steenkiste

Table 1. Performance Equations From [3].

(1) Utilization of server group s R.S.
u,=--

m

(2) Probability
Po = [Lm (mu,r + u.(mu,r r {no servers busy}

1=0 i! m!{I-u,}

(3) Probability p. _ Po (mu,)m
{all servers busy} Q - m!{I-uJ

(4) Average queue length of s PQu,
Q,=--

l-u,

(5) Average response time of s Pau,

R.I-u.

S.+
S.(mu.)"

mml(l-u.)zi: +(I-u.Xmu.r+1

.-0 R.

(6) System response time (la- LT,V, + LDcVc
tency)

We can use the performance analysis to deCIde the followmg questions about our
architecture, assuming that the requirements for the initial system configuration are
that for six clients each client must receive a latency not exceeding 2 seconds for
each request and a server group must have a utilization of between 70% and 80%:

How many replicated servers must exist in a server group so that the server
group is properly utilized?

- Where should the server group be placed so that the bandwidth (modelled as the
delay in a connector) leads to latency not exceeding 2 seconds?
Given a particular service time and arrival rate, performance analysis of this

model gives a range of possible values for server utilization, replication, latencies,

and system response time. We can use Equation (5) to give us an initial replication

count and Equation (6) to give us a lower bound on the bandwidth. If we assume
that the arrival rate is 180 requests/sec, the server response time is between lOms
and 20ms the average request size is 0.5KB, and the average response size is 20KB,
then the performance analysis gives us the following bounds:

Initial server replication count= 3-5 (in one server group)
Zero delay System Response Time = 0.013-0.026 seconds
o < Round-trip connector delay < 1.972 seconds, or
o < Average connector delay < .986 seconds
Average Bandwidth> 10.4KBlsec

4.3 Using Styles to Assist Adaptation

The representation schemes for architectures and style outlined above were
originally created to support design-time development tools. In this section we show

how styles can be augmented to function as run time adaptation mechanisms. Two
key augmentations to style definitions are needed to make them useful for run time
adaptation: (1) the definition of a set of adaptation operators for the style, and (2) the
definition of a set of repair strategies.

Using Architectural Style as a Basis for System Self-repair 55

4.3.1 Adaptation Operators

The first extension is- to augment a style description with a set of operators that

define the ways one can change instances of systems in that style. Such operators

determine a "virtual machine" that can be used at run time to adapt an architectural

model.

Given a particular architectural style, there will typically be a set of natural op

erators for changing an architectural configuration and querying for additional in

formation. In the most generic case, architectures can provide primitive operators for

adding and removing components and connections [20]. However, specific styles

can often provide higher-level operators that exploit the restrictions of that style and

the intended implementation base.

Two key factors determine the choice of operators for a style. First is the style it

self - the kinds of components, connectors, and configuration rules. Based on its

constraints, a style can both limit the set of operations, and also suggest a set of

higher-level operators. For example, if a style specifies that there must be exactly

one instance of a particular type of component, such as a database, the style should

prohibit addition or removal of an instance of this type. On the other hand, if another

constraint says that every client component in the system must be attached to the

(unique) database, a "new-client" operation would automatically create a new client

database connector and attach it between the new component and the database.

These style-specific operators are defined in terms of lower-level style-neutral op

erators such as "add component" or "remove connector," such as those defined in

[25] or [26].

The second factor is the feasibility of carrying out the change. To evaluate feasi

bility requires some knowledge of the target implementation infrastructure. It makes

no sense to prescribe an architectural operator that has no hope of ever being carried

out on the running system. For some styles, the relation is defined by construction

(since implementations are generated from architectures). More generally, however,

the style designer may have to make certain assumptions about the availability of

implementation-changing operators that will be provided by the run time environ

ment of the system

In terms of our example, we define the following operators:

addServerO: This operation is applied to a component of type ServerGroupT

and adds a new component of type ServerT to its representation, ensuring that

there is a binding between its port and the ServerGroup's port.

move(to:ServerGroup1): This operation is applied to a client and deletes the role

currently connecting the client to the connector that connects it to a server group

and performs the necessary attachment to a connector that will connect it to the

server group passed in as a parameter.

removeO: This operation is applied to a server and deletes the server from its

containing server group. Furthermore, it changes the replication count on the

server group and deletes the binding.

The above operations all effect changes to the model. The next operation queries

the state of the running system:

findGoodSGroup(el:ClientT,bw:jloat):ServerGroupT; finds the server group

with the best bandwidth (above bw) to the client eli, and returns a reference to

the server group.

56 Cheng, Garlan, Schmerl, Sousa, Spitznagel, Steenkiste

These operators reflect the considerations just outlined. First, from the nature of

a server group, we get the operations for activating or deactivating a server within a

group. Also, from the nature of the asynchronous request connectors, we get the

operations of adapting the communication path between particular clients and server

groups.

4.3.2 Repair Strategies

The second extension to the notion of style is the specification of repair strate

gies that correspond to selected constraints of the style. When a stylistic constraint

violation is detected, the appropriate repair strategy will be triggered.

4.3.2.1 Describing Strategies
A repair strategy has two main functions: first, to determine the cause of the

problem, and second, to determine how to fix it. Thus the general form of a repair

strategy is a sequence of repair tactics. Each repair tactic is guarded by a precondi

tion that determines whether that tactic is applicable. The evaluation of a tactic's

precondition will usually involve the examination of various properties of the archi

tecture in order to pinpoint the problem and determine applicability. If it is applica

ble, the tactic executes a repair script that is written as an imperative program using

the style-specific operators described above.

To handle the situation that several tactics may be applicable, the enclosing re

pair strategy decides on the policy for executing repair tactics. It might apply the

first tactic that succeeds, such as the approach we use for this example. Alterna

tively, it might sequence through all of the tactics, or use some other style-specific

policy.

4.3.2.2 Choosing Tactics
One of the principal advantages of allowing the system designer to pick an ap

propriate style is the ability to exploit style-specific analyses to determine whether

repair tactics are sound. By sound, we mean that if executed, the changes will help

re-establish the violated constraint.

In general, an analytical method for an architecture will provide a compositional

method for calculating some system property in terms of the properties of its parts.

For example, a reliability analysis will depend on the reliability of the architectural

parts; a performance analysis will depend on various performance attributes of the

parts. By looking at the constraint to be satisfied, the analysis can point the repair

strategy writer both to the set of possible causes for constraint violation, and for

each possible cause, to an appropriate repair.

Illustrating this idea in our example, the repair strategy developed from the theo

retical performance analysis in the following way: The equations for calculating

latency for a service request (Table 1) indicate that there are four contributing fac

tors: 1) the connector delay, 2) the server replication count, 3) the average client re

quest rate, and 4) the average server service time. Of these we have control over the

first two. When the latency is high, we can decrease the connector delay, by finding

another server group that has a higher bandwidth to a client, or increase the server

replication count, by adding another server to a server group, to decrease the latency.

Determining which tactic depends on whether the connector has a low bandwidth

Using Architectural Style as a Basis/or System Self-repair 57

(inversely proportional to connector delay) or if the server group is heavily loaded

(inversely proportional to replication). These two system properties form the pre

conditions to the tactics; we have thus developed a repair strategy with two tactics.

01 Invariant <= maxLatency

03 fixLatency(r);
04
05 strategy flxLatency (badRoIe: CliantRoIeT) = {
06
07

08
09
10
11
12
13
14
15
18

tet badClient: ClienT =
seteet one ell: CllentT In seII.Components I

exists p: RaquestT In cll.Ports I
atlached(badRote, pI;

If (flxServerLoad(badCIlent)) {
commit;

else If (flxBandwIdth{badClient, badRoIe) {
commit;

}eI .. {
abort ModeIError;

17 }
18 }
19
20 tactic flxServerload (client: CllentT) : boolean = (
21 let overtoadedServerGroups: Set{ServerGroupT) ..
22 (select sgp: ServerGroupT In self.Components I
23 connected{sgp, etlent) and
24 sgrp.Server_Load> maxServerload };

25 If = 0) {
26 return false;
27 }
28 foreach sGrp In overtoadedServerGroups (
29 sGrp.addServer();
30 }
31 return (slze(overtoadedServerGroups) > 0);
32}

33
34 lactic HxBandwidth (Client: CllentT,
35 role: CllentRoIeT) : boolean = {
36 If (roIe.Bandwidth >= mlnBandwidth) {
37 return fatse;
3B }
39 tet oIdSGrp: ServerGroupT ..
40 setect one sGrp: ServerGroupT In
41 sat.Components I
42 connected(ellent, sGrp);
43 let goodSGrp: ServerGroupT =
44 flndGoodSGrp(ellent, mlnBandwldth);
45 If (goodSGrp 1= nil) (
4B ellent.moveCltent(oIdSGrp, goodSGrp);
47 return true;
4B } el .. {
49 abort NoServerGroupFound;
50
}

Figure 5. Repair Strategy for High Latency

4.3.2.3 Applying Our Approach
Figure 5 (line 1-3) illustrates the repair strategy associated with the latency

threshold constraint. In line 2, "!7" denotes "execute on constraint violation." The

top-level repair strategy,jixLatency, in lines 5-17, consists of two tactics. The frrst

tactic in lines 20-32 handles the situation in which a server group is overloaded,

identified by the precondition in lines 25-27. Its main action in lines 28-30 is to cre

ate a new server in any of the overloaded server groups. The second tactic in lines

34-51 handles the situation in which high latency is due to communication delay,

identified by the precondition in lines 36-38. In lines 43-44, it queries the architec

ture to find a server group that will yield a higher bandwidth connection. In lines 45-

47, if such a group exists it moves the client-server connector to use the new group.

The repair strategy uses a policy in which it executes these two tactics sequentially:

if the frrst tactic succeeds it commits the repair strategy; otherwise it executes the

second. The strategy will abort if neither tactic succeeds, or if the second tactic finds

that it cannot proceed since there are no suitable server groups to move the connec

tion to.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a technique for generalizing the use of arch models

to support dynamic repair of systems. Extending earlier work by others, which dem

onstrated the value of architecture-based adaptation for specific styles of architec

ture, we have shown how to make the choice of style a parameter of the overall ad-

58 Cheng, Garlan, Sehmerl, Sousa, Spitznagel, Steenkiste

aptation framework. The explicit incorporation of styles and their associated analy

ses allow one to

make explicit the constraints that must be maintained in the face of evolution

define a set of abstract architectural operators for repairing a system

allow us to select appropriate repair strategies, based on analytical methods

We illustrated how the technique can be applied to performance-oriented adap

tation of certain client-server systems, and future work will involve applying our

approach to the performance of commercial web-based systems, as well as other

styles.

The components required in our approach to monitor the system and map archi

tectural changes into run time system changes are discussed in [4, 9]. Briefly, the

analysis associated with a style points us to properties in the architecture that need to

be monitored dynamically. Gauges are attached to these properties and generate new

property values based on information from probes that are deployed in the system

implementation. Constraints associated with architectural properties are evaluated

when the properties change to fire the repair strategies. We assume that there are

some primitive, system-specific change operators into which we can map style

specific change operators. The system-specific operators may be as primitive as op

erating system calls to stop and start processes, or the system may provide its own

change language that can be used in our framework.

For future research we intend to develop mechanisms that provide richer adapt

ability for executing systems. First is the investigation of more intelligent repair

policy mechanisms. For example, one might like a system to dynamically adjust its

repair tactic selection policy so that it takes into consideration the history of tactic

effectiveness: effective tactics would be favoured over those that sometimes fail to

produce system improvements. Second is the link between architectures and re

quirements. Systems may need to adapt, not just because the underlying computa

tion base changes, but also because user needs change. This will require ways to link

user expectations to architectural parameters and constraints. Third is to apply our

approach to some common architectural frameworks and styles, such as EJB, Jini,

and CORBA. Fourth is to develop a more general analytic basis for determining

whether a given repair strategy is sound (satisfies the constraints embodied in the

style) and stable (converges to an improved state).

ACKNOWLEDGEMENTS

DARPA, under Grants N66001-99-2-8918 and F30602-00-2-0616, supports this

work. Views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed or

implied,ofDARPA.

REFERENCES

[1] Allen, R.J. A Formal Approach to Software Architecture. PhD Thesis, published as Carnegie Mel
lon University School of Computer Science Technical Report CMU-CS-97-144, May 1997.

[2] Allen, R.J., Douence, R., and GarIan, D. Specifying Dynamism in Software Architectures. In Proc.
the Workshop on Foundations of Component-Based Software Engineering, September 1997.

[3] Bertsekas, D. and Gallager, R. Data Networks, Second Edition. Prentice Hall, 1992.

Using Architectural Style as a Basis for System Self-repair 59

[4] Cheng. S., Garlan, D., Schmerl, B., Sousa, J., Spitznagel, B., Steenkiste, P., and Hu. N. Software

Architecture-based Adaptation for Pervasive Systems. Proc. International Conference on Archi
tecture of Computing Systems (ARCS'02): Trends in Network and Pervasive Computing. April 8-
II, 2002. Lecture Notes in Computer Science, Vol. 2299, Schmeck, H., Ungerer, T., Wolf, L.
(Bds).

[5] Dashofy, B., van der Hoek, A., and Taylor, R.N. A Highly-Extensible, XML-Based Architecture
Description Language. Proc. the Working IBBFJIFIP Conference on Software Architecture, Am
sterdam, The Netherlands, August 2001.

[6] Gantenbien, R.B. Dynamic Binding in Strongly Typed Programming Languages. Journal of Sys
tems and Software 14(1):31-38, 1991.

[7] Garlan, D., Allen, R.I., and Ockerbloom, J. Bxploiting Style in Architectural Design. Proc. SIG
SOFf '94 Symposium on the Foundations of Software Bngineering, New Orleans, LA, Dec. 1994.

[8] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems. Leavens, G.T., and Sitaraman, M. (eels).

Cambridge University Press, 2000 pp. 47-68.
[9] Garlan, D., Schroerl, B.R., and Chang, J. Using Gauges for Architecture-Based Monitoring and

Adaptation. Proc. Working Conference on Complex and Dynamic System Architecture. Brisbane,
Australia, December 2001.

[10] Gorlick, M.M., and Razouk, R.R. Using Weaves for Software Construction and Analysis. Proc.
13th Intemational Conference on Software Engineering, IBBB Computer Society Press, May 1991.

[11] Gorlick, M.M. Distributed Debugging on $5 a day. Proc. the California Software Symposium,
University of California, Irvine, CA, 1997 pp. 31-39.

[12] Gosling, J. and McGilton, H. The Java Language Environment: A White Paper. Sun Microsystems
Computer Company, Mountain View, California, May 1996. htlp:lf)8V8.sun.oom'doc:IIIwhltellangenv/.

[13] Ho, W.W. and Olsson, R.A. An Approach to Genuine Dynamic linking. Software - Practice and
Experience 21(4):375-390, 1991.

[14] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specifying Distributed Software Architectures.
Proc. the 5th Buropean Software Engineering Conference (BSBC '95), Sitges, September 1995.
Lecture Notes in Computer Science 989, (Springer-Verlag), 1995, pp. 137-153.

[15] M6tayer, D.L. Describing Software Architecture Styles using Graph Grammars. IBBB Transactions
on Software Engineering, 24(7):521-553, July 1998.

[16] Monroe, R.T. Capturing Software Architecture Design Expertise with Armani. Camegie Mellon
University School of Computer Science Technical Report CMU-CS-98-163.

[17] Moriconi, M. and Reimenschneider, R.A. Introduction to SADL 1.0: A Language for Specifying
Software Architecture Hierarchies. Technical Report SRI-CSL-97-01, SRI International, 1997.

[18] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S., and Kirby, G.N.C. Exploiting Persistent
Linkage in Software Engineering Bnvironments. The Computer Journal 38(1):1-16, 1995.

[19] Object Management Group. The OMG Unified Modeling Language Specification, Version 1.4.

September 2001. Available at htIp:llwww.omg.org/technology/doalmentslformaVuml.htm.
[20] Oriezy, P., Medvidovic, N., and Taylor, R.N. Architecture-Based Runtime Software Bvolution.

Proc. Intemational Conference on Software Engineering 1998 (ICSB'98). Kyoto, Japan, Apr. 1998.
[21] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.,

and Wolf, A. An Architecture-Based Approach to Self-Adaptive Software. IBBB Intelligent Sys
tems 14(3):54-62, May/June 1999.

[22] Spitznagel, B. and Garlan, D. Architecture-Based Performance Analysis. Proc. the 1998 Confer
ence on Software Bngineering and Knowledge Engineering, June, 1998.

[23] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, B.I., Robbins, J.B., Nies, K.A., Oreizy,
P., and Dubrow, D.L. A Component- and Message-Based Architectural Style for GUI Software.
IBBB Transactions on Software Engineering 22(6):390-406,1996.

[24] Vestel, S. MetaH Programmer's Manual, Version 1.09. Technical Report, Honeywell Technology
Center, April 1996.

[25] Wermelinger, M., Lopes, A., and Fiadeiro, J.L. A Graph Based Architectural (Re)configuration
Language. Proc. the Joint 8th Buropean Software Engineering Conference and the 9th ACM SIG
SOFr Symposium on the Foundations of Software Bngineering. Vienna, Austria, September 2001.

[26] Wile, D.S. AML: An Architecture Meta-Language. Proc. the Automated Software Bngineering
Conference, Cocoa Beach, FL, October 1999.

	Using Architectural Style as a Basisfor System Self.repair
	1. INTRODUCTION
	2. RELATED WORK
	3. OVERVIEW OF APPROACH
	4. STYLE-BASED ADAPTATION
	4.1 Architectural Models and Styles
	4.2 Style-specific Analytical Methods
	4.3 Using Styles to Assist Adaptation

	5. CONCLUSIONS AND FUTURE WORK
	REFERENCES

