
Using Arduino microcontroller boards to measure
response latencies

Thomas W. Schubert & Alessandro D’Ausilio &

Rosario Canto

Published online: 13 April 2013
Psychonomic Society, Inc. 2013

Abstract Latencies of buttonpresses are a staple of cognitive
science paradigms. Often keyboards are employed to collect
buttonpresses, but their imprecision and variability decreases
test power and increases the risk of false positives. Response
boxes and data acquisition cards are precise, but expensive
and inflexible, alternatives. We propose using open-source
Arduinomicrocontroller boards as an inexpensive and flexible
alternative. These boards connect to standard experimental
software using a USB connection and a virtual serial port, or
by emulating a keyboard. In our solution, an Arduino mea-
sures response latencies after being signaled the start of a trial,
and communicates the latency and response back to the PC
over a USB connection. We demonstrated the reliability, ro-
bustness, and precision of this communication in six studies.
Test measures confirmed that the error added to the

measurement had an SD of less than 1 ms. Alternatively,
emulation of a keyboard results in similarly precise measure-
ment. The Arduino performs as well as a serial response box,
and better than a keyboard. In addition, our setup allows for
the flexible integration of other sensors, and even actuators, to
extend the cognitive science toolbox.

Keywords Response latencies . Reaction times . Response
box . Arduino . E-Prime

Paradigms that measure latencies of responses are a staple of
many areas of experimental research on cognition. In theory,
latencies of many different actions can be measured:
keypresses, spoken answers, or movements of fingers,
hands, eyes, or other body parts.

Very often, however, experimental psychologists simply
ask participants to react to computer-presented stimuli by
pressing keys on regular keyboards. We believe this is unfor-
tunate for two reasons: First, regular keyboards are notorious-
ly imprecise input devices that add noise to the data. Second,
keypresses are most often arbitrarily matched to the outcome
of some cognitive process, whereas other movements might
index the investigated process more directly. Experimental
psychologists may be aware of both shortcomings and still
choose the keyboard out of habit, convenience, or lack of
alternatives.

With the present work, we propose an alternative plat-
form that allows both more precise measurement and more
creative dependent variables. It uses the open-source
Arduino microcontroller platform and thereby harvests the
creativity of a large developer community. In the following,
we will elaborate on the imprecision of regular keyboards,
before we describe and test how the Arduino can be used as
a response latency measurement platform.

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-013-0336-z) contains supplementary material,
which is available to authorized users.

T. W. Schubert
Instituto Universitário de Lisboa (ISCTE-IUL),
Centro de Investigação e Intervenção Social,
Av. Forças Armadas, Ed. ISCTE-IUL,
1649-026 Lisbon, Portugal

A. D’Ausilio : R. Canto
RBCS—Robotics, Brain and Cognitive Sciences Department,
Italian Institute of Technology (IIT), Genoa, Italy

A. D’Ausilio
e-mail: alessandro.dausilio@iit.it

R. Canto
e-mail: rosario.canto@unife.it

T. W. Schubert (*)
Psykologisk Institut, P.O. Box 1094, Blindern,
0317 Oslo, Norway
e-mail: schubert@igroup.org

Behav Res (2013) 45:1332–1346
DOI 10.3758/s13428-013-0336-z

http://dx.doi.org/10.3758/s13428-013-0336-z

Keyboards and response boxes

Before we discuss the quality of response time measure-
ment, we need to define the terms for doing so. Following
Plant and Turner (2009), we will use the terms accuracy and
precision to denote two different concepts. A response la-
tency measurement is accurate when it is close to the actual
time a response took. Imagine that you measure how long it
takes a 1-kg ball with a radius of 10 cm to roll down a 30°
slope for 1 m, repeating it many times (Galilei, 1638). If the
average time is 903 ms, the measurement is accurate. Most
likely your measures will be distributed normally around the
average. The narrower the distribution, the more precise we
call the measurement. It is possible to have a very precise
measurement (a very low standard deviation) around an
inaccurate average. This would be unfortunate for determin-
ing g from your measures, but it is typical for measures of
response latencies in cognitive science when the focus is on
differences between conditions, and less on the absolute size
(within certain limits). Note however that there are situa-
tions where accuracy is more important, for instance when
ratios instead of differences between latencies are investi-
gated. We will focus on precision in this article, but also
reflect on accuracy when we have the numbers.

Even when using special software that synchronizes stim-
ulus onset with the refresh cycle of the monitor, regular
keyboards do not allow millisecond precise measuring of
response latencies. Instead, the measured response latencies
distribute normally around the true latency with a standard
deviation that ranges from 1 to several milliseconds
depending on the hardware (Voss, Leonhart, & Stahl, 2007).

For instance, Plant and Turner (2009)1 found that a USB
keyboard (Belkin) added an error with an average M =
18.30 ms and a standard deviation SD = 1.29 ms. Two other
keyboards connected by serial port added different errors to
the latencies, with M = 33.73, SD = 3.08, and M = 19.94,
SD = 0.083. They also tested four computer mice connected
by USB, and reported errors averages between 18 and
49 ms, and SDs between 0.7 and 4.28 ms. K. I. Forster
and Forster (2003; see also Forster, 2012) tested one key-
board that produced measured latencies with a standard
deviation of 5.15 ms; several USB mice ranged from SD =
5.65 to SD = 6.74, and two gamepads produced lower SDs
(1.33 and 2.61). It is easy to imagine that with such a range
of different distributions, using different equipment in a lab
can quickly lead to erroneous results, and even sticking to
one type of hardware adds noise to the data.

To overcome such imprecision, experimenters can employ
special hardware that allows more precise measurement, for

instance so-called response boxes. These response boxes pro-
vide a few keys in a special and fixed layout, and typically
promise millisecond-precise measurement of latencies.
Software for experimentation assures synchronization with
the stimulus display (visual or audio) and records the response
and its latency. Response boxes are connected to the computer
either using a serial port, or via USB, depending on the model.

Increased precision of measurement provided by re-
sponse boxes should translate into obvious methodological
advances: Test power increases, and thus fewer participants
and/or trials are needed to detect an effect, or smaller effects
can be detected. At the same time, the risk of rejecting the null
hypothesis because of a spurious result arising by chance
should decrease.

Nevertheless, the use of response boxes is by no means
universal. In many cases, this may be due to the robustness
of typical paradigms: Some paradigms produce effects large
enough to make the noise introduced by keyboards negligi-
ble. In other cases, however, researchers may be motivated
to use response boxes, but do not because of the cost of the
hardware (especially when running many participants in
parallel) or technical difficulties in setting them up. Often,
commercial response boxes only function (well) in concert
with one particular software.

Viable alternatives to response boxes exist, but share
some of the disadvantages. For instance, response boxes
can be fashioned out of cheap equipment such as computer
mice, and connected to the parallel port on a PC (Voss et al.,
2007). However, parallel ports are disappearing fast from
modern computers, and are not available on modern laptops,
although alternative USB solutions have been proposed
(Canto, Bufalari, & D’Ausilio, 2011). Also, multipurpose
hardware can be used to create response box functionality:
Data Acquisition Cards are microprocessor boards that are
plugged into expansion slots of desktop PCs, and allow
digital input and output. They can be connected to external
buttons and measure the time at which those buttons are
pressed (Harmon-Jones, 2011). For instance, this is current-
ly the only way to provide millisecond-precise response
latency measurement in the free software package DMDX
(Forster & Forster, 2003).

Empirical reports confirm the accuracy and precision of
measurement that uses response boxes with serial connec-
tions, data acquisition cards, or parallel ports: The error
added has typically a rather low average (around 6 ms),
and a low standard deviation—in most cases less than or
close to 1 ms (Forster, 2012; Plant, Hammond, &
Whitehouse, 2003; Voss et al., 2007). Unfortunately, we
know of no empirical report on the precision of USB-
connected response boxes except the work by Li, Liang,
Kleiner, and Lu (2010) on their own device. They showed a
remarkable precision below 1 ms in concert with MATLAB
and the Psychophysics Toolbox software (Brainard, 1997).

1 For a setup using Windows XP SP2 and E-Prime 1.3, as well as the
Black Box ToolKit (www.blackboxtoolkit.com), see Plant, Hammond,
and Turner (2004).

Behav Res (2013) 45:1332–1346 1333

http://www.blackboxtoolkit.com

An obvious downside to response boxes is that they
measure only presses (and releases) of buttons. While it
would be unfair to caricature cognitive science as the study
of beings with only one eye and two fingers, there is reason
to believe that cognitive science overly relies on investigat-
ing choice decisions enacted with pressing one of two
buttons. Unfortunately, measuring the latencies of moving
fingers, hands, heads, or feet requires special hardware that
costs even more, is even more difficult to set up than
response boxes, and often only used by large labs that have
access to a specialized technician.

To sum up: Response boxes provide much more precise
measurement of the latency of button presses; yet, they are
often not employed, and inherently restricted because of
their specialized nature.

The present research

In this article, we propose to use the Arduino microproces-
sor platform as an alternative to keyboards and standard
response boxes. We show how to connect an Arduino to
standard reaction time software (using E-Prime), and report
how precise the measurement is compared to standard re-
sponse boxes. We also sketch how using the Arduino plat-
form allows extending the experimental toolbox to include
other measures beyond key presses. Thus, we describe how
the Arduino can be used as a platform for measuring latencies
of various kinds.

Our empirical strategy was first to evaluate how best to
communicate between experimental software on a PC and
an attached Arduino in Study 1, and then to develop scripts
for E-Prime and Arduino that implement this communica-
tion. The robustness of these scripts was evaluated in Study
2. In Study 3, we tested the speed of our platform by having
it detect onset of stimuli on a screen. Study 4 was designed
to compare the speed of the platform to a serial response box
and a standard keyboard by using a “robot” that detects
stimuli onsets and hits buttons with a solenoid. In Study 5,
we took a closer look at increasing the accuracy of latency
measurement. Finally, we performed Study 6 to investigate
the performance of a simpler version of communication
that could be used with any experimental software, not
just E-Prime.

The Arduino platform

Arduino is the name of a family of microcontroller boards.
The boards are a combination of an ATMEL microprocessor
including RAM, flash memory, and input/output channels.
Thus, these boards have the same general structure as com-
mon personal computers, but their performance is of course
only a fraction of those. In the present article, we mainly use

the recent reference model of the Arduino family, the
Arduino Uno. It has 32 kB of flash memory, operates at
16 MHz, and features 14 digital input/output and 6 analog
input pins. (Other, larger models provide more of those
input and output options.) Part of the Arduino package is a
programming environment, where code is written in a sim-
plified C-like language, and transferred to the Arduino using
a USB cable. After programming, an Arduino can work
while being connected to a PC (and thereby transmit data),
or operate standalone.

Several features make the Arduino family an interesting
tool as a measurement platform. First of all, it connects
easily by USB to a Windows PC, Mac, or Linux machine,
and can transmit data using a virtual serial port to these
operating systems. Second, it is open source hardware,
which means that everybody can access, modify, and use
the board design. Likewise, the software is free and open
source. This has led to both a low price of a board (around
€20–30, or $35) and a large community that develops hard-
ware and software compatible with the Arduino.

The boards can be connected to actuators and sensors,
either commercial or build from scratch. Many extensions of
a board come as so-called shields, additional small boards
that are plugged into an Arduino board. For instance, some
shields provide wireless access (WLAN or Bluetooth),
whereas others allow storing data on flash memory cards.
In addition, this idea of extending a board by plugging in
components is taken further by rapid prototyping platforms,
where smaller components are connected by plugging them
into special connection shields. For instance, the prototyping
platforms Tinkerkit and Seeedstudio Grove enable users to
connect LEDs, small vibrating motors, buttons, accelerome-
ters, gyroscopes, or hall sensors to the Arduino within min.
Together with the active community and freely available code,
this guarantees a wide range of possibilities to create new
kinds of measurements.

Despite its simplicity and low price, the Arduino can
function as a reliable controller for experimental settings.
When investigating how an Arduino can replace more com-
plicated hardware as a standalone controller of experimental
input and stimuli, D’Ausilio (2012) confirmed that signals
generated by an Arduino were reliably constant in length
and delay. He also found that typical combinations of input
and output were performed with remarkable accuracy and
precision, often with standard deviations of only microsec-
onds. However, he did not yet explore how to embed
Arduinos into response latency measures run by a PC.

Integrating Arduino into PC-controlled experimental setups

With its speed and flexibility, Arduino boards could serve as
useful platforms to build response devices that allow exper-
imental setups with buttons, other sensors, and even output

1334 Behav Res (2013) 45:1332–1346

hardware. The challenge is to connect the Arduino to exper-
imental software in a way that allows fast and reliable
measurement.

In principle, there are several options to accomplish
communication between an Arduino board and the comput-
er that is executing the experiment. Here, we opt for a
method that does not rely on additional or legacy hardware,
namely to simply use the USB connection available on
modern Arduino boards.2 Most Arduino boards are outfitted
with additional chips that convert the serial communication
from the microprocessor into USB that connects then to a
PC (these converter chips are Atmega16U2 on the Arduino
Uno R3, Atmega8U2 on earlier models, or FTDI serial-to-
USB chips in older boards). Some Arduino boards come
without such a connector, and it can then be added tempo-
rarily for programming. The more recent Arduino Leonardo
board uses the Atmel ATmega32u4 microprocessor that has
built-in USB communication and thus does not require an
additional converter chip.

Irrespective of the hardware, the result is that a USB
cable connects Arduino and PC, and provides a serial con-
nection. On the PC side, driver software creates a virtual
serial (COM) port. This serial port can be accessed with any
software that can communicate with a serial port. The driver
offers several baud rates; for instance, the driver for the Uno
offers 57,600 and 115,200 baud as the fastest speeds. Note
that other boards will offer other baud rates, including
128,000 baud.

Apart from choosing USB as the access hardware, there
are at least two possible software strategies to access exper-
imental hardware through the Arduino. One approach would
be to use the Arduino as a relatively “dumb” gateway,
another one would be to use its capabilities more fully,
and in particular to have it measure latencies itself. Let us
outline these approaches in more detail. As an example,
imagine that two buttons are connected to the Arduino that
are used as response keys in a reaction time study.

Treating the Arduino as a dumb gateway, its program-
ming would simply continuously read the states of the two
input pins to which the buttons are connected. When one of
the buttons is pressed, this input is detected by the Arduino.
It is programmed to then send a signal via the serial inter-
face, which could simply consist of one character indicating
which button was pressed. The connected PC, running the
experiment, would present a stimulus and then listen on the

serial port for the response to arrive (or until a timeout is
reached).

Treating the Arduino as a microcomputer with timing
capabilities, the procedure could take a different, second
form. In this case, the PC would signal the Arduino via
the serial port when a response is expected (e.g., after
presenting a stimulus to which the participant has to re-
spond). When receiving this signal, the Arduino saves a
time stamp, and starts waiting for the response. When the
response is detected, the Arduino again takes a time stamp.
It then transmits the difference as the response latency, and
which response was given. This is the approach taken by the
RTBox response box (Li et al., 2010).

The two approaches differ in several aspects. The first
approach requires less programming. However, it is also less
flexible; for instance, it would not afford the presentation of
some stimuli or feedback via the Arduino itself. The two
approaches also differ regarding robustness against lags in
the serial connection. The first solution would only suffer
from lag in serial communication from the Arduino to the
PC, whereas the second solution would suffer only from lag
in the serial communication from PC to Arduino. Study 1
was designed to investigate the lags of these two directions
in order to decide which strategy is appropriate.

Study 1: Lags in USB communication between PC
and Arduino

For this test, we connected an Arduino board via USB to a
PC running E-Prime 2. Both the PC and the Arduino board
were also connected to another PC with a data acquisition
(DAQ) card equipped with a dedicated hardware clock. We
had E-Prime send data to the Arduino, and the Arduino sent
it then back. With the external clock in the DAQ card, we
measured the duration of each leg.

Method

We used an Arduino UNO R1, and a PC (Intel Core 2 Quad
Q6600, 2.4 Ghz) running Windows 7 and E-Prime
2.0.10.182. Serial port connections were set to 128,000
baud. The external DAQ was a CED Micro 1401 mk II
(from Cambridge Electronics Devices, UK) sampling at
10000 Hz.

In each test trial, the sequence of events was as follows:
(1) the E-Prime script sent an initial TTL pulse to the
external timer to indicate the start of the trial. E-Prime then
sent an integer (two bytes) over the serial port to the
connected Arduino. As soon as the Arduino received two
bytes, it set one of its output lines to HIGH, thereby signal-
ing the external clock connected to this line that it received
data. It then waited for 300 ms (similar to a minimal

2 We can think of three alternatives: First, Arduino boards can be
outfitted with serial connectors, which would allow connecting them
to a PC with a serial input. Second, Arduino output pins can be
connected to a data acquisition card’s input pins or to a parallel port.
Both would result in fast and flexible solutions, but also require legacy
or additional hardware that we want to replace. A third solution would
establish a wireless connection via WLAN or Bluetooth; however, time
lags added to the transmissions would have to be evaluated carefully.

Behav Res (2013) 45:1332–1346 1335

response latency), and then sent the received integer back to
the serial port. As soon as E-Prime received the integer, it
again sent a TTL to the external clock, signaling the end of
the round trip. We ran 990 of such trials.

Results

For the leg from E-Prime to Arduino, we measured durations
that varied between 1.2 and 1.5 ms; M = 1.251 ms, SD =
0.051 ms. For the leg from Arduino back to E-Prime, dura-
tions varied between 1.9 and 4.9 ms, M = 3.080 ms, SD =
0.417 ms. In all cases, the received integer was the one that
was sent.

These data suggest that sending data to the Arduino pro-
vides less absolute delay, but more importantly also a lot
less variability of the delay. Thus, the more promising
strategy is to (1) signal the Arduino the beginning of a trial,
(2) have it measure the reaction time itself, and then (3) send
the measured latencies back. This approach will be followed
now, but we come back to the first approach in Study 6.

Connecting an Arduino response box to E-Prime

Scripting E-Prime to interface Arduino

In the following section, we will demonstrate how an
Arduino can be integrated into a common software for
running experiments, namely E-Prime. E-Prime has a
built-in interface to serial ports. It does not, however, treat
the serial port as a built-in input device. To integrate the
Arduino, we thus use a script (called InLine in E-Prime) that
communicates with the Arduino, and updates the response
logs accordingly.

As a first step, a serial device needs to be added to the
Devices tab of the experiment. We choose the name serial,
115,200 bits per second, eight data bits, no parity, and one
stop bit as default values. The COM port and its specifications
have to correspond to those assigned to the virtual serial port
of the Arduino (which can be checked in Windows Device
Manager, where also the baud rate can be adjusted to the one
used in E-Prime).

Adding fields to the stimulus table We then set up stimulus
presentations inside a list, as it is commonly done in E-
Prime. Our list for the stimuli is called StimulusList, and for
the stimulus presentation we use a TextDisplay Object
named trialStimulus. In the StimulusList table, we add sev-
eral additional properties: TrialDuration, which is transmit-
ted to the Arduino and tells it the maximum time in
milliseconds to wait for a response; this is the only addi-
tional field that the experimenter has to fill. Next, we add
TrialNr, which will contain a random trial identifier number.

We also add ArduinoTrialNr, ArduinoRT, ArduinoButtons,
which are the three values that will be returned by the
Arduino after a response, indicating the verification trial
number, the response latency, and the pressed button(s),
respectively. Finally, we add InlineRT, InlineStartTime,
InlinePostSendingTime, and InlineEndTime, which are mea-
sured by our E-Prime script as a backup and control
mechanism.

In addition, if feedback should be given, there should
also be an attribute that lists the correct answer (we use the
attribute correct for this purpose). Note that in our present
setup, we only transmit integers to and from the Arduino, so
the answer should be a positive integer between 0 and
32,767 (or an integer between 0 and 9 if input will be tested
with the keyboard as well). Figure 1 shows an example of
this table.

Setup of the stimulus presentation object In the setup of the
stimulus presentation object trialStimulus, the duration is set
to a short value (we used 50 ms), and the PreRelease is set to
the same value (entering same as duration). If feedback
should be given, then Keyboard should be added as an
Input Device, and the list attribute containing the correct
answer will be added in the Correct field ([correct]). The
Time Limit is set to same as duration. For a screenshot of
these settings in E-Prime, see Fig. 2.

Note that this arrangement implies that E-Prime closes
the trialStimulus object after 50 ms, with two consequences.
First, reaction time and response are set to null at this point,
and have to be changed later. At the same time, these
changes can only occur after that time. If reactions faster
than 50 ms have to be measured, either the duration needs to
be lower, or the script has to wait for a while.

Adding an InLine script after the stimulus presentation The
trialStimulus is followed by an inline script that communicates
with the Arduino. Setting the PreRelease to the same value as
the duration assures that the inline script is executed immedi-
ately after the stimulus presentation is initiated. The script is
shown in Listing 1 (posted as supplementary materials)3 and
consists of four parts: (1) Setting up values to be transmitted,
(2) Transmitting the values to the Arduino, (3) Waiting for and
receiving the response from the Arduino, and (4)
Disassembling the response and storing the response attributes.

As part of the setup, we fill trialNr with a random Integer
value, giving each trial a unique identifier. In our example
script, we send three integer values to the Arduino: (1) the
trial number, which is also transmitted back by the Arduino
as a control value; (2) the trial duration; and (3) a variable
that could instruct the Arduino to do further action or output

3 All scripts and an E-Prime template file are also available at http://
openscienceframework.org/project/cuzj5/.

1336 Behav Res (2013) 45:1332–1346

http://openscienceframework.org/project/cuzj5/
http://openscienceframework.org/project/cuzj5/

(and that we do not actually use in this example). The trial
duration is read from the attribute TrialDuration set up
earlier in StimulusList. Note that StimulusList is not
referenced explicitly but through the Context object c. The
three values are concatenated to one string, separated by
commas, and ending with a dot. This string is written to the
serial device. Two time stamps are taken, before and after
doing this (see Study 5).

The script then reads continuously from the serial device,
adds any string that comes in to a temporary variable, and
checks whether a dot is received—which is the stop signal
from the Arduino.When that has happened, another time stamp
is saved to document the process, but note that this is not the
actual response latency. Instead, the script expects the Arduino
to send back a list of three numbers: The trial number, the
response latency measured by the Arduino in microseconds,
and a number coding the answer registered in the Arduino.

The received string is then disassembled into these three
separate numbers, which are stored in the corresponding
StimulusList attributes (based on Margolis, 2011). Note that
the response latency is of the type Long, which can be at
maximum 231 – 1. Because the unit is microseconds, the
maximum response latency is thus 35 min. The two regis-
tered time stamps (also in microseconds) are also stored,
along with the difference; this difference should obviously
always be larger than the response latency registered by the
Arduino.

Because the trialStimulus object is already finished by
the time the script receives the response, at that moment it
contains only a null response, and the log will contain empty
fields for reaction time and response. This is a problem if
feedback needs to be provided. Thus, if an answer was
registered, the script corrects the saved null response by
storing the response time (but now in milliseconds to com-
ply with E-Prime standards) and the response itself also in
the attributes .RT and .RESP of the stimulus object. It also
compares the response to the correct response, and adjusts
.ACC accordingly. Any following FeedbackDisplay can then
use trialStimulus object as its input object.

Programming the Arduino to interface E-Prime

Programs for the Arduino platform are called sketches. Our
sketch (see Listing 2 in the supplementary materials) first
sets up a serial connection (with the same values that are
registered in Windows and E-Prime). It also sets up the pins
to which the buttons are connected as input. It then waits for
the transmission of three integers from E-Prime (separated
by commas and ending with a dot). When these are re-
ceived, it initiates a trial. At the beginning of a trial, the
sketch stores a time stamp (starttime, in microseconds), and
computes the maximum time by adding the read trial dura-
tion to the start time.

Using a do . . . while loop, the sketch then continuously
checks for one of the inputs to go HIGH, or for the allotted
time to end. When one of these events occurs, a time stamp
is taken, and used to compute the response time (which is
equal or larger to the allowed trial duration if no response
was given).

Fig. 1 E-Prime table (separated into two parts) with added fields for
communication with and control of the Arduino: TrialDuration,
TrialNr, ArduinoTrialNr, ArduinoRT, ArduinoButtons, InlineStartTime,

InlinePostSendingTime, InlineEndTime, and InlineRT. Only
TrialDuration has to be filled in by the programming experimenter

Fig. 2 Properties of the E-Prime stimulus presentation object, here a
TextDisplay. The duration is set to a very short value (the actual
duration is controlled by TrialDuration in the StimulusList table).
Keyboard and Correct are added in order to allow feedback and testing.
Data Logging is turned on

Behav Res (2013) 45:1332–1346 1337

The sketch then determines what should be given back as
the response integer (0 for no response, 1 or 2 for one of the
buttons, and 3 if both buttons were pressed simultaneously).
Then, three integers are sent back: the trial number, the
response time (in microseconds), and the response, again
separated by commas and ending with a dot. This is the
string that will be analyzed by E-Prime. Note that in the
Arduino program, start time and end time are of the type
unsigned long, which can be at most 232 – 1. The clock is
started when the Arduino is reset by opening the serial
connection at the beginning of the experiment; the time
stamps will thus turn over after about 70 min. Experiments
that run longer than that should use alternative code that
only measures in milliseconds.

Study 2: Checking the robustness of the communication

In the E-Prime and Arduino code that we presented here,
two safeguards are built in. First, a random number is
transmitted for every trial to the Arduino, and given back
by it; both are saved by E-Prime. Second, E-Prime not only
stores the response latency that the Arduino measures, but
also the time that passed between sending the trial to the
Arduino, and receiving the answer back.

In our second test, we checked the robustness of
these safeguards. Running the code described above,
we repeated the test several times for different baud
rates of the serial connection. Our goal was to test both
whether the random number was always correctly transmitted,
and how the standard deviation of the total duration was
affected by serial port speed. In addition, we checked how
long the Arduino waits in comparison to what it is instructed
to wait.

Method

We used an Arduino Uno R3 for this test. An Atmega16U2
chip handles its USB connection. The board was connected
to a Sony Laptop with Intel Core i5 processor, running E-
Prime 2.0.10.242. We used the scripts introduced above. For
each trial, the trial duration sent to the Arduino was 100 ms.
Two buttons were connected but not pressed.4 The Arduino
thus only waited for the assigned 100 ms (while checking
the button states), and then sent back the time it actually
waited. We ran 500 consecutive trials for each of the fol-
lowing baud rates: 14,000, 38,400, 57,600, 115,200, and
128,000 (all set in the Arduino code, E-Prime, and the
Windows device manager).

Results

In all 2,500 trials, the random number was correctly
returned. The Arduino was instructed to wait 100 ms. To
do this, it had to check the time it already waited in a loop.
In the loop, it also continuously checked the state of both
buttons. Out of all trials, it reported waiting 100 ms in
28.0 % trials, 100.004 ms in 38.6 % of trials, 100.008 ms
in 32.4 % of trials, and 100.012 or 100.016 in .9 % of trials.
(The resolution of micros() is 4μs on 16-MHz Arduino
boards.)

To compute the delay introduced by the USB communi-
cation, we subtracted the time the Arduino reported having
waited from the response latency as measured by E-prime—
the time between sending to and receiving from the serial
port. Table 1 shows that this delay decreased steadily with
increasing baud rate, from 22.73 ms with a baud rate of
14,400 to 5.67 ms with 128,000 baud. The standard devia-
tion was also affected, dropping from 1.40 to 1.11.

Remember that the total delay is composed of the com-
munication to the Arduino and the communication back
from the Arduino. When using Arduino as a response plat-
form, the communication to the Arduino will be performed
in addition the response latency measured by the Arduino.
These data show that in order to keep the added time as
short and as least variable as possible, and in order to have
these measures as a backup, the highest possible baud rate
should be set. Furthermore, the data also assure one that
with a similar setup, the added noise would be quite low,
even when factoring in both legs of communication.

In sum, this test confirms the robustness of the code in
terms of accurately communicating values back and forth.
Note that a similar check can be performed with any data set
collected with the code above: One can always subtract the
Arduino-measured RT from the inline-measured RT and
check the average and variability of this delay. Finding
low values for the round trip would assure one of even
lower values for the first leg.

Study 3: Testing the variability of the response
with a photo diode

The previous test did not actually involve any response; the
Arduino simply waited for the allotted time. In a next step,
we intended to test speed and variability of the script and
setup with an actual measurement by the Arduino.

Method

We connected a photodiode circuit to one of the pins of an
Arduino Uno R2. The circuit compared the state of a photo-
diode (Osram BPW 34) to the resistance by a potentiometer

4 This means essentially that a pull-down resistor connected the pin to
ground. Reading an unconnected pin would result in random
fluctuation.

1338 Behav Res (2013) 45:1332–1346

using a comparator (Fairchild LM 311) and set the connected
pin to HIGH or LOW, accordingly.5 The photodiode was
placed at the upper half of a LCD flat screen (ASUS
VE278), running at 60 Hz, connected by HDMI to a Sony
Core i5 laptop. The potentiometer was adjusted such that the
pin was HIGHwhen the screen was white, but LOWwhen the
screen was dark blue. The Arduino sketch was changed such
that it analyzed the state of the pin connected to the photodi-
ode circuit. Either a HIGH value or a timeout resulted in the
sketch returning response time and response.

On the E-Prime side, a script presented test stimuli with
either a white or a dark blue background, which always
followed a black screen that was presented for 300 ms.
There were in total 500 trials with a white background and
500 trials with a dark blue background in random order. The
Arduino received a waiting time of 250 ms. Duration of the
trial presentation was set to 50 ms, and pre release to same
as duration. Because the reactions from the Arduino were
faster than those 50 ms, the script also waited for an addi-
tional 100 ms after receiving the response to allow the trial
object to finish before changing .RT and .RESP in its logs.
The baud rate was set to 128,000 baud.

Results

In all of the 1,000 trials, the photodiode correctly identified
the screen as white or dark blue. One trial however showed
an outlier low response time of 12μs (for a white trial),
probably due to volatility in the photo diode, and was
removed from the analysis. The data for the blue trials
resemble Study 2, and we do not report them here.

For the white trials, the response time reported by the
Arduino ranged from 5.43 to 6.68 ms, M = 6.031 ms, SD =
0.117 ms. We again computed a delay as the difference
between the response time measured by the E-Prime script
(including both legs of communication) and the Arduino-
measured response time. The delay varied between 3.12 ms
and 10.43 ms, M = 5.350, SD = 1.176 ms.

Assuming the screen had a perfect constant switch time
from black to white, these data show that when using the full

potential of the Arduino, it is possible to measure these
switching times with a standard deviation of little more
than a tenth of a millisecond. Even if the timing is left
to E-Prime itself, we still only get noise with a SD of
about 1 ms.

One might think that the SD = 0.117 ms overestimates the
precision because the communication from E-Prime to the
Arduino has an additional variability that is not captured
here. However, note that to then explain the low variability
of the times measured by the Arduino, one would have to
assume that the true switching of the screen counteracted
the variability in the communication, which is very unlikely.
Thus, the tenth of a millisecond is likely close to the true
precision.

Study 4: Comparing an Arduino response box
to other response boxes

Test 3 was instructive concerning the absolute performance
of the Arduino platform; however, a comparison to com-
mercial response boxes would be interesting. In Study 4, we
thus compared the accuracy of a response box built using
the Arduino to a standard serial response box and a key-
board, always using E-Prime.

Method

To improvise an Arduino response box, we connected two
Cherry MX key modules to the Arduino in the standard way
(http://arduino.cc/en/Tutorial/Button), using an Arduino-
compatible rapid prototyping kit (Seeed Studio Grove
Base Shield and its screw terminal connector). The
Arduino sketch was adapted such that it continuously read
the states of both input pins and the timeout. The key
modules were mounted on Lego Duplo bricks for a solid
foundation (see Fig. 3).

As a comparison, we used a PST serial response box
connected via a serial port to a desktop PC running
Windows 7 and E-Prime 2.0. We also compared the perfor-
mance of a standard USB Microsoft keyboard.

We created an E-Prime experiment that displayed 100
very simple trials: In each trial, a black waiting screen was

5 See https://reactiontimes.wordpress.com/electro-mechanical-turk/ for
the layout and further details.

Table 1 Total delay introduced
in USB communication
(E-Prime-measured response
latency minus Arduino-reported
waiting time; all values in
milliseconds, for Studies
2 and 6)

Arduino Baud Rate M SD Minimum Maximum

Uno R3 14,400 22.7323 1.40497 18.48 26.21

38,499 10.6446 1.10654 7.23 12.71

57,600 8.1994 1.07971 5.56 10.76

115,200 5.7482 1.12930 3.28 8.37

128,000 5.6715 1.10581 3.40 7.82

Leonardo 128,000 3.0997 0.52883 1.97 9.22

Behav Res (2013) 45:1332–1346 1339

http://arduino.cc/en/Tutorial/Button
https://reactiontimes.wordpress.com/electro-mechanical-turk/

followed by a white target screen. The program then waited
for a button on the response device to be pressed. To press
the button in response to the white screen onset, we
constructed a “robot,” using a second Arduino that was
not connected to the computer itself. This Arduino featured
the photodiode circuit also used in Study 3, placed on the
screen (Asus VG236H set to 60 Hz). In addition, it was
connected to a 12-V push solenoid (Intertec ITS-lz-2560 d-
12vdc). This solenoid was placed above the button of the
response box, pushing it when turned on. The sketch run-
ning on this second Arduino continuously checked whether
the photodiode pin was set HIGH or LOW; when it was
HIGH, the solenoid was fired, which pressed the button and
triggered the end of the trial, releasing the solenoid. The
code reading the photodiode was adapted such that a change

in brightness was only registered if two continuous readings
resulted in the same value, to make the program more robust
(see note 5).

Results

We ran two tests of 100 items with each hardware; we report
both separately to convey the reliability of the measurement.
Because we compared the Arduino measurement to the E-
Prime measurement for the two devices, the Arduino also
only measured in milliseconds.

The crucial numbers in this test were the standard de-
viations. The total reaction times should be interpreted with
caution, because they were based on completely different
hardware, and it is possible that the solenoid hit the different

a

b

c

Fig. 3 Connecting two buttons to the pins 6 and 7 of an Arduino, realized with Cherry key modules (inset a), screw terminals (inset b), and a rapid
prototyping base shield (inset c)

1340 Behav Res (2013) 45:1332–1346

buttons in slightly different ways, with different travel dis-
tances, and so forth.

The standard in this test was set by the serial response
box, usually regarded as millisecond-precise. Table 2 indeed
shows two standard deviations between 1 and 1.4 ms; the
range of responses is impressively low. These small numbers
confirm that our Arduino-solenoid-robot also performed quite
reliably—at least with the precision found here. The overall
latency was rather high, between 56 and 58 ms. We assume
that this was due to the large travel of the solenoid and the
specifics of the circuit.

Our Arduino response platform performed almost as well
as the PST serial response box, with two SDs of 1.28 and
1.29 ms. This shows that the combination of PC-to-Arduino
USB communication and having the Arduino measuring the
RT makes up for the disadvantage of having no real direct
serial connection to the PC.

The keyboard performed worse than the two other de-
vices, but still with an acceptable noise SD of about 3 ms.
Note, however, that this cannot be generalized to USB
keyboards in general, and hardware details can vary even
within one product line.

To compare the variance in the various tests, we comput-
ed Levene’s tests for equality of variances. Regarding their
variances, the two Arduino measures did not differ from
each other, and neither did the two keyboard measures, both
Fs < 1. However, the variances of the two response box
measures did differ, F(1, 198) = 4.63, p = .033.6 Importantly,
the two Arduino measure variances did not differ from the two
response box variances, Fs(1, 198) < 1.81, ps > .180. The
keyboard variances differed from all other variances,
Fs(1, 198) > 51, ps < .001. Figure 4 shows the distributions.
In sum, both serial response box and Arduino performed
much better than a keyboard; and the difference between
Arduino and response box seem to be not larger than the
difference between two different tests with the response box.

Study 5: Estimating the delay from trial initiation
in E-Prime to start of clock in Arduino

In the script developed here, we send a signal from E-Prime to
the Arduino at the start of a trial. This signal prompts the
Arduino to start its time measurement. Obviously, the time
that the signal takes to travel from E-Prime to the Arduino is
not included in the final response latency reported back by the
Arduino. In Study 1, we found that the average of this addi-
tional delay was 1.25 ms, with a very low SD. Nevertheless,

ignoring this delay would reduce the accuracy of the measure-
ment and might be undesirable in some contexts.

Above, we mentioned that the E-Prime scripts stores two
time stamps, one immediately before sending the signal, and
another one upon receiving the data back from the Arduino.
By testing how much longer this difference is than the
latency reported by the Arduino, researchers can judge the
reliability of the USB speed, but this delay will include both
legs of communication, not the first delay in particular.

This problem was already tackled by Li et al. (2010) in the
development of their RTbox. Their software similarly sends a
start trial signal to an external microprocessor and records time
stamps right before and after that operation. In addition, their
microprocessor software takes and reports a time stamp upon
receiving the trial start signal. This differs slightly from our
approach so far, because on the E-Prime side, we analyzed only
the time stamp before sending a signal, and on the micropro-
cessor side, we reported back only the time difference.

Li et al. (2010) discussed three different methods for
estimating the true moment of sending the signal from
computer to microprocessor. Each relies on taking several
samples (at least 20). One possibility is to compute the
difference of the two computer time stamps before and after
sending, and to select the shortest one. This has to include
the true time of sending the signal, and to estimate that
moment, Li et al. simply averaged the two time stamps
associated with that shortest delay.

In another method, they computed the difference between
the computer time stamp before sending and the micropro-
cessor time stamp upon receiving. Note that these will have
an unknown offset because the clocks of the two processors
are started at different times. Li et al. (2010) then selected
the minimum difference of the two time stamps and used the
associated computer time stamp before sending as an esti-
mate of the true moment of sending.7

Table 2 Latencies of responses (in milliseconds) by the “robot” (sec-
ond Arduino equipped with photodiode and solenoid) reacting to the
onset of a white screen (Study 4)

Hardware Test SD M Min Max

PST serial response box 1 1.08 56.28 54 59

2 1.34 57.54 54 61

Arduino 1 1.29 42.38 38 45

2 1.28 41.87 40 46

Microsoft USB keyboard 1 2.99 69.67 63 77

2 3.09 72.25 65 79

6 The difference between the two tests for the response box is surpris-
ing but remains unclear. We ran two more tests with 100 trials each, but
the results resemble those of the run with the larger variance.

7 A third method, which is shown to be slightly inferior, uses the
difference between microprocessor time stamp and computer time
stamp after sending, but we will not discuss this here further.

Behav Res (2013) 45:1332–1346 1341

In order to demonstrate how the methods devised by Li et
al. (2010) can be applied in our scripts as well, we ran
another study in which we could record time stamps both
before and after sending the serial signal, in order to inves-
tigate the differences between these time stamps and their
distributions.

Method

On the Arduino side, we changed the script such that the time
stamp of starting the trial is also returned, in addition to the
latency. On the E-Prime side, we stored this additional time
stamp from the Arduino. We used an Arduino Leonardo,
connected with 128,000 baud to E-Prime 2.0.10.242 running
on a Windows 7 laptop.

We ran consecutive 300 trials. In each, E-Prime ini-
tiated a trial with 100-ms duration, saving time stamps
before and after sending serial communication. The
Arduino only waited the allotted time without any fur-
ther measurement. In E-Prime, before each trial we
added a random delay between 1 and 100 ms, in order
to desynchronize the process from the computer’s USB cy-
cles, as would be the case in a normal experiment. Additional
constant delays were present as well. The complete test took
about 12 min.

Results

We first checked the delay between the time stamps taken by
E-Prime before and after sending the serial communication.
The average delay was 0.341 ms, ranging from 0.16 to 0.55
(SD = 0.087). Following Li et al., we selected the minimum
delay and used the average of the two associated E-Prime-
recorded time stamps (before and after) to estimate the true
sending time. In our experiment, this arrived at an offset of
777,411.246μs between the two clocks (due to unequal
starting times of the experiment on computer vs. Arduino).

We then investigated the difference between the E-Prime
time stamp before sending, and the Arduino time stamp
upon receiving the start trial signal. The average of this
delay is uninformative because they were taken with two
different, unsynchronized clocks. The SD was rather large,
at 7.926 ms. However, note that these 300 measurements
were taken over the course of 12 min. Li et al. (2010)
showed that, due to small differences in the actual speed
of clocks, drifts between them occur that have to be re-
moved. When we regressed the differences on the number
of trial, we found a large linear effect of trial number, β =
.999, t(299) = 495, p < .001. After removing this linear
influence, the unstandardized residuals had a much lower
SD of 0.28 ms. Again following Li et al., when using the

Fig. 4 Histograms of
measurements in Study 4. For
each periphery, two measures
with 100 trials each were taken.
SRB = serial response box,
ARD = Arduino, KB =
keyboard

1342 Behav Res (2013) 45:1332–1346

sending time associated with the shortest difference residual,
we arrived at an offset of 777,411.325μs, almost identical to
the result from the first method.

Discussion

In the scripts above, we ignored the communication delay
between sending the trial start signal from E-Prime and
receiving it in the Arduino. However, if concern arises or
the paradigm requires it, the true time of sending, and thus
the true response latency including the communication de-
lay, can be estimated following the methods devised by Li et
al. (2010). For this purpose, the two time stamps taken by E-
Prime before and after sending can be used effectively.
Essentially, this approach synchronizes the clock in the
Arduino and the clock in the computer, which are always
started at different times with an unknown offset.

Li et al. (2010) actually proposed the synchronization of
clocks in this manner before each trial, implementing be-
tween 20 and 100 communication cycles between computer
and microcontroller in order to estimate the true RT. Note
that while this increases accuracy of the latency measure-
ment in terms of getting closer to the true value, it does not
increase precision, because the measurement itself is again a
new random sample from the distribution identified for the
duration of communication.

Given that all of our results (and theirs) show that this delay
is shorter than 1ms, we do not believe that this is necessary for
most purposes. However, we definitely recommend checking
both (a) the duration of sending the serial communication and
(b) the difference between Arduino-reported latency and total
E-Prime measured latency for all trials to assure against
general malfunctioning and sudden drops in performance.

As we already noted, this approach only estimates the
delay between start of a trial and start of time measurement
in the Arduino. To get an accurate measurement instead of
an estimate, it would be necessary to program the Arduino
such that it detects the onset of a trial itself. This could be
implemented by signaling the onset of a trial with a cue on
the screen (e.g., a dot in a corner), and equip the Arduino
with a light sensor that allows it to save a time stamp at the
true onset. Although we did not implement this for the
present article, it could be easily done. Together with
Study 3, the following study will provide a background for
the precision of such an approach.

Study 6: Emulating human interface devices
with the Arduino Leonardo

In Study 1, we determined that communication from the
computer to the Arduino board was faster and less variable
than communication from the Arduino back to the

computer. We therefore developed scripts that used only
the first direction under time critical conditions, and then
let the Arduino measure the response latency and report it
back when timing was not critical anymore. This allowed
the Arduino also to receive instructions for stimulus presen-
tation. The cost was that we needed to add special scripts to
the latency-collecting software.

In our Study 6, we also wanted to explore how an
Arduino response box can be constructed without relying
on specialized scripts. For this purpose, we took advantage
of the recently introduced Arduino Leonardo. This board
does not feature a separate chip that handles communication
with the USB. Instead, the main processor, an Atmel
ATmega32u4, also handles this communication. In all other
respects, this board is similar to the Arduino Uno R3.

To estimate the performance of the Leonardo, we first
repeated the fastest condition of Study 2 (128,000 baud) with
the Leonardo board. We encountered a higher percentage of
longer waiting times, but note this concerned only microsec-
ond differences: The program was scheduled to wait only
100 ms; it reported waiting exactly that long in 25 % of trials.
On about half of the trials (47.2 %), it waited 100.004 ms; on a
fourth of the trials (26.4 %), it waited 100.012 ms; and on
1.4 %, it waited 100.016 or 100.020 ms. The last line of
Table 1 shows the delay, computed as the difference between
the time of the total round trip measured by E-Prime and the
time waited by the Arduino. This delay had an average of
3.10 ms with an SD of 0.53 ms, ranging from 1.97 to 9.22 ms.
These values indicate that the distribution is quite narrowwith
only a few outliers. Indeed, 99.4 % of the delays were below
3.72 ms, and there were three outlier values between 7.2 and
9.23 ms. This suggests that the Leonardo could be a viable
alternative to the Uno despite the fact that the main processor
handles also USB communication. At least with simple tasks
like in this test (checking the status of two input pins), USB
communication seemed to be even faster than with an Uno,
although there were 0.6 % outliers with higher delays.

However, the main advantage of the Leonardo is another
feature. Running USB connection in the main processor al-
lows the Arduino to emulate a keyboard or a mouse when
connected by USB. In other words, the Leonardo can be
programmed to simulate the press of a keyboard button in
response to events, and response latency software will recog-
nize this buttonpress as if it came from a regular keyboard. Of
course, this signal still has to go through the regular polling
process of the operating system, but there is a chance that
noise coming from the construction of a regular keyboard will
be avoided in this way (Li et al., 2010).

Method

To evaluate this option, we connected an Arduino Leonardo
to a light-dependent resistor (LDR), in the form of the

Behav Res (2013) 45:1332–1346 1343

TinkerKit LDR Sensor sold by Arduino.cc. We intentionally
chose this module to demonstrate accuracy using standard
commercial components, and to our best knowledge there is
no photo diode module for any of the Arduino rapid
prototyping platforms. The LDR was placed in the right
top corner of the screen of a Sony Vaio laptop. We
programmed the Arduino such that it would continuously
read the state of the LDR, and simulate the pressing of key
A when the measurement surpassed the level 200.

Note that the LDR was connected to an analog pin on the
Arduino. Reading such a pin takes longer than reading a
digital pin, about 0.1 ms. We added a further delay of 10
microseconds to allow complete settling of the analog to
digital converter. As a result, all internal reading on the
Arduino should have values multiple of approximately
0.11 ms.

On the Windows side, we programmed a simple experi-
ment in both E-Prime 2.0.10.242 and DMDX 4. In both
cases, there were 200 trials. Each trial first showed a black
screen for 2,000 ms, and then a white screen, waiting for the
pressing of the button A. The keypress was measured with
the regular functions in E-Prime and DMDX.

As a comparison, we added one condition in which we
used the script developed above (E-Prime only because
DMDX does not support a serial interface), thereby measur-
ing response latency on the Arduino directly. In this case,
the Leonardo was connected with a speed of 128,000 baud,
and the script checked the state of the LDR.

Results and discussion

Note that E-Prime usually reports measurements in millisec-
onds, whereas our E-Prime script and DMDX report in
microseconds. When the Leonardo was programmed to
return the letter A upon the screen turning white, DMDX
recorded latencies between 5.53 and 6.69 ms,M = 6.09, SD =
0.31 (condition DMDX/Emulation). E-Prime reported laten-
cies between 6 and 9 ms, M = 7.31, SD = 0.52 (condition E-
Prime/Emulation). When E-Prime and Leonardo were
programmed with the scripts developed in the present article
(Study 2), the latencies ranged from 4.10 to 5.26ms,M = 4.65,
SD = 0.29 (condition Arduino measurement). We compared
the variances and means with Levene’s tests and t tests,
respectively. DMDX/emulation and Arduino measurement
did not differ from each other regarding variances, F < 1,
but regarding means, t(398) = 47.78, p < .001. E-
Prime/emulation differed from both other conditions re-
garding variances, Fs(398) > 94, ps < .001 and means,
ts > 28, ps < .001.

These tests show remarkable accuracy for the Arduino
Leonardo, even when it is used simply to emulate a key-
board device. We achieved SDs of half a millisecond in both
E-Prime and DMDX. DMDX even rivaled the script

developed above, as the SD of its measurements was not
significantly higher than the measurements run on the
Arduino itself. E-Prime performs less well, perhaps simply
because it measures only in milliseconds, but its performance
is still very good. This suggests that if the Arduino is not used
to present other stimuli triggered by the communication it
receives from E-Prime, using an Arduino Leonardo and em-
ulating a HID device might be sufficiently accurate.

In addition, together with Study 3, these results suggest
that adding a light sensor can be a valid approach to allow
the Arduino registering the onset of a trial, and thereby
increase accuracy of measurement.

General discussion

Current response time measurement in cognitive science
relies heavily on measuring latencies of key presses on
standard keyboards. Although our Study 4 showed that the
precision of such measurements could be acceptable, this
hinges immensely on the particular keyboard and paradigm.
Furthermore, key presses might not always be the ideal
movement to measure. More precise response boxes are
expensive and often rely on legacy interfaces or on specific
software. Instruments that measure other movements are
even more expensive and difficult to program.

In the present article, we described a way out of this
dilemma. We show how the open source microcontroller
platform Arduino can be combined with a standard software
package, E-Prime, to measure response latencies as precise-
ly as a serial response box does. We show that flexible
millisecond precision is within the reach with hardware
investments of less than €50.

In Study 1, we saw that communication in the direction
from the PC to the Arduino is faster and less noisy than the
return way. We therefore program the Arduino such that it
gets signaled when a trial starts, measures the response
latency itself, and then reports back both the latency and
the response. We developed an E-Prime inline script that
signals the trial to the Arduino, waits for the measured
values, and saves them to the database. Study 2 showed that
this communication is reliable and fast when high baud rates
are selected. Study 3 confirmed that with this script, the
setup of PC, Arduino, and E-Prime can measure an event
(here a change on the screen) with excellent precision (an
SD of <1 ms). Study 4 confirmed that a response box built
with this setup performs as well as a serial response box, the
current gold standard, and better than a keyboard. Study 5
showed that by taking additional time stamps into account,
accuracy can be enhanced. Finally, Study 6 demonstrated
that even without using special scripts, the Arduino
Leonardo board could be used to construct a millisecond
precise response box that can be used with any software.

1344 Behav Res (2013) 45:1332–1346

Our script includes two quality assurance mecha-
nisms: a check of the correct match of E-Prime and
Arduino trial via a random number, and a backup mea-
surement of the latency via the script. Both should be
used to verify the correct implementation of the script
(see a check list in the Appendix, posted as supplemen-
tary materials with the article).

We focused here on replicating response box and key-
board functionality because this is the current norm.
However, the Arduino has potential for building new kinds
of response measures. It can be connected to a multitude of
sensors to develop new paradigms in an easy fashion. Rapid
prototyping toolkits offer gyroscopes, accelerometers, light-
dependent resistors, hall sensors, compasses, touch sensors,
and much more. Here we only demonstrate the precision
using keys (Study 4), photodiode (Study 3), and light-
dependent resistors (Study 6). Tests with other hardware
have to be conducted in the future.

Interestingly, the script that we developed here can be
directly used to also implement the presentation of stimuli
via the Arduino. For instance, in some paradigms vibration
or LEDs have to be used (e.g., Pavani & Castiello, 2004).
LEDs and small vibrators can easily be connected to an
Arduino, and the Arduino can control them in response to
the trial signal. We believe that controlling external actuator
and measurement hardware from experimental software like
E-Prime via an Arduino can greatly enhance the experimental
psychologist’s toolbox.

Caveats and future directions

Perhaps the biggest problem for anybody who wants to
implement our solution right away is that in rapid
prototyping kits for the Arduino, there seems to be shortage
of good button modules. While this situation remains, we
suggest three solutions. Most easily, any button can be
connected to an Arduino directly.8 We recommend
employing Cherry key modules.

Second, it is clear that our E-Prime InLine script requires
basic knowledge in scripting, and is not as easily deployed
as simply choosing an input device in E-Prime. However,
there are very few changes that experimenters need to make
in a standard experiment. We are currently working on
packaging the script such that it is more easily employed.

Third, we are certainly aware that other software packages
exist that also implement serial ports (e.g., Presentation). We
expect that our script can be easily ported to these packages.
We make our script available under the GNU GPL v3 public
license and encourage porting to other environments.

We focused here on standard Arduino USB communica-
tion, but we would like to point out that alternatives are

available. For instance, it is conceivable to use parallel ports
where they are still available to communicate with an
Arduino, or to employ a DAQ card. Another option is to
circumvent the hardware that an Arduino offers for USB
connection, because this is not optimized for extreme
speeds. For instance, it is possible to connect the hardware
serial port of an Arduino board to a special FTDI chip,
which then talks to the computer via USB and specialized
drivers. In initial tests we have found an improved accuracy
using this setup.

Finally, we want to reiterate that despite its many advan-
tages, the use of additional hardware may not be necessary in
some paradigms. Studies on response latencies have been
successfully conducted over the Internet, which presents the
most noisy environments imaginable, with many different
hardware configurations (Nosek, Banaji, & Greenwald,
2002). The challenge is to judge a priori, on the basis of
expected effect size, desired test power, and response latency
distribution, what noise induced by the particular hardware
will be acceptable. Providing guidelines for this remains a task
for the future.

We hope that experimental psychologists increasingly
abandon the keyboard as a response device when it is
not the ideal index of cognition. For many researchers
in cognitive science, programming their own paradigms
has become an elementary part of developing studies.
We believe that building suitable hardware can become
similarly useful and natural.

Author Note The main part of this research was conducted at the
Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação
e Intervenção Social, Avenida das Forças Armadas, 1649-026 Lisbon,
Portugal, with support from Fundação para a Ciência e a Tecnologia
(FCT), Grant No. PTDC/PSI-PSO/101366/2008. T.W.S. is now at the
University of Oslo. We thank Volker Seibt, Robert Richards, Gonçalo
Paiva, Pedro Antunes, and João Fonseca for their help with hardware,
and Carla Murteira, Elizabeth Collins, and Diniz Lopes for their help
and comments on this project.

Appendix

Checklist before collecting data

1. Is the same highest possible baud rate set in E-prime,
Arduino sketch, and device manager?

2. Are all necessary columns added to the list containing
the stimulus object or a higher order list?

3. Are the names of the stimulus object used in the final part
of the E-Prime InLine adjusted to names actually used?

4. Does the E-Prime script leave a grace period of ca. 2 s
after the start, before the first communication with the
Arduino is attempted?

5. Is data logging turned on for the stimulus object?8 See www.arduino.cc/en/Tutorial/button for a tutorial.

Behav Res (2013) 45:1332–1346 1345

http://www.arduino.cc/en/Tutorial/button

6. Does the Arduino script define the correct pins for input
and ouput?

Checklist after collecting data
7. Is the TrialNr (which is sent to the Arduino) the same as

ArduinoTrialNr (which is received from the Arduino)
for all trials?

8. Compute the difference inlineRT – arduinoRT, and
check its distribution. If the average is large or the
standard deviation is high, ArduinoRTs are going to be
inaccurate or imprecise, respectively, as about 1/3 of the
delay happens before ArduinoRT is measured.

9. Compute the difference InlinePostSendingTime –
InlineStartTime. Trials with outlier differences may be
unreliable, as the trial onset stimulus might have been
delayed.

References

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433–436. doi:10.1163/156856897X00357

Canto, R., Bufalari, I., & D’Ausilio, A. (2011). A convenient and
accurate parallel Input/Output USB device for E-Prime. Be-
havior Research Methods, 43, 292–296. doi:10.3758/s13428-
010-0022-3

D’Ausilio, A. (2012). Arduino: A low-cost multipurpose lab equip-
ment. Behavior Research Methods, 44, 305–313. doi:10.3758/
s13428-011-0163-z

Forster, J. C. (2012). DMDX Help Input. Retrieved August 16, 2012,
from www.u.arizona.edu/~jforster/dmdx/help/dmdxhinput.htm

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display
program with millisecond accuracy. Behavior Research Methods,
Instruments, & Computers, 35, 116–124. doi:10.3758/BF03195503

Galilei, G. (1638). Discorsi e dimostrazioni matematiche, intorno à
due nuove scienze. Leiden, The Netherlands: Lodewijk Elzevir.

Harmon-Jones, E. (2011). How to make a reaction time box for
DMDX . Retrieved November 20, 2011, from www.
socialemotiveneuroscience.org/making_RT_box_DMDX.pdf

Li, X., Liang, Z., Kleiner, M., & Lu, Z.-L. (2010). RTbox: A device for
highly accurate response time measurements. Behavior Research
Methods, 42, 212–225. doi:10.3758/BRM.42.1.212

Margolis, M. (2011). Arduino cookbook. Sebastopol: O’Reilly Media.
Nosek, B. A., Banaji, M., & Greenwald, A. G. (2002). Harvesting

implicit group attitudes and beliefs from a demonstration web site.
Group Dynamics: Theory, Research, and Practice, 6, 101–115.
doi:10.1037/1089-2699.6.1.101

Pavani, F., & Castiello, U. (2004). Binding personal and extrapersonal
space through body shadows. Nature Neuroscience, 7, 14–16.
doi:10.1038/nn1167

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating
presentation and response timing in cognitive paradigms: How and
why? Behavior Research Methods, Instruments, & Computers, 36,
291–303. doi:10.3758/BF03195575

Plant, R. R., Hammond, N., & Whitehouse, T. (2003). How choice of
mouse may affect response timing in psychological studies. Be-
havior Research Methods, Instruments, & Computers, 35, 276–
284. doi:10.3758/BF03202553

Plant, R. R., & Turner, G. (2009). Millisecond precision psychological
research in a world of commodity computers: New hardware,
new problems? Behavior Research Methods, 41, 598–614.
doi:10.3758/BRM.41.3.598

Voss, A., Leonhart, R., & Stahl, C. (2007). How to make your own
response boxes: A step-by-step guide for the construction of
reliable and inexpensive parallel-port response pads from com-
puter mice. Behavior Research Methods, Instruments, & Com-
puters, 39, 797–801. doi:10.3758/BF03192971

1346 Behav Res (2013) 45:1332–1346

http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.3758/s13428-010-0022-3
http://dx.doi.org/10.3758/s13428-010-0022-3
http://dx.doi.org/10.3758/s13428-011-0163-z
http://dx.doi.org/10.3758/s13428-011-0163-z
http://www.u.arizona.edu/~jforster/dmdx/help/dmdxhinput.htm
http://dx.doi.org/10.3758/BF03195503
http://www.socialemotiveneuroscience.org/making_RT_box_DMDX.pdf
http://www.socialemotiveneuroscience.org/making_RT_box_DMDX.pdf
http://dx.doi.org/10.3758/BRM.42.1.212
http://dx.doi.org/10.1037/1089-2699.6.1.101
http://dx.doi.org/10.1038/nn1167
http://dx.doi.org/10.3758/BF03195575
http://dx.doi.org/10.3758/BF03202553
http://dx.doi.org/10.3758/BRM.41.3.598
http://dx.doi.org/10.3758/BF03192971

	Using Arduino microcontroller boards to measure response latencies
	Abstract
	Keyboards and response boxes
	The present research

	The Arduino platform
	Integrating Arduino into PC-controlled experimental setups

	Study 1: Lags in USB communication between PC and Arduino
	Method
	Results

	Connecting an Arduino response box to E-Prime
	Scripting E-Prime to interface Arduino
	Programming the Arduino to interface E-Prime

	Study 2: Checking the robustness of the communication
	Method
	Results

	Study 3: Testing the variability of the response with a photo diode
	Method
	Results

	Study 4: Comparing an Arduino response box to other response boxes
	Method
	Results

	Study 5: Estimating the delay from trial initiation in E-Prime to start of clock in Arduino
	Method
	Results
	Discussion

	Study 6: Emulating human interface devices with the Arduino Leonardo
	Method
	Results and discussion

	General discussion
	Caveats and future directions

	Appendix
	References

