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Abstract: A water supply is vital for preserving usual human living standards, industrial develop-
ment, and agricultural growth. Scarce water supplies and unplanned urbanization are the primary
impediments to results in dry environments. Locating suitable sites for artificial groundwater
recharge (AGR) could be a strategic priority for countries to recharge groundwater. Recent advances
in machine learning (ML) techniques provide valuable tools for producing an AGR site suitability
map (AGRSSM). This research developed an ML algorithm to identify the most appropriate location
for AGR in Iranshahr, one of the major districts in the East of Iran characterized by severe drought
and excessive groundwater consumption. The area’s undue reliance on groundwater resources has
resulted in aquifer depletion and socioeconomic problems. Nine digitized and georeferenced data
layers have been considered for preparing the AGRSSM, including precipitation, slope, geology,
unsaturated zone thickness, land use, distance from the main rivers, precipitation, water quality,
and transmissivity of soil. The developed AGRSSM was trained and validated using 1000 randomly
selected points across the study area with an accuracy of 97%. By comparing the results of the pro-
posed sites with those of other methods, it was discovered that the artificial intelligence method could
accurately determine artificial recharge sites. In summary, this study uses a novel approach to identify
optimal AGR sites using machine learning algorithms. Our findings have practical implications for
policymakers and water resource managers looking to address the problem of groundwater depletion
in Iranshahr and other regions facing similar challenges. Future research in this area could explore
the applicability of our approach to other regions and examine the potential economic benefits of
using AGR to recharge groundwater.

Keywords: artificial recharge zones; groundwater; river basin; machine learning; artificial neural
networks

1. Introduction

Groundwater is a critical water source for agriculture in Iran’s arid/semiarid regions,
particularly in the central part [1,2]. Despite its importance, the relevance of groundwater
environmental balance has received insufficient attention, given the rising population and
demand for additional food and irrigated farmed lands [3,4]. Groundwater is one of the
most critical water sources for agriculture in Iran’s arid/semiarid regions, particularly in
the central part, which consumes approximately 92% of the country’s water, 52% of which
is supplied by groundwater resources [5]. A recent study by Dalin et al. [6], highlights that
Iran is one of the countries with the highest levels of embedded groundwater depletion,
with a depletion of around 100 Bm3 in the last two decades. This depletion has adversely
affected the lives of the people living in the region. As a result, there is an urgent need to
identify and evaluate essential criteria for restoring aquifers, particularly by establishing
artificial recharge zones. The most common techniques used for aquifer rehabilitation
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include the infiltration of groundwater wells or land surfaces. However, since groundwater
is a complex spatiotemporal phenomenon, utilizing surface infiltration systems to replenish
aquifers requires much research and investigation to accurately identify and target suitable
locations for artificial recharge zones.

Therefore, many different effective parameters for artificial recharge zones were stud-
ied. These included depth below ground, permeability, transmissivity, distance to the water
source and well, geology, unsaturated aquifer thickness, land use, water quality, and land
slope. Several strategies exist for restoring groundwater supplies. However, traditional
approaches may make it impossible or difficult to discover suitable places for artificial
recharge [7,8]. Geographic information systems (GIS), remote sensing (RS), mathematical
models, heuristic algorithms, and a variety of criterion decision-making methods (such
as the analytical hierarchy process (AHP), the fuzzy analytical hierarchy process (FAHP),
and the technique for order preference by similarity to ideal solution (TOPSIS) have all
been applied to the problem of artificial groundwater recharge zoning. This study aimed to
locate suitable sites for artificial recharge in the arid region of the Iranshahr Plain utilizing
analysis supported by state-of-the-art machine learning integration and verification using a
fuzzy analytic hierarchy process to improve aquifer rehabilitation and restoration.

Machine learning algorithms (MLAs) have recently evolved in precise forecast model-
ing, identifying detailed patterns, particularly irregular data, and developing extremely
accurate forecast models [9,10]. The MLAs are not confined to the commonly used tra-
ditional approaches that rely on uncompromising statistical postulations and linear or
additive methodologies. They have a more substantial mastery of resolving complicated
interactions [9,11]. Machine learning (ML) is frequently referred to as artificial intelligence
(AI) due to its learning and decision-making capabilities, although it is a subset of AI.
ML algorithms develop a mathematical model utilizing sample and training data to make
decisions without being specifically programmed to make those decisions [12]. Artificial
neural networks (ANN) are widely regarded as one of the most significant developments
in ML, with applications in a wide variety of fields that resemble how the human brain
works, bringing us closer to realizing the goal of machines that can think and learn as
humans do by involving many neurons communicating to transmit messages throughout
the body [13].

Based on a collection of linked nodes known as artificial neurons, ANN improves the
system’s expressive capabilities. The ANN approach has lately been applied to handle
groundwater-related issues [14]. Mohanty et al. [15] used an ANN model to forecast
groundwater levels in various bores using expert knowledge and statistical analysis. The
ANN was used to predict the groundwater level in a Singapore swamp forest based
on rainfall and the levels of nearby reservoirs [16]. Pasandi et al. [17] used an ANN to
estimate the water table depth in Shibkooh, Iran, utilizing auxiliary data such as aquifer
bed elevation and thickness.

Deep learning is helpful in studies of groundwater management. Using rainfall
and pumping discharge data, Kong-A-Siou et al. [18] suggested a recurrent multilayer
perceptron for predicting the water table level. Jiang et al. [19] used a super-resolution con-
volutional neural network to categorize paleo-valleys essential in groundwater exploration.
Recent developments in processing speed and data storage have enabled numerically
intensive analyses to be performed at large scales and at a low cost. Machine learning and
deep learning models are widely employed in various domains, including forest cover
projection, climate forecasting, and flood and typhoon forecasting [20–23]. This study
utilizes state-of-the-art machine learning integration and verification using a fuzzy analytic
hierarchy process to improve aquifer rehabilitation and restoration. Furthermore, the
study highlights the potential of machine learning and deep learning models in predicting
groundwater recharge dynamics, a relatively new field of study. Research such as this
uses conventional regression methods such as linear regression, neural networks, and deep
learning to boost the accuracy of groundwater recharge dynamics predictions.
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2. Materials and Methods
2.1. Study Area

The Iranshahr plain, with an area of 41,730 km2, is located in the province of Sistan
and Baluchistan in southeast Iran. This region is in an arid tropical zone in Iran, with an
annual precipitation of 99.09 mm. Surface water supplies have become insufficient due
to unplanned urbanization, population growth, changing consumption patterns, limited
water resources, and inadequate water supply and distribution regulations, allowing for
inappropriate groundwater use in many regions, including Iranshahr [24].

2.2. Input Data

Nine digitized and georeferenced data layers were used as input data in the ArcGIS
Pro 2.9 environment, including geology, unsaturated zone thickness, land use, distance
from major rivers, precipitation, water quality, soil transmissivity, and slope maps [25,26],
all of which are discussed briefly below. The preparation of this input data is the most
time-consuming part of the study, and the study’s findings are highly dependent on the
precision of the input data.

2.2.1. Geology

One of the essential characteristics of hydrogeological investigations is the permeability
of geological formations [27]. Therefore, quaternary deposits suitable for this property
are typically the site of artificial aquifer restoration. The Iranshahr Plain was divided into
quaternary units (QAl: sediments of the main rivers, buried channels, and flood plains;
Qm: uniform floodplains and lake sediments; QS: sand dune; Qft2: Young alluvial fan;
Qft1: old alluvial fan; and OC: coarse-grained conglomerate) and digitized for future use.

2.2.2. Soil/Surface Permeability

The soil zone also governs the percolation rate and hydraulic conductivity [28,29]
before the water reaches the subsurface aquifer system. Factors such as climate, vegetation,
and human intervention impact the soil’s primary chemical and physical properties. There
are eight main soil types in the Iranshahr basin, with the highest permeability ratio found
in alluvial sediment, debris, and sandy dunes and the lowest in mass rocks (i.e., limestone,
sandstone, siltstone, igneous, and metamorphic). Machine learning was used to analyze the
water infiltration rate into the soil in the study area based on the obtained and normalized
values of the relative surface permeability.

2.2.3. Slope

Areas with steep slopes have a low groundwater level since most rainfall is lost to
runoff. As a result, the slope can significantly impact groundwater infiltration. The most
suitable slope for groundwater restoration could be between 2% and 3%, while slopes of
less than 1% may not be ideal due to penetrating small particles, such as clay, and reducing
permeability over time. A DEM derived from 30 m resolution SRTM data created the
basin’s slope map. The study area has a minimum slope of 0%, with a maximum gradient
of 86% in the eastern part of the water basin.

2.2.4. Rainfall

Using information gathered by the Sistan and Baluchistan meteorological authority, a
map of the basin of Iranshahr depicting the distribution of precipitation was created. The
amount of precipitation is determined by factors such as the slope of the land, the types
of vegetation present, and the way the land is used. A region’s groundwater availability
can be directly regulated by rainfall levels, as increased precipitation is associated with a
rise in groundwater potential [28]. Iranshahr, Bam Pour dam, and Daman are the three
synoptic stations we can access, however, this is clearly insufficient. We can get a good
estimate of precipitation by combining the DEM with the rainfall/altitude relationship
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(y = 0.0707x + 92.567 and R2 = 0.75). Maximum and minimum annual precipitation estimates
for this region are 247 and 122 mm, respectively.

2.2.5. Unsaturated Thickness

The unsaturated zone is crucial since it links the groundwater and the surface water.
Simultaneously, it is crucial to have a lag time between when water infiltrates from the
surface and when it reaches the saturated zone.

2.2.6. Water Quality

Since areas with poor groundwater quality would be unsuitable for recharging with
high-quality rain or surface water, this criterion is very useful when finding a suitable site.
Groundwater quality is indicated by a total dissolved solids (TDS) minimum of 479 mg/L
in the central part of the study area. The maximum TDS values in the eastern and western
regions of the catchment are 4970 mg/L and 4950 mg/L, respectively.

2.2.7. Transmissivity

An aquifer’s transmissivity is directly proportional to its underlying geology. Al-
though clay and shale deposits in unconsolidated aquifers are more transmissive than
alluvial and aeolian deposits, these latter deposits are typically not used as aquifers. Addi-
tionally, transmissivity as an indicator of the soil’s ability to transmit water throughout its
saturated thickness [29] can assist us in determining what is occurring in the subsurface
layer, where our knowledge is limited. As a result, areas with higher transmissivity values
have a greater potential for recharging. The transmissivity value determined by the Sistan
and Baluchistan Regional Water Authority indicates that the transmissivity of the Iranshahr
basin decreases from north to south (800 to 3000 m2/day).

2.2.8. Distance from surface water

Increased annual precipitation and access to a consistent source of surface water are
crucial to the success of any artificial recharge strategy. To implement an artificial recharge
plan, surface water is essential. This has direct implications for site selection. Given that
higher-grade drainages can have a higher volume of running water, the GIS software
created a drainage network map and considered the distance between the artificial recharge
plan and surface water.

2.2.9. Land Use/Landcover

Agricultural fields, floodplains, dunes, forests, and meadows contribute considerably
to the quantity of water recharged, making land use and cover an essential factor in
hydrogeological investigations. Urban areas, cliffs, and salt marshes, on the other hand, are
all considered negative factors when assessing the feasibility of regions for AGR. According
to Chowdary et al. [30], areas with vegetation, fallow land, and lands with water bodies are
all good places to study groundwater.

3. Artificial Neural Network (ANN)

The ANN algorithm is one of the most frequently used machine learning algo-
rithms [31–34]. These networks have generated great interest due to the recent increase in
computing power, which has rendered them virtually ubiquitous [35].

Many nonlinear problems can be solved by artificial neural networks (ANNs), which
are mathematical models of the human nervous system that consist of input, hidden, and
output layers. Multiple hidden layers are included in a network, enabling the network to
perform processing and computation. The problem’s complexity determines the number of
layers. A neural network is generally a collection of connected output and input units, each
with a unique weight. The methodology for using ANN in groundwater recharge mapping
involves several steps [36–38]. First, data related to groundwater recharge and relevant
environmental parameters are collected from various sources. Next, the collected data is
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preprocessed to remove any inconsistencies or errors. Then, the preprocessed data is split
into training and testing datasets, with the former being used to train the ANN model and
the latter being used to test its accuracy. The ANN model is designed and configured with
the appropriate number of input, hidden, and output layers. The training process involves
optimizing the weights and biases of the ANN through a backpropagation algorithm
to minimize the error between the predicted and actual groundwater recharge values.
Once the training is complete, the model’s accuracy is evaluated using the testing dataset.
The final step involves using the trained ANN model to generate groundwater recharge
maps by inputting relevant environmental parameters and predicting the corresponding
recharge values.

In Figure 1, an ANN is depicted alongside a hidden layer and some weights linking
the layers. The following steps should be considered while calculating the output values.
First, the sum of weights is defined by Equation (1), where Ii is the input variable, wij is the
weight between Ii, and neuron j, and βi shows the input variable’s bias term.

Sj =
n

∑
i=1

wij Ii + βi (1)

In the second step, neurons in the hidden layers’ output values are computed using
an activation function derived from a weighted sum of the received values (Equation (1)).
A ReLU function is a common choice for such a function as:

f j (I) = max
(
0, Sj

)
(2)

where f j is the ReLU function for neuron j and Sj denotes the sum of weights.
Finally, in order to determine the output of neuron j, we have:

Oj =
k

∑
i=1

wij f j + β j (3)

where Oj is the output of neuron j, f j denotes the activation function for neuron j, wij defines
the weight between the output variable Oi and neuron j, and βi represents the bias term for
the output variable.
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4. Results and Discussion

Groundwater recharge is essential in maintaining the balance of water resources in
many regions worldwide. To ensure a sustainable groundwater supply, it is necessary to
identify acceptable recharge areas. To achieve this, a computational intelligence technique
has been introduced in this study. The technique involves collecting data on variables such
as geology, unsaturated zone thickness, land use, distance from main rivers, precipitation,
water quality, soil transmissivity, and slope maps. These variables were then classified
into training, testing, and forecasting categories. Artificial neural networks (ANNs) were
used to evaluate the dataset and identify acceptable recharge regions. ANNs are powerful
tools that can model complex relationships between different variables without requiring
any prior assumptions. The performance of the ANNs method was evaluated using the
root mean squared error (RMSE), mean squared error (MSE), and correlation coefficient
(R2). These evaluation metrics are widely used to measure the accuracy of ANN models in
various studies [39,40]. The errors obtained from the evaluation process were presented
as equations, providing a better understanding of the method’s accuracy in identifying
acceptable recharge regions (4)–(6).

MSE = 1/n ∑_(i = 1)n ×〖〖
(
〖Target〗_i −〖output〗_i

)
〗

2
〗 (4)

RMSE =
√
(1/n ∑_(i = 1)n ×〖〖

(
〖Target〗_i −〖output〗_i

)
〗

2
〗) (5)

R2 =〖((∑×〖
(
〖Target〗_i −

(
Target

))
×

(
〖output〗_i −

(
output

))
〗)/

√
(∑×〖(〖Target〗_i− (Target)−)〗2 ×∑×〖(〖output〗_i− (output)−)〗2

))〗
2 (6)

The best validation performance graph and regression plot of actual and predicted
data using ANNs are shown in Figures 2–4. The results of the performance evaluation of
ANN outputs are displayed in Table 1 and Figure 5.
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Table 1. ANN operation.

BGWAN Process Data Usage MSE RMSE R

training 70% 3.71359 × 10−3 0.060939 0.969864
validation 15% 3.94606 × 10−3 0.062818 0.968400

testing 15% 4.20498 × 10−3 0.064846 0.967469
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The ML algorithm’s performance curves are depicted in Figures 2 and 3. There
appear to be no issues with performance. There is no evidence of overfitting on either the
validation or test curves. When comparing the training and validation curves, the training
curve flattens out more quickly, indicating that the trained network performs better with
learning data.

Regression analysis, where the network’s output is compared to the corresponding
targets (often represented by a regression factor) is another method for gauging the gener-
alization of a network (R). R = 1 (1.0) if the network performed perfectly; however, this is
rarely the case. Figure 4 shows the regression plot with R = 0.9692.

When assessing the performance of a trained network, it is helpful to look at the error
histogram, which shows the distribution of residuals between targets and network output.
The majority of errors are found to be around 0.0036 in this case.

4.1. ANN Approach

The site selection process was carried out at different stages in this study. To train
the system, 10% of the total study area was chosen, and then 1000 evenly-spaced points
were randomly selected from this area. All the data introduced in the previous section was
transferred to the machine learning system as a feature at each point. Seventy percent of
these points were used for system training, and once the desired results were obtained with
an acceptable error, the result was validated and tested on the remaining thirty percent of
the data. Zaresefat et al. [41] obtained the results as the target for this step. After that, after
ensuring the model’s accuracy, it was implemented for all the data in the region (Figure 6).
As a result, the optimal locations for artificial groundwater recharge were determined.
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4.2. Field Application and Future Research Perspective

The use of artificial neural networks (ANNs) in identifying suitable areas for artificial
groundwater recharge has shown promise in providing a better delineation of areas for
recharge. This study holds significant engineering significance by providing valuable
insights and practical recommendations for experts and policy planners to identify ap-
propriate locations for artificial groundwater recharge. The algorithm developed through
this study utilizes machine learning techniques, which can provide high accuracy and low
computational costs for identifying suitable sites. This not only saves time and resources
but also increases the efficiency of the recharge process, leading to the conservation of
groundwater resources and preventing the depletion of existing aquifers. The findings of
this study can guide decision makers in developing effective policies and strategies for
sustainable water resource management. These insights can also aid engineers in designing
and implementing artificial groundwater recharge projects that are both feasible and eco-
nomically viable. Furthermore, this study suggests that the machine learning algorithm can
be applied to other regions, and the results can be compared with those of other available
tools. In this way, it can contribute to developing more effective and efficient groundwater
recharge projects, essential for ensuring water security and sustainability in arid and semi-
arid regions. While the use of ANNs in identifying potential sites for artificial recharge is
a significant step forward, further investigation is necessary to confirm the suitability of
these sites. Hydrogeological and geophysical investigations would be needed to provide a
more indepth analysis of the subsurface conditions in these areas. A socioeconomic and
financial appraisal would also need to be conducted to evaluate the feasibility and cost
effectiveness of implementing artificial recharge in these areas.

To further expand on this work’s field application and future research prospects, it
would be beneficial to have a separate section or subsection dedicated to this topic. In
this section, the potential practical applications of the ANN approach could be discussed,
including the use of the method in other regions and how the approach could be adapted
to suit different geologic settings. Additionally, the approach’s limitations and areas for
future research could be highlighted. This section would help contextualize the study’s
findings and provide a roadmap for future research in this area.
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5. Conclusions

The study used an artificial intelligence-based algorithm to identify suitable locations
for artificial groundwater recharge in the Iranshahr plain. Nine input data layers, including
lithology, land use, distance from main rivers, precipitation, water quality, soil transmissiv-
ity, and slope maps, were used to develop the algorithm. The results were compared to
those obtained from the fuzzy analytic hierarchy process technique. The machine learning
model showed higher accuracy and lower computational cost than the FAHP model. This
study provides helpful suggestions and novel insights for experts and policy planners
to identify suitable artificial groundwater recharge areas. The proposed method can be
compared with other machine learning algorithms, such as support vector machines and
decision tree random forests. Future studies should compare the proposed methods with
traditional methods to identify new sites for viable and sustainable artificial groundwater
recharge while increasing efficiency and conserving time and resources.
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