
Modern artificial intelligence (AI) techniques can aid forecasters on a wide variety of 

high-impact weather phenomena.
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W
eather significantly impacts society for better 

and for worse. For example, severe weather 

hazards caused over $7.9 billion of property 

damage in 2015 (National Oceanic and Atmospheric 

Administration/National Centers for Environmental 

Information 2016; CoreLogic 2016). The National 

Academies of Sciences, Engineering, and Medicine 

(2016) cites improving forecasting of such events 

as a critical priority, and the European Centre for 

Medium-Range Weather Forecasts (ECMWF) re-

cently announced goals for 2025 (ECMWF 2016) that 

stress the importance of improving these forecasts. 

On the positive side, improvements in forecasting 

solar power, which increasingly impacts the electrical 

grid, are expected to save utility companies $455 mil-

lion by 2040 (Haupt et al. 2016). Additional savings 

can be found through improved forecasting in other 

areas of computational sustainability. Computational 

sustainability is a new and growing interdisciplinary 

research area focusing on computational solutions for 

questions of Earth sustainability.

In recent years, operational numerical weather 

prediction (NWP) models have significantly in-

creased in resolution (e.g., Weygandt et al. 2009). 

At the same time, the number and quality of 

observational systems has grown, and new systems, 

such as Geostationary Operational Environmental 

Satellite R series (GOES-R), will generate high-quality 

data at fine spatial and temporal resolutions. These 

data contain valuable information, but their variety 

and volume can be overwhelming to forecasters, 

and this can hinder decision-making if not handled 

properly (Karstens et al. 2015, 2016). This data deluge 

is commonly termed “big data.” Artificial intelligence 

(AI) and related data science methods have been 

developed to work with big data across a variety of 

disciplines.

Applying AI techniques in conjunction with a 

physical understanding of the environment can 

substantially improve prediction skill for multiple 

types of high-impact weather. This approach ex-

pands on traditional model output statistics (MOS) 

techniques (Glahn and Lowry 1972), which derive 

probabilistic, categorical, and deterministic forecasts 

from NWP model output. Because of their simplic-

ity and longevity, forecasters have gained trust in 

MOS techniques. AI techniques provide a number 

of advantages, including easily generalizing spatially 

and temporally, handling large numbers of predictor 

variables, integrating physical understanding into the 
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models, and discovering additional knowledge from 

the data. In recent years, forecasters and researchers 

have begun to adopt AI techniques much more widely, 

as they demonstrate their power in a wide variety of 

applications, including postmodel bias correction, 

handling large datasets, reducing cognitive overload, 

and discovering new knowledge in large datasets. 

With the growth in applications for data science 

techniques outside of atmospheric science as well, 

AI techniques promise to continue to enhance pre-

diction and understanding of many weather-related 

phenomena. The primary goals of this paper are to 

introduce modern AI techniques to a broad audience 

and to demonstrate their utility in predicting a wide 

variety of high-impact weather phenomena.

The rest of this paper is organized as follows: We 

first review related work and provide a brief overview 

of some AI techniques highlighted in this paper, fol-

lowed by demonstrations of how we have applied AI 

techniques to multiple high-impact weather applica-

tions. We discuss the benefits of AI and automation 

to both researchers and forecasters and conclude by 

discussing how AI techniques can be further used to 

help meteorologists and decision-makers.

RELATED WORK. Statistical models for postpro-

cessing NWP model output have evolved within two 

general frameworks. “Perfect prog” models fit rela-

tionships between observed or analyzed variables and 

observations of a weather feature, such as temperature 

or precipitation (Klein et al. 1959). The models are then 

applied to NWP forecasts, thus implicitly assuming 

that the NWP model is perfect. In contrast, MOS fits 

a statistical model between NWP output at a given 

time horizon and subsequent observations at that time 

(Glahn and Lowry 1972), often using linear regression. 

Because MOS fits use the NWP output directly, they 

can correct for systematic biases in a model. When 

NWP model configurations are updated, MOS must 

be retrained after a sufficient number of new model 

forecasts are collected. Perfect-prog models are gener-

ally less accurate than a well-tuned MOS model, but 

they are less sensitive to model configuration changes 

and tend to be more robust over time. AI techniques 

can be used in both frameworks.

Haupt et al. (2008) provide an overview of AI 

techniques applied to the environmental sciences, 

including artificial neural networks (ANNs), decision 

trees, genetic algorithms (Allen et al. 2007), fuzzy 

logic, and principal component analysis (Elmore and 

Richman 2001). Baldwin et al. (2005) used hierarchical 

clustering to classify precipitation areas, Gagne et al. 

(2009) used k-means clustering to segment a radar 

image, Lakshmanan et al. (2010, 2014) used k-means 

clustering to segment a map of radar-echo classifica-

tions, and Miller et al. (2013) used clustering to identify 

storm tracks. 

ANNs are interconnected networks of weighted 

nonlinear functions. When connected and trained in 

multiple layers, ANNs can represent any nonlinear 

function. They also provide the foundation for deep 

learning methods. ANNs have been used in a wide 

variety of meteorology applications since the late 

1980s (Key et al. 1989), including cloud classification 

(Bankert 1994), tornado prediction and detection 

(Marzban and Stumpf 1996; Lakshmanan et al. 2005), 

damaging winds (Marzban and Stumpf 1998), hail size 

(Marzban and Witt 2001; Manzato 2013), precipita-

tion classification (Anagnostou 2004; Lakshmanan 

et al. 2014), tracking storms (Lakshmanan et al. 2000), 

and radar quality control (Lakshmanan et al. 2007; 

Newman et al. 2013). 

Support vector machines (SVMs) have also been 

used to detect and predict tornadoes (Trafalis et al. 

2003; Adrianto et al. 2009). SVMs learn a linear model 

in a nonlinear space by transforming the data to the 

nonlinear space using kernels. Both ANNs and SVMs 

are f lexible and powerful but produce models that 

are often difficult to interpret in terms of underly-

ing physical concepts that the model has identified. 

For the ANNs, it is difficult to interpret the weights 

through the nonlinear functions. For the SVMs, the 

data transformation makes it difficult to identify the 
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most important features of the data or what the model 

has identified.

One of the simplest and most well-known statisti-

cal learning methods, linear regression, has been used 

in weather prediction since at least the early 1950s 

(Malone 1955). Kitzmiller et al. (1995) used regres-

sion to forecast the probability of severe weather, 

Billet et al. (1997) used it to forecast maximum 

hail size and large-hail probability, and Mecikalski 

et al. (2015) used logistic regression to forecast the 

probability of convective initiation, to name just a 

few recent examples. In linear regression, a set of 

weights is chosen to combine input features x
i
 so as 

to best predict an output variable ŷ, for example, to 

minimize the summed squared prediction error. The 

weights can be trained using matrix inversion or other 

optimization schemes, ranging from basic gradient 

descent through genetic algorithms if the matrix 

is poorly conditioned. Although linear regression 

learns quickly even on large datasets, it works best 

with problems that require a linear model and have 

a limited feature set. If features are redundant or not 

predictive, they can make learning more challenging. 

Ridge regression (Hoerl and Kennard 1988) penal-

izes the sum of squared weights in order to simplify 

models and improve their generalization. The lasso 

method penalizes the sum of the weights’ absolute 

values, which tends to remove irrelevant variables 

(Tibshirani 1996). Elastic nets (Zou and Hastie 2005) 

combine both penalties.

Decision-tree-based methods are popular in data 

science for handling big data. They are able to iden-

tify and learn with only the most relevant variables, 

enabling users to provide many possible predictive 

features without worrying whether extraneous vari-

ables will overwhelm the training process. Decision 

trees are also human read-

able, which can provide 

insight into what relation-

ships the model has iden-

tified related to the event 

being forecasted. Decision-

tree-based methods have 

proven quite powerful in 

a wide variety of weather 

applicat ions (Wil l iams 

et al. 2008a,b; Gagne et al. 

2009; McGovern et al. 2014; 

Williams 2014; McGovern 

et al. 2015; Clark et al. 2015; 

Elmore and Grams 2016).

Although the first objec-

tive decision-tree learning 

method was not developed until the mid-1980s 

(Quinlan 1986, 1993), subjective (human derived) 

decision trees have been used in meteorology since 

at least the mid-1960s (Chisholm et al. 1968). A de-

cision tree splits data recursively by identifying the 

most relevant question at each level of the data. The 

tree shown in Fig. 1 was automatically developed to 

predict whether hail will occur. At the root node, the 

data are split with the question “Is the mean radar 

reflectivity ≤ 43.4 dBZ?” The data are further refined 

down each of the yes and no branches until a predic-

tion is made at a leaf node, which may contain a class 

label (e.g., hail: yes), probability p [e.g., p(hail) = 0.8; 

Provost and Domingos 2000], scalar prediction [hail 

size = 3.1 in. (~7.9 cm)], or a linear predictive function.

A powerful related method is random forests 

(RFs; Breiman 2001). An RF is an ensemble of deci-

sion trees, each of which is trained on a separate set 

of bootstrapped resampled training data and selects 

from a random subset of questions at each node. 

Since they are trained on different data and using 

different predictors, the individual trees in the forest 

are diverse, providing an “ensemble of experts” that 

performs better than any individual tree.

Gradient boosted regression trees (GBRT; 

Friedman 2002) construct an ensemble of decision 

trees trained using boosting (Schapire 2003). Whereas 

each tree in an RF is equally weighted and trained on 

equally weighted examples, a GBRT trains on dif-

ferently weighted subsets of data, where the weights 

are determined by the error residuals of the previous 

training step.

We will demonstrate the use of both RFs and 

GBRTs in several of the high-impact weather domains 

described below. While both methods are similar 

in performance in some cases, because of the equal 

FIG. 1. An example of a decision tree for predicting if hail will occur. A version 

of this decision tree first appeared in Gagne (2016).
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weighting of the individual trees in the forest, an RF 

will tend to regress to the mean predictions and thus 

not produce as sharp of a forecast. GBRTs can address 

this issue, but sometimes, postmodel correction is also 

needed. We typically use isotonic regression for post-

model correction (Niculescu-Mizil and Caruana 2005).

Both RFs and GBRTs provide the ability to mea-

sure the importance of each attribute in the dataset, 

which is called variable importance. After the trees 

are trained, each variable’s data are permuted, and 

performance is measured with both the permuted 

and original data. The most important variables are 

those that cause the largest drop in performance. 

These importance estimates can be used to gain in-

sight into the choices made by the forests, enabling 

physical interpretation of the models.

AI FOR HIGH-IMPACT WEATHER. This sec-

tion presents some of our recent work in applying AI 

to a variety of high-impact weather applications. The 

diversity in applications is intentional, to demonstrate 

to the reader that AI can be used for multiple problems.

Storm duration. Predicting a storm’s lifetime is impor-

tant for forecasters as it helps to guide the creation of 

watches and warnings. This task requires knowledge 

of the current status of the storm as well as knowledge 

of the nearby environment. The training data for 

this task come from a preoperational product called 

ProbSevere (Cintineo et al. 2014). ProbSevere identi-

fies and tracks storms in real time using composite 

reflectivity (maximum column reflectivity derived 

from multiple radars simultaneously) from the op-

erational Multi-Radar Multi-Sensor (MRMS; Smith 

et al. 2016) system over the continental United States. 

ProbSevere also provides a small number of attributes 

that summarize information about the environment 

near the storm along with information on the current 

speed of the storm. The training labels are provided 

by running a post hoc storm-tracking program called 

best track (Lakshmanan et al. 2015). These labels 

were obtained by using data from the Multi-Year 

Reanalysis of Remotely Sensed Storms (MYRORSS; 

Ortega et al. 2012) project. The training and test-

ing data were drawn from 9 April 2015 through 31 

January 2016. Data are available for each storm cell 

on an approximate 2-min basis. To ensure there was 

no cross contamination between the training and 

the testing set, training was on all data except July, 

with testing on July and the day closest to the testing 

data dropped from training. For bias correction, we 

withheld an extra month of data (August). The train-

ing data were also subsampled for all storms lasting 

less than 7,200 s. Only 10% of this data were used for 

training. All storms lasting longer than 7,200 s in the 

training set were retained. This still yielded 2,872,680 

samples for training. Testing data were evaluated 

independently on each day in July, enabling us to 

bootstrap the results for statistical analysis. Testing 

data were not subsampled.

We tested three machine-learning methods: 

GBRT, RF, and elastic nets. We also examined post-

training bias corrected us-

ing isotonic regression. We 

examined multiple settings 

of the standard parameters 

to the RF and GBRT using 

a validation set (results not 

shown because of space). 

The best choices for the RF 

and GBRT were 100 trees 

and a maximum depth of 5. 

For the GBRTs, the Huber 

loss function was signifi-

cantly better than the other 

loss functions. For elastic 

nets, we used an alpha of 

0.05 and the L1 ratio of 0.9.

Figure 2 displays the 

predicted distributions 

versus the observed dis-

tributions. GBRT stands 

out as the best-performing 

method across the range FIG. 2. Reliability diagram for predicting a storm’s lifetime.
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of predictions. While bias 

correction is able to im-

prove the performance at 

the end points, it is not an 

overall improvement on the 

models and was left out of 

the real-time testing.

The best duration pre-

diction method, GBRT, 

was implemented into a 

real-time system running 

in National Oceanic and 

Atmospheric Administra-

tion (NOAA)’s Hazardous 

Weather Testbed (HWT) 

called Probabilistic Haz-

ard Informat ion (PHI; 

Karstens et al. 2015) that 

uses ProbSevere to gener-

ate automated probabilistic 

forecasts for thunderstorm 

hazards. The forecasts were 

tested and evaluated with nine Nation al Weather Ser-

vice (NWS) forecasters in a 3-week human–machine-

mix experiment during May and June of 2016, and the 

acceptance of the duration predictions was evaluated. 

As shown in Fig. 3, forecasters on average used the 

predicted ProbSevere duration in approximately 75% 

of all forecasts, while individual acceptance of these 

predictions varied from as low as approximately 25% 

to as much as 100%. These results imply that most 

forecasters trust these predictions or that the predic-

tions are within an acceptable range at the time of 

warning decision. However, evidence (not shown) 

suggests that forecasters have a strong tendency to 

accept the default duration value so long as it is “good 

enough,” and the default duration value during the 

experiment was assigned from our duration predic-

tions. Therefore, forecasters may not be giving much 

thought to this predictive aspect of the forecast. In-

terestingly, research in optimizing decision-making 

suggests that “choice architects” should account for 

inaction bias by assigning the most likely best option 

to the available default (Milkman et al. 2008).

Severe wind. Real-time prediction of severe wind, de-

fined by the NWS as a gust ≥50 knots (kt; 25.7 m s−1), 

is another important task for forecasters. This proj-

ect uses AI techniques to predict the probability of 

severe wind within various buffer distances (0, 5, 

and 10 km around the storm cell) and time windows 

(0–15, 15–30, 30–45, 45–60, and 60–90 min into the 

future). We use two datasets to create predictors: 

quality-controlled radar images from MYRORSS and 

near-storm environment soundings from the Rapid 

Update Cycle (RUC) model (Benjamin et al. 2004). 

MYRORSS has a resolution of 1 km and 5 min, while 

the RUC has a resolution of 13 km (20 km for earlier 

times) and 1 h. To determine when and where severe 

winds occurred (verification data), we use surface 

observations from four datasets: the Meteorological 

Assimilation Data Ingest System (MADIS; McNitt 

et al. 2008), Oklahoma Mesoscale Network (Mesonet; 

McPherson et al. 2007), 1-min meteorological aero-

drome reports (METARs; National Climatic Data 

Center 2006), and NWS local storm reports (Storm 

Prediction Center 2015).

Before training the models, four types of data 

processing are applied. First, storm cells are identi-

fied and tracked through time using both real-time 

(Lakshmanan and Smith 2010) and postevent (Lak-

shmanan et al. 2015) methods. Real-time tracking 

outlines the edge of each storm cell, and postevent 

tracking corrects deficiencies in real-time tracking, 

mainly false truncations. Data are processed for 

804 days in the continental United States (all days 

from 2004 to 2011 with ≥30 NWS wind reports and 

available MYRORSS data). This results in nearly 20 

million storm objects, where a “storm object” is one 

storm cell at one time step. Second, wind observa-

tions are causally linked to storm cells. For each wind 

observation W, storm objects are interpolated along 

their respective tracks to the same time as W. If the 

edge of the nearest storm object S is within the given 

FIG. 3. Observed usage of the storm duration predictions by forecasters in 

the spring 2016 HWT experiment. Numbers on the chart are the counts in 

each bin.
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buffer distance (0, 5, or 10 km), W is linked to S and 

all other storm objects in the same track.

Third, predictors are calculated for each storm ob-

ject. There are four types of predictors: radar statistics 

(mean, standard deviation, skewness, kurtosis, and 

seven percentiles calculated for each of 12 variables, 

based only on pixels inside the storm object; the same 

statistics are calculated for gradient magnitudes of 

the 12 variables), storm motion (speed and direction), 

shape parameters (area, orientation, eccentricity, etc., 

of the storm object), and sounding indices (both 

dynamic and thermodynamic). Sounding indices 

are calculated from interpolated RUC data using the 

Sounding and Hodograph Analysis and Research 

Program in Python (SHARPpy) software (Halbert 

et al. 2015). There are a total of 431 predictors. The 

fourth step is to label each storm object S. If S is 

linked to a wind observation ≥50 kt (25.7 m s−1) over 

the given buffer distance and time window, its label 

is “true” (Fig. 4a).

For each buffer distance and time window, a 

GBRT ensemble is trained. Then, isotonic regres-

sion (IR) is trained with independent data (no case 

within 24 h of a GBRT-training case) to bias correct 

the GBRTs. Next, the calibrated model (GBRT + IR) 

is tested on independent data. Results are shown in 

Fig. 4 for the median buffer distance (5 km) and lead 

time (30–45 min). The model shown in Fig. 4 is an 

ensemble of 500 GBRTs trained with the AdaBoost 

algorithm (Freund and Schapire 1997), resampling 

FIG. 4. (a) Labeling of storm object S (dark green polygon). Label is based on wind gusts in light green area, which 

is a 5-km buffer around storm objects occurring 30–45 min later in the same track. (b) ROC curve (Metz 1978). 

The gray line is the ROC curve for a random predictor, and AUC is the area under the curve. (c) Performance 

diagram (Roebber 2009). The gray lines are frequency bias, and the color fill is CSI. (d) Attributes diagram (Hsu 

and Murphy 1986). The orange line is the reliability curve, the diagonal gray line is a perfect reliability curve, 

the vertical gray line is climatology, and the horizontal gray line is the no-resolution line (reliability curve for a 

model that always predicts climatology). In all cases, the orange line is the mean, and the envelope is the 95% 

confidence interval, determined by bootstrapping.
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factor of 0.15 (with replacement), learning rate of 0.1, 

25 variables tested per branch node, and a minimum 

of 10 storm objects per leaf node. Results are based 

on 12,155 test cases. No premodel variable selection 

was done, because decision trees perform built-in 

variable selection. The area under the receiver op-

erating characteristic (ROC) curve (AUC) is >0.9, 

which is generally considered excellent (Luna-Herrera 

et al. 2003; Muller et al. 2005; Mehdi et al. 2011), and 

the reliability curve (Fig. 4d) is very close to perfect 

(x = y). Furthermore, the maximum critical suc-

cess index (CSI) occurs with a frequency bias of 1.0 

(unbiased model), which suggests that bias need not 

be sacrificed for other performance metrics. These 

results are based on Lagerquist (2016).

Severe hail. Prediction of hail occurrence and size days 

to hours ahead is needed to guide the issuance of con-

vective outlooks and watches. Convection-allowing 

model (CAM) ensembles provide information about 

storm intensity, location, and evolution but do not 

forecast maximum hail size at the surface directly. 

Machine-learning models have been developed to 

predict the probability of hail occurrence and the ex-

pected hail-size distribution given information about 

storms and their environment from CAM output. The 

machine-learning hail models have been run in real 

time on two CAM ensemble systems and have been 

validated against the HAILCAST diagnostic (Adams-

Selin and Ziegler 2016) and storm surrogate variables, 

such as updraft helicity (Sobash et al. 2016).

A storm-centered method is used for producing 

machine-learning hail forecasts. First, potential 

hailstorms are identified from the hourly maximum 

column total graupel field in the 2014 and 2015 Center 

for Analysis and Prediction of Storms (CAPS) CAM 

ensemble using the enhanced watershed feature iden-

tification technique. Observed hailstorms are identi-

fied from the maximum expected size of hail (MESH) 

field (Witt et al. 1998) in the NOAA National Severe 

Storms Laboratory (NSSL) Multi-Radar Multi-Sensor 

mosaic (Smith et al. 2016). Both forecast and observed 

storms are tracked through time and then matched 

based on proximity in space and time. Statistics 

describing the storm and environmental variables 

from within the bounds of each forecast storm are 

extracted and are used as input into the machine-

learning models. A gamma distribution is fit to the 

distribution of MESH within an observed hailstorm, 

and the parameters of the gamma distribution are 

used as target labels for the machine-learning models.

An RF classification model predicts whether hail 

will occur based on whether an observed storm was 

matched with a given forecast storm and the hail-size 

distribution parameters given that hail occurred. 

An RF regression model estimates both the shape 

and scale parameters of the gamma distribution 

simultaneously to preserve the correlations among 

the parameters in the predictions. Gridded hail-size 

forecasts are produced by sampling hail sizes from 

the predicted distribution and applying them in rank 

order onto the column total graupel field. Potential 

hailstorms with less than 50% chance of hail occur-

rence are removed from the grid.

Verification results and a single forecast case are 

shown in Fig. 5 for the machine-learning hail fore-

casts and other storm surrogate probability forecasts, 

including HAILCAST, column total graupel, and 

updraft helicity. The RF used for this experiment was 

trained on CAPS ensemble forecasts from May to June 

2014 and evaluated on CAPS ensemble forecasts for 

the same period in 2015. These results were based on 

analysis from Gagne (2016). The performance dia-

gram (Roebber 2009) in Fig. 5a shows that for a given 

probability threshold, the machine-learning models 

tend to have fewer false alarms, lower frequency 

bias, and higher accuracy than other methods. The 

attributes diagram (Hsu and Murphy 1986) in Fig. 5b 

indicates the probabilities from the machine-learning 

models and updraft helicity are generally reliable, 

while other methods tend to produce probabilities 

that are overconfident. The case study in Fig. 5c 

shows that the RF model performed best at capturing 

the area where 50-mm hail occurred. The other two 

methods had both lower probabilities and enhanced 

probabilities in areas where 50-mm hail did not occur.

Precipitation classif ication. The Meteorological Phe-

nomena Identification Near the Ground (mPING; 

Elmore et al. 2014) project has collected over 1.1 

million observations since its launch on 19 Decem-

ber 2012. The mPING project uses crowdsourced 

observations of precipitation type (ptype) submitted 

anonymously through a smartphone app. Various 

other weather conditions can also be reported, such 

as floods, visibility restrictions, wind damage, hail, 

and tornadoes. The ptype observations have been 

used to help characterize the sensitivity of various 

ptype algorithms to model errors (Reeves et al. 2014) 

and to verify current NWP model performance and, 

in the process, find an outright error within the 

postprocessing of the RAP model (Elmore et al. 2015).

Given that the skill of NWP ptype forecasts have 

been characterized with mPING observations, a com-

pelling next step is to use the mPING observations to 

build a new, hopefully improved, ptype algorithm. As 
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a first attempt, the wet-bulb temperature Tw profiles 

from 5,000 m AGL to the surface created by each 

NWP model are characterized as one of four different 

types that are identical to the four types described 

in Schuur et al. (2012): type 1 is all Tw below freezing 

(273.16 K); type 2 has one freezing level such that Tw at 

the surface is above freezing; type 3 has three freezing 

levels with an elevated warm layer, an elevated cold 

layer, and Tw at the surface above freezing; and type 

4 is the “classic” elevated-warm-layer profile with 

Tw at the surface below freezing. Multiple predictors 

are computed for each profile type, including area 

above and below freezing for each layer, height of the 

various freezing levels, wind shear [both bulk and 

in latitudinal and meridional (u and υ, respectively) 

directions] in warm and cold layers and across the 

entire depth of the profile, area of relative humidity 

(RH) above and below 0.8 for each layer along with 

the mean RH in each layer, and minimum Tw in the 

cold surface layers. Each profile type has a different 

set of predictors, though some predictors are common 

across all profile types. Overall, type 1 profiles have 

28 predictors, type 2 profiles have 23, type 3 profiles 

have 49, and type 4 profiles have 38.

Because each profile type has a different set of pre-

dictors, each has its own RF. Training data consist of 

80% of the available hours of data selected randomly. 

The remaining 20% of the hours are used for test-

ing. Hours, instead of individual observations, are 

chosen so as to lessen cross contamination of testing 

data with training data. Thus, a training profile and 

a testing profile cannot come from the same hour.

These data are not balanced, in that there are 

far more snow and rain reports than ice pellets and 

FIG. 5. (a) Performance diagram comparing different hail forecasting methods. (b) Attributes diagram indicating 

the reliability of different forecasting methods. (c) Forecast case showing the probability of 50-mm-or-larger 

hail in filled contours and observed 50-mm hail in green contours.
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freezing rain. Sampling 

weights and maximum tree 

size are adjusted by trial 

and error such that the bias 

for each of the four classes 

generated by each random 

forest is close to 1. No other 

adjustments are made.

Applying RFs in this 

way results in marked im-

provement in the ptype 

pred ic t ion form N WP 

models. Figure 6 is an 

example of this improve-

ment for the Rapid Refresh 

(RAP) model over the cold 

season of 2014/15 with con-

fidence intervals for each 

score. The right set of bars 

shows the output of the 

RAP postprocess ptype 

algorithm while the left set 

of bars displays the results 

of an RF ptype algorithm. 

Scores for the RF algorithm 

come from a smaller num-

ber of cases (the test data) 

than the scores for the RAP, 

which use the entire avail-

able dataset. There is not much room for improvement 

in predicting rain and snow, but the improvement for 

freezing rain and ice pellets is quite dramatic. In ad-

dition, the RF ptype output is unbiased, unlike the 

postprocessed ptype output. RFs can also provide 

probabilistic information about the ptype, which 

will likely be useful to operational forecasters and 

those involved in maintaining infrastructure systems. 

Clearly, if sufficient data are available, an RF approach 

to forecast ptype can lead to significant improvement 

to the most troublesome winter precipitation types.

Variable importance is examined for each forest 

for each model. No variable stands out as much more 

important than another. At the most extreme, the most 

important variable is roughly twice as important as 

the least important variable. No variable in particular 

stands out; because of this characteristic, variable 

selection is deemed unnecessary.

Renewable energy. Forecasting for renewable energy 

resources is another example of high-impact weather 

forecasts. In this case, forecasting enables using 

clean, locally available, but highly variable renewable 

resources to produce energy in place of fossil fuel 

energy sources. Because the wind, water, and solar 

resources are highly variable, forecasting is needed to 

blend renewable power with other energy sources to 

assure reliable, efficient, and economic deployment. 

Utilities require forecasts on various scales. Here, we 

describe two shorter-range scales: the nowcast, for the 

next 3–6 h, and the day-ahead forecast (which can 

extend to 72 h to cover weekends). The nowcast is 

necessary to blend renewable energy into the grid in 

order to meet the electric load in real time. The day-

ahead forecast is used for planning unit allocation 

and trading energy with other utilities. We specifi-

cally discuss how AI is used for forecasting for wind 

and solar energy, with more detailed descriptions of 

additional prediction methods being provided by 

Ahlstrom et al. (2013), Orwig et al. (2014), Tuohy et al. 

(2015), and Haupt et al. (2016).

The nowcast typically leverages observations from 

the wind or solar plant or remotely sensed data. The 

goal is to improve upon a persistence forecast at the 

location of the plant. Statistical learning and AI meth-

ods capture changes or deviations from persistence. 

One statistical learning method for wind speed now-

casts is the Markov-switching vector autoregressive 

FIG. 6. Scores for the RAP postprocess ptype algorithm (left set of bars) and 

the RF ptype algorithm (right set of bars) based on mPING data for winter 

2014/15. Score values are oriented such that larger positive numbers are bet-

ter. The colored bars show the Pierce skill score for rain (green), snow (blue), 

ice pellets (magenta), and freezing rain (red). The gray bar is the Gerrity 

score for all four types taken together ordered as snow, rain, ice pellets, and 

freezing rain (Elmore et al. 2015).
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model (Hering et al. 2015). Solar power nowcasting 

has leveraged various statistical learning methods. 

Hassanzadeh et al. (2010) and Yang et al. (2012) used 

autoregressive integrated moving average (ARIMA) 

models to predict solar irradiance and power, dem-

onstrating lower errors than other time series models. 

ANNs are commonly used for nonlinear solar predic-

tions (Mellit 2008) and have shown skill over other 

baseline techniques (Marquez and Coimbra 2011; 

Wang et al. 2012; Chu et al. 2013). Support vector 

machines have also shown skill over linear regres-

sion in postprocessing NWP model output (Sharma 

et al. 2011).

Solar models typically predict the clearness index, 

the ratio of the global horizontal irradiance (GHI) 

that reaches the surface of Earth to that at the top of 

the atmosphere. The clearness index ranges between 

0 and 1 and depicts the depletion of solar energy via 

absorption and scattering by clouds and aerosols on 

its path through the atmosphere. It also removes the 

effects of the seasonal cycles and partially accounts 

for diurnal effects. One can explicitly compute the 

GHI at the top of the atmosphere given the solar angle 

and location information.

Some recent work has sought to identify regimes 

and forecast solar irradiance changes specific to those 

regimes through both implicit and explicit meth-

ods. The implicit method employs a regression tree 

approach (Quinlan 1996) with an embedded nearest 

neighbor scheme to forecast both deterministic ir-

radiance and its variability (McCandless et al. 2015). 

Explicit regime identification using k-means cluster-

ing and training ANNs for each cluster was shown 

to improve over training a single ANN on the entire 

training dataset (McCandless et al. 2016b,a). These 

approaches to statistical forecasting outperformed a 

“smart persistence” approach that includes the change 

in solar angle. When compared to other nowcasting 

products, the statistical forecasting approach outper-

formed all others for the first hour (Haupt et al. 2016), 

as demonstrated in Fig. 7.

Day-ahead forecasting approaches use AI mod-

els to postprocess and correct NWP model output 

toward observations. Common methods of post-

processing include ANNs and blended optimization 

methods. The Dynamic Integrated Forecast (DICast) 

system (Myers et al. 2011; Mahoney et al. 2012) first 

applies a dynamic MOS approach followed by opti-

mized blending. This system has improved forecasts 

of wind and solar power by at least 15% (Mahoney 

et al. 2012; Haupt et al. 2016).

For true decision support, utilities and grid 

operators do not want only wind speed or GHI 

forecasts; they actually require power predictions. 

Although manufacturers of wind turbines and solar 

panels provide average power curves, these are not 

perfectly representative 

of actual power produced 

at a site because of varia-

tion in terrain elevation, 

turbulence, and other fac-

tors. Thus, training an AI 

method to convert from 

wind or GHI to power can 

produce better power pre-

dictions for a specific site 

(Parks et al. 2011) and does 

not require the detailed 

metadata needed to apply 

alternative methods for 

solar irradiance (Haupt and 

Kosovic 2016). The Nation-

al Center for Atmospheric 

Research (NCAR) has suc-

cessfully applied the cubist 

regression tree approach to 

both wind (Kosovic et al. 

2015) and solar (Haupt and 

Kosovic 2016).

Fina l ly,  many ut i l i-

ties request probabilistic 

FIG. 7. Mean absolute error (MAE; W m−2) calculated over a 15-month period 

for all nowcast components aggregated over all sites (New York, Colorado, 

and California) for cloudy conditions. Note that StatCast performs the best, 

on average, for these difficult-to-forecast conditions.
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predictions to estimate the forecast uncertainty and 

to plan their reserve requirements. Although NWP 

model ensembles traditionally provide probabilistic 

forecasts, the analog ensemble approach (AnEn; Delle 

Monache et al. 2013) has successfully produced proba-

bilistic forecasts based on a single high-quality fore-

cast from a consistent prediction system. The AnEn 

searches through historical forecasts for those most 

similar to the current forecast. Observations associ-

ated with each historical forecast form a probability 

density function that defines the forecast uncertainty. 

The AnEn mean can correct for systematic biases. 

This approach has proven to be at least as reliable as 

some of the best dynamical ensembles for wind speed 

(Delle Monache et al. 2013; Haupt and Delle Monache 

2014), wind power (Kosovic et al. 2015), and solar 

power (Alessandrini et al. 2015).

AI methods are directly providing decision sup-

port for utilities and grid operators around the world 

and are enabling increases in the deployment of the 

variable renewable energy resources. All of the meth-

ods described in this section have been operational-

ized and used by utilities. In this way, enabling higher 

capacities of renewable energy can lead to energy 

security, lower the use of water in energy production, 

and lower the emissions of carbon dioxide and other 

pollutants, thus providing the world with a clean 

source of sustainable energy.

Aviation turbulence. Although much of the severe 

weather of concern to humans occurs near the 

surface, conditions far above the ground may be 

equally hazardous. Commercial aviation is impacted 

by various weather threats, including airframe ic-

ing by supercooled liquid water, engine f lameouts 

in areas of high ice water content, hail, lightning, 

and atmospheric turbulence. Turbulence is one of 

the most significant en route aviation hazards from 

an operational standpoint. Flying through turbu-

lent eddies causes an aircraft to bounce from side 

to side and up and down, making passengers and 

crew uncomfortable and occasionally injuring them 

or damaging the aircraft. Turbulence is created by 

wind shear in regions of low stability, which may 

result from jet streams and fronts, mountain-wave or 

convectively induced gravity wave breaking, or the 

updrafts and downdrafts of thunderstorms. Because 

it is often a small-scale and fundamentally stochas-

tic phenomenon, turbulence is difficult to forecast 

or even nowcast. Moreover, NWP models are not 

generally tuned to accurately forecast aviation-scale 

turbulence, and output variables such as subgrid 

turbulent kinetic energy (TKE) are not skillful 

in predicting aircraft observations of turbulence 

(Sharman 2016).

AI has become a key tool for observing, now-

casting, and forecasting aviation turbulence. For 

observing turbulence in clouds and storms, a fuzzy 

logic algorithm was developed to carefully qual-

ity control ground-based Doppler radar spectrum 

width measurements, allowing them to be scaled 

and combined into an estimate of the turbulence 

eddy dissipation rate (EDR). Fuzzy logic is a tool for 

building expert systems that mimic human reason-

ing, smoothly combining various sources of evidence 

to form a final assessment (Williams 2009). For the 

turbulence detection algorithm, the likelihood of 

radar spectrum width contamination is scored as 

a “confidence” between 0 and 1 for each of several 

diagnostic quantities derived from the radar signal 

or its spatial context and then these are combined in 

a geometric average to obtain an overall assessment. 

The spectrum widths are scaled to EDR based on 

distance from the radar, and a confidence-weighted 

average is performed to obtain the final EDR estimate 

(Williams and Meymaris 2016).

Aviation turbulence forecasting utilizes diagnostics, 

or indices, computed from NWP model-resolved wind 

shear, stability, and various other functions of the 

modeled variables (Sharman 2016). Although none of 

these explicitly represents aircraft-scale turbulence, 

the form of the turbulent energy cascade means that 

they may be related to it and thus may be transformed 

and weighted to form a good estimate. The Graphical 

Turbulence Guidance (GTG) algorithm (Sharman 

et al. 2006) evaluates each diagnostic against aircraft 

observations of turbulence, rescales it using a piecewise 

linear function, and uses weights based on the resulting 

skill scores to compute a weighted-mean consensus. 

More recent versions of GTG incorporate lognormal 

remapping functions. A weakness of this approach is 

that it does not take into account the linear and non-

linear dependencies between the diagnostics, many of 

which are highly correlated.

Decision-tree-based techniques offer the abil-

ity to incorporate features not proportional or even 

monotonically related to turbulence severity. Williams 

(2014) used RFs to combine both NWP diagnostics 

and features derived from satellite and radar products 

to create turbulence nowcasts. Predictors included 

NWP-derived turbulence diagnostics and thermody-

namic variables such as convective available potential 

energy (CAPE) and convective inhibition (CIN); 

distances to relevant reflectivity, echo top, lightning, 

and in-cloud turbulence objects; and disc statistics 

over various radii from both the radar and satellite 
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imagery. Several hundred candidate predictors were 

whittled down first through the RF’s variable impor-

tance analyses and then through forward and back-

ward selection, where an RF is trained and evaluated 

on independent datasets and the predictor variables 

producing the best discrimination skill are preserved. 

The RF is then calibrated to produce either EDR or 

turbulence probability, and the resulting algorithm is 

run at every point in a predefined grid to produce a 

map suitable for use by pilots, dispatchers, or air traffic 

controllers. Although the benefits of an AI approach 

are particularly clear for fusing multiple data sources 

for turbulence nowcasting, Table 1 indicates that lo-

gistic regression, k-nearest neighbor, and especially RF 

exceed GTG’s skill even in the case when only NWP 

model data are used as predictors. A similar approach 

has been used to forecast convection (Mecikalski 

et al. 2015; Ahijevych et al. 2016). A downside of this 

approach is the need for significant feature engineer-

ing, that is, calculating many different features and 

then testing which are relevant. This requirement is 

somewhat mitigated by McGovern et al. (2014), who 

used spatiotemporal relational random forests guided 

by a schema identifying possibly relevant relationships 

between an aircraft location and various storm-related 

objects. In the future, convolutional neural networks 

operating in a deep learning framework may reduce 

the need for feature engineering even further. The use 

of AI for turbulence prediction will continue to make 

flights safer and more comfortable.

DISCUSSION. Application of modern AI tech-

niques to high-impact weather forecasting is improv-

ing our ability to sift through the deluge of big data 

to extract insights and accurate, timely guidance for 

human weather forecasters and decision-makers. 

AI techniques build on traditional methods, such 

as MOS, by providing more f lexible and powerful 

models capable of identifying complex relationships 

between a huge number of modeled and observed 

weather features or derived quantities. In addition, AI 

methods extend easily to directly predicting impacts 

of high-impact weather, such as power generated 

by variable sources such as solar or wind, energy 

consumption in an area, or airport arrival capacity.

This paper raises the interesting question of the 

role of automated guidance in forecasts. While we 

have demonstrated that AI/data science techniques 

can be used to significantly improve forecasts in a va-

riety of high-impact weather domains, it is not simply 

a matter of bringing these techniques to operations. 

The forecasters must be able to trust the forecast pro-

duced by such techniques, as has been demonstrated 

in the HWT/PHI experiments (Karstens et al. 2016).

For forecasts of standard weather variables, such 

as temperature and precipitation, the NWS currently 

operates with a human-in-the-loop paradigm in which 

forecasters subjectively blend and adjust multiple 

sources. Local offices add predictive value in situations 

where local effects have a larger impact on the forecast. 

At the NWS Weather Prediction Center, which issues 

temperature and precipitation forecasts over the en-

tire United States, the human forecasts now perform 

significantly worse than downscaled, bias-corrected 

ensemble forecasts for temperature and precipitation 

(Novak et al. 2014). Official NWS track forecasts of 

hurricanes, a major form of high-impact weather, also 

perform worse than weighted ensemble consensus 

forecasts (Cangialosi and Franklin 2015). There are 

also issues with spatial discontinuities in forecasts and 

warnings between the domains of different forecast 

offices (Gilbert et al. 2015). Private weather firms, in-

cluding The Weather Com-

pany, operate in a human-

over-the-loop paradigm in 

which an optimal blend of 

bias-corrected model out-

put is generated as needed 

by users, and human fore-

casters can add filters and 

qualifiers to account for 

observed short-term bi-

ases or data quality issues 

(Williams et al. 2016). This 

approach scales easily and 

only requires a small team 

of meteorologists to oversee 

a mostly automated system. 

The downside of a heavily 

TABLE 1. High-altitude turbulence forecast skill scores for years 2010 and 

2011, evaluated using pilot reports and automated aircraft turbulence 

reports. AI methods were trained on 40,000 random samples from 2011 

with 30% turbulence cases and evaluated on all of 2010, and vice versa. The 

k-nearest neighbors method used 100 analogs. TSS is the true skill score.

Method Year ROC AUC Max CSI Max TSS

GTG weighted mean
2010 0.791 0.137 0.443

2011 0.775 0.132 0.418

Logistic regression
2010 0.822 0.162 0.496

2011 0.805 0.149 0.461

k-nearest neighbors
2010 0.832 0.167 0.514

2011 0.818 0.163 0.482

Random forest
2010 0.849 0.179 0.541

2011 0.830 0.169 0.499
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automated approach is that forecasters may become 

disengaged from the forecast process (Pliske et al. 2004) 

and struggle to take appropriate corrective action when 

automation fails (Skitka et al. 1999; Pagano et al. 2016).

By studying the error characteristics of different 

machine-learning methods in high-impact weather 

situations, researchers and forecasters can identify 

when the automated guidance should be trusted and 

when it is more likely to struggle. The methods 

presented in this paper are able to blend physical 

knowledge with automated corrections to produce 

critical products in this age of information overload.
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