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ABSTRACT 

Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed 

in many river basins around the world especially in developing and remote regions where sediment data are poorly 

gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) 

simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN); 2) assess the applica- 

tion of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to 

predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin; and 3) estimate annual SSL 

(SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) pre- 

diction is also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded 

very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 

0.87 in validation stage. The Cal-ANN models also perform well in UCRs with R2 ranging from 0.59 to 0.64. From the 

result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 

and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 

723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 

68%. This result is key information for sustainable development of such infrastructures. 
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1. Introduction 

Rainfall and runoff, the main erosion agents, detach soil 

particles from its matrix and transport gravitationally the 

detached materials or sediments to surrounding rivers. In 

the rivers, sediments flow further downstream with 

streamflow. Suspended sediment load (SSL) is a major 

portion of the total load transported by streams [1] and 

commonly accounts for 85% to 95% [2]. Sediment has 

been becoming an important issue involving in sustain- 

able development of water resources system. The Me- 

kong2Rio conference also addressed the concern on food 

security which could be adversely affected by alteration 

of the sediment natural flow [3]. Construction of water 

storages (e.g. dam-reservoirs) can provide solutions to 

food security issues through increased irrigation and at 

the same time improve access to energy through hydro- 

power generation. However, such developments could 

affect on fisheries through the loss of sediment trapped 

behind dam walls, for example. The Lower Mekong Ba- 

sin (LMB) contains over 100 hydropower projects (HPP) 

and if there are no any effective countermeasures taken 

into account, their development could trap sediment 

around 26 Mt/year, 60% of the total basin production [4]. 

Quantification of sediment load is necessary not only 

during the project development stage but also along the 

course of operation until decommissioning [5-12]. It is 

interesting with regard to reservoir sedimentation, fish 

habitat, river utilization as well as biological sustainabil-

ity in the whole river basin [13]. The most reliable way 

in estimating sediment load is the use of its observed 

records, but sediment sampling is very difficult and re- 

quires high experienced professionals because of its sig- 

nificant fluctuation within the river section [9] and user- 

unfriendly measurement tools. Moreover, it is time con- 

suming and costly [11,14]. These constraints have led to 

low frequency of sediment observation around the world 

and especially in developing and remote regions [1] such 

as the LMB. In response to this problem, modeling ap- 

proach, based on different hydrological variables and 

terrain attributes, has been taken into consideration. 
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The unit stream power (USP) theory of Yang [15], the 

SHESED model of Wicks and Bathurst [16] and others 

known as the physically-based models, could be univer- 

sally used to predict sediment yield of a watershed but it 

requires a lot of detailed information including hydro- 

logical, hydraulic and geological characteristics of the 

river basin, and as well as sediment characteristics itself. 

Preparation of such dataset will be difficult and costly. 

Furthermore, the stream power approach cannot predict 

well the SSL because, in rivers, the finest fraction of SSL 

is often a non-capacity load [17,18]. Similarly for proc-

ess-based models such as the modified universal soil loss 

equation (MUSLE), introduced by Williams [19], and its 

family (USLE and RUSLE), they also require huge 

amount of input data. Data consumption and complex 

sediment transport mechanism have driven both physi- 

cally- and process-based models to be based on many 

simplifying assumptions and empirical relationships, 

particularly for rainfall and runoff erosive effects [7,20]. 

In consequence, their application in data scarce areas 

would yield high uncertain results or be completely in-

feasible. 

Alternative approach to the process- and physically- 

based techniques is the utilization of data-driven models. 

Artificial neural network (ANN) is the most well-known 

and powerful data-driven method and it has been proved 

to be useful in modeling complex hydrologic processes 

or non-linear systems such as sediment transport [10,21, 

22]. ANN forecasts outputs using experiences learned 

from historical data. This method is widely used because 

it does not require detailed information of the physical 

process controlling the system and generally applicable 

using available hydrological data. Tayfur [23] stated that 

ANN is a very practical and promising modeling tool for 

the study of sediment transport processes in data shortage 

regions. Kisi and Shiri [13] employed ANN to estimate 

daily suspended sediment concentration (SSC) in Eel 

River, California, and obtained a very satisfactory result 

with determination coefficient (R
2) ranging between 0.82 

and 0.95. In predicting daily SSL in Mississippi, Mis-

souri and Rio Grande River in USA, Melesse et al. [11] 

found that ANN (0.65 ≤ R2 ≤ 0.96) for most cases is su-

perior to other data-driven models: multiple linear/non- 

linear regressions and autoregressive integrated moving 

average. In Longchuanjiang River, the Upper Yangtze 

Catchment in China, monthly SSL was modeled well by 

ANN with R2 varying from 0.66 to 0.89 in validation 

stage [24]. 

Singh et al. [12] compared two different models for 

predicting monthly SSL of Nagwa watershed in India 

and the results showed that ANN is better than MUSLE 

for larger R2 8% in calibration stage and 13% in valida-

tion stage. Similar study conducted by Talebizadeh et al. 

[25] demonstrated that ANN is superior to MUSLE in 

estimating low and medium values but inferior in case of 

high values. In comparing with various physically-based 

models including USP, the performance of ANN is com- 

parable and in some cases better [23]. Additionally, ANN 

could provide detailed information for design purposes 

and management practices in civil and environmental 

engineering sector [10], and hysteretic analysis of sedi- 

ment transport [26] which no other methods have been 

confirmed their applicability yet. However, one draw- 

back of ANN is the need of long time series data for sys- 

tem training. 

To our knowledge, there are many studies considering 

ANN for SSL simulation but very limited researches 

assessing its applicability in ungauged catchments (UC). 

The objectives of this research are to: 1) simulate monthly 

average SSL (SSLm) of four catchments using ANN; 2) 

assess the application of the calibrated ANN models in 

three ungauged catchment representatives (UCR) before 

using them to predict SSLm of three actual ungauged 

catchments (AUC) in the Tonle Sap River Basin; and 3) 

estimate annual SSL (SSLA) of each AUC for the case of 

with and without hydropower dam-reservoirs. All ten 

catchments considered in this study are located totally in 

the LMB. UC in this context refers to catchment having 

no sediment observation. 

2. Materials and Methods 

2.1. Study Catchments 

The study area is focused on the LMB covering about 

606,000 km2, 76% of the whole Mekong River Basin and 

more than 80% of the annual flow [27]. It lies approxi-

mately between 8˚N to 23˚N and 98˚E to 109˚E. It is a 

transboundary river basin shared by four countries: Lao 

PDR, Thailand, Cambodia and Vietnam. Majority of the 

sediment gauging stations is located in the basin part of 

Thailand and ranked the highest with respect to data 

availability and completeness [28]. On the other hand, 

many water related projects such as hydropower dams/ 

reservoirs are planned in the basin part of Lao PDR and 

Cambodia where historical records of sediment are very 

poor. Therefore, modeling of sediment load in the areas 

rich in observed data and proof of its applicability in un-

gauged areas with similar hydrological and terrain char-

acteristics, the main purpose of the research, is very chal- 

lenging in this context. 

Figure 1 illustrates the location map of all ten catch- 

ments selected for the study. Presently, there are no hy- 

dropower dams operating in these catchments [29]. Hy- 

drological and geographical/terrain characteristics of 

each catchment are presented in Table 1. Catchment No. 

1 to 7 where sediment data are available were grouped 

and divided into two sets: 1) The simulated catchment 

(SC) composing of Catchment No. 1, 2, 3 and 4, was  
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Figure 1. Location map of the study catchments. 

 

employed for model simulation; 2) The UCR containing 

Catchment No. 5, 6 and 7, was employed for examining 

the calibrated ANN (Cal-ANN) models. These two sets 

of catchment are differentiated by the length of data 

availability: 14 - 20 years for UCR and 20 - 25 years for 

SC. These seven catchments were selected based on data 

availability and different geographical/terrain coverage. 

The Tonle Sap River is a main tributary of the Lower 

Mekong River and drains about 86,045 km2, 14% of the 

whole LMB area. The Tonle Sap River Basin (TSRB) is 

a combined lake and river system of major importance to 

Cambodia, e.g. water, food and power supply, flood pro- 

tection, etc. In the TSRB, five HPPs (Figure 1) were 

planned, two in Catchment No. 8, two in Catchment No. 

9 and one in Catchment No. 10 [29]. These three catch- 

ments are ungauged in term of sediment data and they 

are called the AUC in this study. Thus, sediment quanti-

fication in these areas is so challenging and important for 

not only the project development but also the impact as- 

sessment on downstream biological system.  

2.2. Data 

The main data used in this study are suspended sediment 

load (SSL), discharge (Q), rainfall (R) and digital eleva-

tion map (DEM). SSL is the product of Q and SSC. Land 

use/cover and soil type were accounted for understanding 

the geo-physical information of each catchment and were 

not involved in model prediction. The daily data of SSC, 

Q and R were collected from Mekong River Commission 

(MRC). As a result from double mass curve plotting, the 

considered rainfall dataset of each station was confirmed 

reliable. DEM (30-m resolution) was downloaded from 

ASTER GDEM 2 [30]. ASTER GDEM is a product of 

METI and NASA. Land use/cover and soil map were 

respectively extracted from GLC2000 database [31] and 

SOIL-FAO database [32]. 

Daily time series of Q and R are continuous with long 

term records. SSC time series are discontinuous with low 

sampling frequency, between 2 and 4 samples per month 

in average (Table 1), and this provokes the analysis in 

monthly basis. The monthly average SSL (SSLm) is the 

product of monthly average Q (Qm) and monthly average 

SSC (SSCm). The distribution of monthly average R (Rm) 

over each catchment was conducted using Thiessen 

Polygon method. Qm and Rm were used as input data for 

model calculation and SSLm was employed for compari-

son with the model output. DEM was applied for catch-

ment delineation and slope computation. For model 

simulation (SC-1, SC-2, SC-3 and SC-4), the whole 

dataset was divided into two parts: the first 75% for cali-

bration and the remaining 25% for validation. The input 

combination (75*25%) was decided based on many ex-

isting case studies of sediment simulation as summarized 

in Table 2. 

The changes in land use over the simulation period 

(about 20 years) might cause significant variation of 

sediment load temporally. This effect could lead to low 

accuracy of the prediction results. In addition, other hu-

man activities could involve in this problem as well. 

These issues were not considered in the present study due 

to data constraint. However, the Mann-Kendall test [45, 

46] for gradual trend analysis and the Pettitt test [47] for 

abrupt change detection were applied to examine the 

time series of annual SSL of each SC. The results of the 

Mann-Kendall test (Table 3) show that there are no sig-

nificant trends detected at any of the four SCs at both 

0.01 and 0.05 significance level. For the Pettitt test (Ta- 

ble 3), only SSL series of the SC-4 exhibits abrupt 

change (in 1993) if considering a significance level of 

0.05. At significance level of 0.01, there is no change 

point detected at all SCs. In order to make the model 

simulation procedures straightforward, significance level 

of 0.01 was taken into account and therefore, the above 

mentioned effects were concluded to have no significant 

influence on the SSL data used for all simulations. 

2.3. Artificial Neural Network (ANN) 

ANN is characterized by network architecture (pattern of  
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Table 1. Hydrological and terrain characteristics of the study catchments. 

SSC 

Sampling 

Frequency 

Catchment 

Area  

(A) 

Annual 

SSL 

(SSLA) 

Annual 

Discharge 

(QA) 

Annual 

Rainfall 

(RA) 

Catchment 

Slope 

(S) Catchment 
Period of 

Record 
Sample per 

month 
km2 t/year/km2 m3/s/km2 mm/year % 

Dominant  

Land Use 

Dominant 

Soil 

1. Ban Huai Khayuong 1979-2003 2 3171 36.55 0.012 1522 9.44 
Cultivated and 

managed land 

Gleyic 

Acrisols 

2. Ban Nong Kiang 1982-2003a 2 1405 43.98 0.012 1079 22.49 
Tree cover or 

forest 

Orthic 

Acrisols 

3. Ban Tha Sai 1980-2001b 3 3249 46.90 0.007 1945 27.27 
Mosaics and 

shrub cover 

Orthic 

Acrisols 

4. Nam Mae Pun Luang 1980-2001 4 260 57.86 0.009 1953 32.50 
Mosaics and 

shrub cover 

Orthic 

Acrisols 

5. Ban Fang Phe 1983-1998 2 1412 42.42 0.017 1875 14.80 
Mosaics and 

shrub cover 

Ferric  

Acrisols 

6. Ban Na Kham Noi 1990-2003 2 1220 97.14 0.015 1361 16.97 
Tree cover or 

forest 

Orthic 

Acrisols 

7. Ban Tha Mai Liam 1984-2003 2 1886 54.62 0.014 1710 25.78 
Mosaics and 

shrub cover 

Orthic 

Acrisols 

8. Bac Trakoun 2001-2002 - 4221 37.74 0.011 1275 21.21 
Tree cover or 

forest 

Orthic 

Acrisols 

9. Battam Bang 2000-2002 - 3505 73.88 0.020 1138 16.12 
Tree cover or 

forest 

Distric 

Nitosols 

10. Kampong Thom 2000-2002 - 14,439 50.11 0.023 1531 9.85 
Tree cover or 

forest 

Ferric  

Acrisols 

Simulated catchment (SC): 1, 2, 3 and 4; Ungauged catchment representative (UCR): 5, 6 and 7; Actual ungauged catchment (AUC): 8, 9 and 10; 
a
No data in 

1986 and 1987; 
b
No data in 1995 and 1996; SSLA figures in bold are the model results. 

 
Table 2. Input combination for sediment modeling (Existing 

case studies). 

Percentage of Data  

Allocated for No. 

Calibration Validation

Sources 

1 66.7 33.3 Agarwal et al. [33] 

2 81.9 18.1 Ahmat et al. [34] 

3 72.7 27.3 Besaw et al. [35] 

4 67.2 32.8 Bhattacharya et al. [36] 

5 76.9 23.1 Chutachindakate and Sumi [37]

6 87.1 12.9 Cigizoglu [5] 

7 71.4 28.6 Mustafa et al. [38] 

8 75.0 25.0 Nourani [39] 

9 83.3 16.7 Rajaee [40] 

10 75.0 25.0 Rajaee et al. [41] 

11 66.7 33.3 Sarangi et al. [42] 

12 66.7 33.3 Singh and Panda [43] 

13 80.0 20.0 Singh et al. [12] 

14 76.7 23.3 Yang et al. [44] 

15 76.2 23.8 Zhu et al. [24] 

 74.9* 25.1*  

*
Average value. 

Table 3. Results of the Mann-Kendall and Pettitt test for 

SSL series of each SC. 

Mann-Kendall Test Pettitt Test 

Significance level Significance levelSC
p-value

0.01 0.05 
p-value 

0.01 0.05 

1 0.836 − − 0.434  − − 

2 0.586 − − 0.297  − − 

3 0.773 − − 0.544  − − 

4 0.241 − − 0.024  − + 

(+) Significant; (−) Not significant. 

 

node-interconnection), method of determining weights 

on the connections (training algorithm), and transfer 

function (for generating output). ANN is a broad term 

covering a large variety of network architectures, the 

most common of which is a multi-layer perceptron (MLP) 

[10]. Kisi [7] compared different types of ANN for 

sediment prediction in Tongue River (Montana, USA) 

and found that MLP generally yields better results than 

others. Maier and Dandy [21] reviewed 43 papers dealing 

with ANN application in water resource modeling and 

reported that the vast majority considered the back- 

propagation algorithm for system training. As presented 

in Figure 2, this study took into account the MLP (1  
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Figure 2. ANN model structure used in this study. 

 

input, 1 hidden and 1 output layer) with the back-propa- 

gation algorithm. Due to data limitation, the input layer 

was designed with two nodes: Qm and Rm. Since there is 

no fixed rule, the size of hidden layer was determined by 

trial and error procedure. The single node of the output 

layer is SSLm. Initially, the input neuron receives a set of 

inputs (x). The connections between the input and hidden 

layer contain weights (w) which are determined through 

the system training. Then, the hidden layer calculates the 

weighted average of inputs (z) using summation func-

tions: 

1

n

i i

i

z w x 


                   (1) 

where wi is the weight vector, xi is the input vector (i = 1, 

2, ···, n) and β is the bias term. Afterward, the hidden 

layer uses sigmoid transfer function (Equation (2)) to 

generate output (y). 

1

1 e z
y






  
   

                  (2) 

Finally, the generated output is compared with the 

target value. After recognizing the error, the calculation 

is restarted by adjusting w and this procedure is repeated 

until obtaining a desirable y. Therefore, ANN model 

training is the process of weight adjustment that attempts 

to get a desirable outcome with least squares residuals 

and the back-propagation is the most common training 

algorithm. 

2.4. Computation Procedure and Model  
Evaluation 

The computation scheme of this study is depicted in 

Figure 3 and described as below. The designated ANN 

model was used to simulate SSLm of four SCs. The 

model architecture (number of hidden nodes) was opti-

mized based on three popularly used statistical indicators: 

determination coefficient (R2), root mean square error 

(RMSE) and mean absolute error (MAE). The model effi-

ciency was measured by R2 as well. With R2 greater than 

0.50, the model performance is judged satisfactory [48]. 

In case satisfactory result (R2 > 0.50) is obtained for all 

SCs, there will be totally four Cal-ANN models which 

could be applied to estimate SSL in UCs. Since total load 

(SSLT) is essential for dam-reservoir management [7], 

the model performance for this purpose was also investi-

gated and absolute percentage bias (APBIAS) was util-

ized in this case. SSLT is the integral of SSLm series 

within a particular period. For sediment prediction, the 

model result is considered acceptable with APBIAS less 

than 55% [48]. R2, RMSE, MAE and APBIAS were cal-

culated using Equation (3), (4), (5) and (6), respectively. 

2

2

2 2

avg avg

avg avg

X X Y Y
R

X X Y Y

   
 


 

          (3) 

 21
MSE X Y

N
               (4) R

1
MAE X Y

N
                (5) 

100
T T

T

X Y
APBIAS

X




*

              (6) 

where X is the observed SSLm with the mean value Xavg, 

Y is the predicted SSLm with the mean value Yavg, N is the 

sample size, XT is the observed SSLT, and YT is the pre-

dicted SSLT. 

Catchment similarity was used to select the most ap-

propriate Cal-ANN for predicting SSLm of UCRs. In this 

regard, the catchment similarity refers to annual dis- 

charge per unit area (QA), annual catchment rainfall (RA) 

and catchment slope (S). As mentioned earlier, discharge 

and rainfall are the main erosion and transport agents. 

Catchment slope or topography is a very important factor 

controlling land surface erosion and it is included in 

many erosion prediction methods and mostly the process- 

and physically-based models [8,9]. All three catchment 

similarity parameters (CSP), QA, RA and S, were used 

alternately to select a Cal-ANN model for estimating 

SSLm of three UCRs. In this case, R2 was also employed 

to evaluate the model efficiency. At the same time, the 

model performance for SSLT prediction was also inves-

tigated using APBIAS. The corresponding R2 (SSLm pre-

diction) of each CSP was afterward compared with each 

other so as to identify the most ideal CSP. In order to 

emphasize the consistency, the same procedure was con- 

ducted for APBIAS (SSLT prediction). 

After identifying the most ideal CSP, it was then used 

to select an appropriate Cal-ANN for estimating SSLm of 

three AUCs. The estimated SSLm series was integrated to 

obtain SSLA. The computed SSLA in this case does not 

consider the impact of dam-reservoirs. SSLA under the 

impact of dam-reservoirs (the latter called SSLA*) was 

calculated by: 

A A TE
SSL SSL SSL               (7) 

where the unit of SSLA in this case is [t/year] and SSLTE is    
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Figure 3. Computation scheme. 

 
Table 4. Statistical characteristics of the data used in this 

study. 
the annual SSL trapped by dam-reservoir and it is com-

puted by: 

TE
             (8) Catchment Variable COV SKEW KURT 

Qm 1.47 1.85 2.76 

Rm 1.01 0.99 0.73 
1) Ban Huai 

Khayuong 

SSLm 1.56 1.93 3.10 

Qm 1.46 2.23 4.92 

Rm 1.11 1.26 1.39 
2) Ban Nong 

Kiang 

SSLm 2.14 3.54 14.33 

Qm 1.06 1.66 3.52 

Rm 0.93 0.84 0.33 3) Ban Tha Sai 

SSLm 1.67 3.48 15.83 

Qm 0.80 1.65 2.78 

Rm 0.96 0.91 0.42 
4) Nam Mae Pun 

Luang 

SSLm 1.44 2.45 7.03 

Qm 1.46 1.73 2.26 

Rm 1.08 1.02 0.42 5) Ban Fang Phe

SSLm 1.85 3.06 11.32 

Qm 1.70 2.41 5.40 

Rm 1.06 1.01 0.12 
6) Ban Na Kham 

Noi 

SSLm 2.47 3.99 19.44 

Qm 1.13 2.47 8.27 

Rm 0.92 0.76 −0.16 
7) Ban Tha Mai 

Liam 

SSLm 1.54 4.91 37.00 

where AR is the drainage area of the dam-reservoir, the 

unit of SSLA in this case is [t/year/km2] and TE is the res-

ervoir trapping efficiency and it is estimated using 

Brune’s equation [49]: 

0.5

1 0.05
I

C

    
 

TE               (9) 

where I is the annual discharge at the location of dam- 

reservoir and C is the active storage capacity. I and C 

data were obtained from the Lower Mekong Hydropower 

Database [29]. 

The Brune method was originally developed for res- 

ervoirs in the United States but it has been widely used as 

well for other parts of the world such as the Mekong 

River Basin in Southeast Asian countries plus China and 

Myanmar [4], the Changjiang River Basin in China [50], 

the Satluj River Basin in India [51], and so on. For ex- 

ample, the theoretical TE of the Three Gorges Dam on 

the upper Changjiang River is between 0.73 and 0.78 and 

this approximates the real TE of 0.75 [50]. The present 

study considered Brune’s technique because: 1) it is sim-

ple and does not require detailed data of the reservoir or 

sediment which are extremely scarce in the LMB; 2) it is 

commonly used and found to provide reasonable esti-

mates of long-term, mean TE [9,52]; and 3) it is applied 

in various studies in the Mekong region and provided 

acceptable results in comparing with the observed TE 

values (e.g. Kummu et al. [4], Kummu and Varis [53], 

Fu and He [54]). For the case study of Manwan Dam in 

the Upper Mekong Basin, the computed TE value (0.68) 

using this method is found comparable with the observed 

one (0.75) [53]. 

COV: Coefficient of variation; SKEW: Coefficient of skewness; KURT: 

Coefficient of kurtosis. 

 

(KURT) of the data used in the study. SKEW character-

izes the degree of asymmetry of a data distribution while 

KURT indicates the peakedness or flatness. SSLm data-

sets are characterized by the largest value of COV (1.44 - 

2.47), SKEW (1.93 - 4.91) and KURT (3.10 - 37.00) for 

all the river systems. This reflects the high temporal 

variability and non-normal distribution of sediment ero-

3. Results and Discussion 

3.1. Descriptive Statistic of Input Data 

Table 4 shows the coefficient of variation (COV), coef- 

ficient of skewness (SKEW) and coefficient of kurtosis  
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sion/transport in nature. That why it is more difficult to 

be predicted, in comparing with other hydrological vari- 

ables (e.g. discharge and rainfall). Values of Rm dataset 

generally showed a near normal distribution with lower 

values of SKEW and KURT. For model inputs (Qm and 

Rm), among four SCs, the SC-2 overall contains higher 

values of COV, SKEW and KURT indicating their high 

variation and non-normal distribution. This could cause 

poor calibration performance by the ANN model leading 

to convergence problems [11]. 

The distribution of rainfall is primarily driven by to- 

pography and the general approach direction of the south- 

west monsoon. Rainfall in the SC-2 is influenced by the 

southwest monsoon (May-October) blowing from Bay of 

Bengal bringing humid and hot weather to the area. Na- 

tural topography and mountain ranges make this catch- 

ment oriented in a leeward direction creating a rain sha- 

dow and therefore, less rainfall amount in comparing 

with other catchments. The monthly rainfall pattern (1982- 

2003) in the SC-2 is characterized by a double peak (one 

in May and another in September) and this reveals the 

high variation of rainfall in the area. The double peak of 

rainfall is due to depressions and typhoons (August- 

September) from South China Sea during some years, 

which brought local heavy rainfall. The high variability 

in rainfall could be due to local topographic influences as 

well [27]. This could explain also the great variation and 

non-normal distribution of the corresponding discharge 

dataset. 

3.2. Model Simulation 

In comparing with the observed data, results of the SSLm 

prediction are graphically shown in Figure 4 (left). It is 

apparent that trend of the predicted SSLm follows well 

the observed data in all the years for all four SCs. Figure 

4 (right) depicts the scatter plots of the predicted versus 

observed SSLm which were used to distinguish the ANN 

performance in low, medium and high value estimation. 

Overall, the model underestimates the high SSLm values 

and this might be due to different non-linear relationships 

governing the sediment erosion and/or transport proc- 

esses. It is in conformity with findings of various existing 

researches [11,12,25,55,56] and could be concluded as a 

common drawback of the ANN model. For low and me- 

dium values, the scattered points are distributed uni- 

formly around the ideal fit line. 

The model performance for SSLm simulation of each 

SC is summarized in Table 5. The optimum ANN archi-

tecture is 2-5-1, 2-2-1, 2-3-1 and 2-8-1 for SC-1, SC-2, 

SC-3 and SC-4, respectively. For all SCs, the model per-

formance was judged satisfactory because R2 values are 

greater than 0.50 in both calibration and validation stage. 

In calibration period, R2 increases from 0.81 (SC-1) to 

0.94 (SC-4); in addition, SC-2 contains much larger error 

in term of RMSE and MAE, in comparing with other SCs. 

This could be explained by the statistical characteristics 

of the input data (Qm and Rm) of each SC. The inputs 

characterized by higher values of COV, SKEW and 

KURT are generally more difficult to be calibrated and 

therefore lower accuracy of the model results. In valida-

tion stage, R2 increases from 0.63 (SC-4) to 0.87 (SC-3). 

There is no common pattern between the model archi-

tecture and its performance. However, the model per-

formance indicated by R2 (calibration stage) exhibits 

good relationship with the catchment topography repre- 

sented by average slope of the catchment in this study. 

For SSLT prediction, the model results were also consid-

ered acceptable for all cases because APBIAS values are 

less than 55% in both calibration and validation period. 

APBIAS is less than 2% in calibration stage and it is less 

than 40% in validation stage. 

From this result, it can be concluded that ANN model 

performed well in simulating SSLm of various catch-

ments with different hydrological and terrain characteris-

tics. This good result strongly encourages the present 

authors to apply further the ANN model in UCs in the 

same region, the LMB. The Cal-ANN models of all SCs 

were then employed to predict SSLm of three UCRs. 

There are totally four Cal-ANNs which are Cal-ANN-1 

of the SC-1, Cal-ANN-2, Cal-ANN-3 and Cal-ANN-4. 

3.3. Assessment of the Cal-ANN Application in 
UCRs 

Among four Cal-ANNs, the most appropriate one was  
 

Table 5. ANN model performance in simulating SSLm of each SC. 

Calibration Validation 
SC Architecture 

R2 RMSE MAE APBIAS R2 RMSE MAE APBIAS 

1 2-5-1 0.81 59.69 30.41 0.35 0.72 122.04 57.56 21.59 

2 2-2-1 0.82 112.28 60.53 1.10 0.65 151.73 84.27 12.26 

3 2-3-1 0.93 55.17 31.97 0.50 0.87 78.30 44.37 16.07 

4 2-8-1 0.94 48.62 30.13 0.10 0.63 208.72 121.06 39.47 

RMSE, MAE: 10
-3 

t/day/km
2
; APBIAS: %; R

2
, RMSE and MAE for SSLm; APBIAS for SSLT; Architecture (optimum): Number of nodes in the Input-Hidden- 

Output layer. 
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Figure 4. Comparison of the predicted versus observed SSLm of each SC (left) and their scatter plot (right). (a) SC-1; (b) SC-2 

no data in 1986 and 1987); (c) SC-3 (no data in 1995 and 1996); and (d) SC-4. ( 
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selected to predict SSLm of three UCRs using three dif-

ferent CSPs (QA, RA and S) alternately. Each CSP was 

assessed by the model performance in predicting SSLm 

(R2) and SSLT (APBIAS). For the case using S, Cal- 

ANN-1 is the most suitable model for the UCR-5, Cal- 

ANN-2 for the UCR-6 and Cal-ANN-3 for the UCR-7. 

For example, Cal-ANN-3 of the SC-3 was selected for 

the UCR-7 because these two catchments have the most 

similar catchment slope (S). The absolute difference in S 

value (1.49 = |25.78 − 27.27|) of both catchments is the 

smallest one in comparing with other cases: 16.35 for 

(UCR-7 vs SC-1), 3.29 for (UCR-7 vs SC-2) and 6.72 for 

(UCR-7 vs SC-4). In case of QA and RA, the selected 

Cal-ANN for each UCR is tabulated in Table 6. From 

Table 6, it is apparent that the selected Cal-ANNs per-

formed well (R2 > 0.50) in predicting SSLm for all cases. 

The range of R2 is 0.56 - 0.64, 0.54 - 0.61 and 0.59 - 0.64 

for the case using QA, RA and S, correspondingly. Based 

on the average value of R2 (R2*), catchment slope (S) is 

the most ideal CSP in identifying the Cal-ANN models. 

R2* is equal to 0.61 for the case using S and it is about 

3% and 5% larger than that of QA and RA case, respec-

tively. 

For SSLT prediction, satisfactory results are obtained 

for only UCR-5 (APBIAS = 1.38%) and UCR-6 (APBIAS 

= 26.24%) but not UCR-7 (APBIAS = 74.58%) if consid- 

ering S as the CSP. For the case using QA and RA, the 

model performance for each UCR is tabulated in Table 6. 

The range of APBIAS is 8.85% - 97.19%, 22.94% - 

204.52% and 1.38% - 74.58% for the case using QA, RA 

and S, correspondingly. Moreover, the average value of 

APBIAS (APBIAS*) demonstrates that S is the most ideal 

CSP in selecting the Cal-ANN models and the second 

ideal one is QA. For the case using RA, the model yielded 

unacceptable result with APBIAS* (=95.96%) larger than 

55%. 

Catchment slope (S) shows its better response repeat-

edly in selecting the Cal-ANNs of SCs for predicting 

SSLm and SSLT of UCRs. Physically, sediment produc-

tion rate of a catchment depends mainly on erodibility of 

the soil, and erosivity and transport capacity of the dis- 

charge. Steep ground surface is generally exposed to high 

soil erodibility. High erosive force and transport capacity 

of the discharge is corresponding to high flow velocity 

which usually occurs in steep slope areas. From this 

physical aspect, catchment slope or topography governs 

not only soil erodibility but also pattern of the discharge 

which drives sediment erosion and transport. In conse-

quence, S is more important than other CSPs. 

If the analysis is conducted catchment by catchment, 

opposition usually occurs. For instance, in the UCR-5, 

the superior CSP is RA in term of R2 but it turns to S in 

term of APBIAS. Similarly in the UCR-7, the best CSP is 

S in term of R2 but it changes to QA in term of APBIAS. 

According to the overall evaluation indicated by R2* and 

APBIAS*, S was considered as the most ideal CSP. This 

conclusion was made based on three UCRs. It is under-

stood that more UCRs should be added in order to make 

a stronger conclusion. However, data limitation restricts 

this study to be based on only these three UCRs. By the 

way, this conclusion could be acceptable because not 

only one indicator but two (R2 for SSLm and APBIAS for 

SSLT) were taken into account and both of them provided 

the same result. 

Results of the predicted SSLm series (Cal-ANN was 

selected based on S) of each UCR are graphically com-

pared with the observed values as shown in Figure 5 

(left). It can be seen that both series show similar trend 

temporally. Based on the scatter plot of the predicted 

versus observed SSLm (Figure 5 (right)), the model un-

derestimates the high values for the UCR-5 and UCR-6 

but overestimates for the UCR-7. This may be due to the 

fact that Cal-ANN-3 was developed using dataset (COV 

= 1.67) including extremely low and high SSLm values 

higher than the one of UCR-7 does (COV = 1.54). In 

case of Cal-ANN-1 and Cal-ANN-2, their COV value is 

correspondingly lower than that of UCR-5 and UCR-6, 

and therefore underestimation of the high values. For low 

and medium value prediction, the scattered points are 

distributed around the ideal fit line. 

In short, the applicability of ANN model in UCs was 

proved and catchment slope (S) is the most ideal CSP in 

selecting the Cal-ANN models for application in UCs. 

By applying the Cal-ANNs, SSLm and SSLT of UCs  

 
Table 6. Selection of the Cal-ANN model and its performance in predicting SSLm and SSLT of each UCR. 

Cal-ANN R2 APBIAS (%) 
UCR 

QA RA S QA RA S QA RA S 

5 2 3 1 0.56 0.61 0.60 97.19 204.52 1.38 

6 2 1 2 0.64 0.59 0.64 26.24 60.41 26.24 

7 2 1 3 0.58 0.54 0.59 8.85 22.94 74.58 

Average 0.59 0.58 0.61 44.10 95.96 34.06 

R
2
 for SSLm; APBIAS for SSLT. 
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Figure 5. Comparison of the predicted versus observed SSLm of each UCR (left) and their scatter plot (right). (a) UCR-5; (b) 

UCR-6; and (c) UCR-7. 

 

could be predicted with an accuracy of R2 of 0.61 and 

APBIAS of 34.06%, respectively. 

3.4. Application of the Cal-ANN Models in AUCs 

Based on the most ideal CSP (S), Cal-ANN-2 was se-

lected for estimating SSLm of AUC-8 and AUC-9, and 

Cal-ANN-1 for the AUC-10. The estimated SSLm series 

was used to compute SSLA. As a result, AUC-8, AUC-9 

and AUC-10 produces SSLA around 159,281, 258,943 

and 723,580 t/year, respectively. As illustrated in Figure 

6, the computed SSLA of AUCs and the observed ones of 

SCs and UCRs exhibit good relationship with not only 

the annual discharge but also the catchment area. This  

reveals the consistent results predicted by the Cal-ANN 

models. Table 7 presents the SSLA* estimations for each 

AUC. The estimated SSLA* is 84,608 t/year for the 

AUC-8, 112,588 t/year for the AUC-9 and 228,610 t/year 

for the AUC-10. Development of the proposed HPPs 

could reduce SSLA of AUC-8, AUC-9 and AUC-10 about 

47%, 57% and 68%, correspondingly, due to dam-res- 

ervoir trapping. This reduction could cause degradation 

of downstream river channels, decrease of agriculture 

and fishery production, alteration of catchment biology, 

and so on. Therefore, this result could be very useful 

information for water resource managers and different 

stakeholders for developing the proposed HPPs in a sus- 

ainable manner. t 

Copyright © 2013 SciRes.                                                                               JWARP 



S. HENG, T. SUETSUGI 121

 
Table 7. SSLA* estimation for each AUC. 

A SSLA AR I C SSLTE SSLA* 
AUC 

km2 t/year/km2 t/year 
HPP 

km2 km3/year km3 
TE 

t/year t/year 

BT1 120 0.19 0.110 0.93 4234 
8 4221 37.74 159,281 

BT2 2135 2.48 1.040 0.92 70,439 
84,608 

BB1 1100 1.85 0.690 0.92 74,605 
9 3505 73.88 258,943 

BB2 2080 1.01 0.295 0.91 71,750 
112,588 

10 14,439 50.11 723,580 KT1 10,540 4.57 2.890 0.94 494,970 228,610 

A: Catchment area; AR: Drainage area of dam-reservoir; C: Active storage capacity of dam-reservoir; I: Annual discharge at the location of dam-reservoir; 

SSLTE: Annual SSL trapped by dam-reservoir; SSLA: Annual SSL (without dam-reservoirs); SSLA*: Annual SSL (with dam-reservoirs); TE: Reservoir trapping 

efficiency. 

 

 

Figure 6. Illustration of QA-SSLA and A-SSLA relationship. 

4. Conclusions 

ANN model performed well in simulating SSLm of four 

SCs having different hydrological and terrain character- 

istics. It was calibrated better with input data having less 

variation and near normal distribution. Moreover, its 

performance (R2) was superior with catchments charac- 

terized by steeper slope. The Cal-ANN models were ap- 

plied to predict SSLm of three UCRs and at the same time, 

their performance in predicting SSLT was also investi- 

gated. Three different CSPs were used alternately to se-

lect the most appropriate Cal-ANN for each UCR. The 

analysis showed that catchment slope (S) is the most 

ideal CSP. Based on these two observations on S, it can 

be concluded that parameters of the Cal-ANN models 

might contain some physical information governing the 

catchment topography. The Cal-ANN model perform-

ance in UCRs was considered acceptable for both SSLm 

and SSLT prediction. Using these models, SSLm and 

SSLT of UCs in this region (LMB) could be predictable 

at an accuracy of 0.61 in term of R2 and 34.06% in term 

of APBIAS, respectively. In combination with Brune’s 

method, one can estimate sediment load which could be 

trapped by the planned dam-reservoirs and remain flow-

ing to downstream. This information is very important 

for sustainability of such developments. The model ap-

plication in the TSRB could be a good example in this 

regard.  

In this study, only four Cal-ANN models were estab-

lished. Consequently, with other UCs characterized by S 

different significantly from the considered four SCs, the 

prediction results might contain high uncertainty. There-

fore, more Cal-ANNs should be built up. However, this 

finding is a key step providing high motivation for fur-

ther study. 
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