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Abstract: The risk of fungal and bacterial crop disease can be predicted using risk models 
with specific environmental parameters such as temperature, relative humidity, solar 
radiation, wind speed, and leaf wetness duration (LWD).  LWD has long been recognized as 
key in the management of crop disease.  Air temperature and wetness influence the majority 
of fungal plant diseases.  Wetness also impacts insect populations, as well as pollution 
deposits.  Many parameters are well understood, readily defined, and easily measured.  
Unfortunately, LWD is a complex phenomenon, due to its spatial and temporal variability 
within a crop canopy.  The inconvenience and uncertainty associated with monitoring LWD 
at the local leaf scale and the complexity of upscaling to the crop level prevent existing 
disease risk models from being used with reliability.  In spite of their imprecision, LW 
projections are already included in a number of online weather products.  One non-
parametric statistical approach receiving scant attention for the modeling of LWD is that of 
artificial neural networks (ANNs).  In this work, two previously untried ANNs estimate this 
key environmental variable at local crop scales, using local and regional weather station 
data and site-specific sensing data.  The first ANN combines two statistical methods to 
accomplish this spatial mapping (a K-nearest means classifier and a Bayesian classifier), 
while the recurrent nature of the second ANN provides a means of leveraging the temporal 
property of the data.  The ultimate goal is to embed the ANN into a highly-portable tool, 
designed to predict leaf wetness duration as an SOC (system on a chip) in conjunction with 
local weather stations, and as input to  real-time decision support systems. 
 
  

Keywords: Artificial Neural Networks; Leaf and Surface Wetness; Multi-scale Data; Crop 
Disease Risk; Decision Support Systems. 
 

 

1. INTRODUCTION 

Disease risk modeling for crop management has been shown to reduce disease incidence 
and severity [Campbell and Madden, 1990, Funt et al., 1990, Gleason et al., 1994].  
Pathogens, pests and air pollution deposits are influenced by several environmental 
variables including temperature, relative humidity, net solar radiation, wind speed, and 
surface, or more commonly leaf, wetness duration (LWD) [Huber and Gillespie, 1992; 
Sharma 1976; Schuepp 1989; Getz 1991]. Among the most critical [Huber and Gillespie, 
1992], as well as the most difficult [Sentelhas et al., 2007] of these variables to quantify and 
forecast are 1) canopy surface wetness (Wobs), defined as the observed fraction of plant 
parts or organs that are wet in a canopy, and 2) canopy surface wetness duration (SWD), 
defined as the sum of the continuous hours where Wobs is greater than 0.1 [Magarey et. al., 
2006a, 2006b].   Despite these constraints,  decision support systems incorporate LWD 
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estimates into their products, using both historical, and increasingly, forecast weather data 
as parameters for their LWD prediction models [Kim et al., 2006].  Model designs include 
physics-based, empirical and statistical, as well as hybrids of the above; performance   
trade-offs include complexity, accuracy, convenience and portability [Sentelhas et al., 
2008]. 

 
2.  MODELING SURFACE WETNESS DURATION 
 
Converting Wobs into SWD requires classifying the data over a given time period (e.g., one 
hour) into binary categories of wet (1) and and dry (0).  According to Magarey and Seem 
[2001], Wobs is classified as 0 if its value is less than 0.2, or 1 if its value is at least 0.2. 
Consider the small dataset for a single moisture event, illustrated by Figure 1. Predicted 
canopy surface wetness (obtained from an artificial neural network described below) and 
leaf wetness sensor data (obtained from Campbell Scientific leaf wetness sensors [Model 
237, Campbell Scientific, Inc., Logan, UT 84321]) are tabulated at left and plotted versus 
time at right.  The table also shows the percentage and binary SW classification for each 
hour. 

 

 

 

 

Figure 1.  Example calculation of processing Wobs to SWD for a given moisture event. 

Two important measures of error may be used to describe these data. One is the difference 
between canopy surface wetness sensor measurements and a model prediction prior to 
classification over each hour, and the second is the difference between sensor measurements 
and model predictions after classification to 0 or 1, over each hour. The root-mean-square 

(RMS) error is defined as
n

WT obsjjj
2)ˆ( -å

, where jT  is the measurement data (either 

Wobs visually recorded by an observer or, in the case of Figure 1, estimated by a Campbell 

Scientific leaf wetness sensor), obsŴ  is estimated by a model, and n is total number of 

data records over the moisture event. It is important to note that for the moisture event of 
Figure 1, the RMS error is computed as 0.2330 when comparing canopy surface wetness 
predicted by a model (indicated by squares) to sensor measurements (circles). However, 
when Wobs is post-processed into SWD (up-scaled through time), the RMS error for the 
same moisture event is 0. In an effort to provide conservative estimates of error (and 

          LW Sensor           ANN 

 Hr.   Wobs  SWhr.      Wobs  SWhr. 

284     0.0     0               0.0     0 

285     0.2     1               0.4     1 
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287     0.9     1               0.8     1 
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because the post-processing of Wobs into SWD is straightforward), we will present model 
forecasts in terms of Wobs. 

Overall, an accurate visual representation of Wobs is required for successful model 
validation and sensor calibration. While temperature, relative humidity, wind speed, and 
rainfall have become standard measurements in a weather station set-up, surface wetness 
remains without a standard of measurement [Seem and Magarey, personal communication, 
2002; Sentelhas et al., 2007].  Although leaf wetness sensors are presently used as 
surrogates, experts in quantifying canopy surface wetness rely on visual observations on 
some number of individual leaves to reflect the spatial aspect of the proportion of leaves 
wet in an entire canopy.  Unfortunately, it is impossible to collect sufficient visual 
measurements at the same snapshots in time over the entire crop space, and the individual 
leaf wetness measurements must be averaged. If greater than 10% of the leaves in a canopy 
appear to have moisture for at least 12 minutes in an hour, the hour is considered “wet”. 
Wobs is then calculated by averaging the binary values of the leaves over the time period of 
observation. 

 

3.     ARTIFICIAL NEURAL NETWORKS (ANNs) 

ANNs have been used to predict wheat leaf wetness [Francl and Panigrahi, 1997], to 
estimate moisture occurrence and duration [Chtioui et. al, 1999], to forecast treatment for 
Plasmopara viticola infection [Dalla Marta et al. 2005] and to distinguish the type of 
infection and classify the infection period in a wheat field environment [de Wolf and Francl, 
1997; 2000].  ANNs are not programmed; they are data-driven, and learn by example.  
Typically, an ANN is presented with a training set of examples (training patterns, typically 
represented as vectors) from which the network can learn.  The two ANNs selected for this 
work utilize supervised learning, during which the ANN is also presented with a target 
output pattern:  the known answer (classification) for the corresponding input pattern. The 
ANN methodology involves training the ANN to iteratively determine the hidden weights 
that will accurately map appropriate environmental parameters to Wobs. During training, 
examples of the mapping are presented to the network, and the weights of the hidden and 
output layers are adjusted over a series of iterations until the network has satisfactorily 
mapped the training set inputs to the training set outputs. Once a satisfactory mapping has 
been obtained, training ends and the weights are fixed. These fixed weights are then used 
during the interpolation phase to map new inputs (that the network has never seen) to 

predict obsŴ .  In this work, the initial composition of input vector consisted of local 

weather variables (specifically temperature, relative humidity, wind speed, net canopy 
radiation, and leaf area index), with output being the canopy wet surface area, Wobs, for the 
given canopy elevation. 
 
 

4.  MODELING WETNESS DURATION USING COUNTERPROPAGATION ANN 

4.1   What Distinguishes This Approach 

 
Two ANNs have been developed, trained, and tested for the prediction of temporal trends 
associated with local crop scale SWD using multiple types of data measured from local 
scale and regional weather station data and site specific sensing data. The first is a 
counterpropagation network (CP), based on the work of Hecht-Nielsen [1987; 1988], the 
second a recurrent backpropagation network (RBP), independently generalized from 
standard backpropagation by Pineda [1987] and Almeida [1987].   The majority of earlier 
ANN attempts to model LWD use standard backpropagation, whose weaknesses, unlike CP, 
include a tendency towards local minima, the required optimization of multiple parameters, 
and a “black box” result [Frasconi, et al., 1993; Cristianini, 2001].  As shown in Figure 2, 
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CP is a combination of two classifiers – K-nearest means (Kohonen) and Bayesian 
(Grossberg) – and is guaranteed to converge.  For details of the method see Hecht-Nielsen 
[1987]; for application of the method and pseudo-code see Rizzo and Dougherty [1994].  
 
 

 
 
Figure 2.  General schematic showing (a) architecture and notation and (b) activation 
function of the counterpropagation ANN.  From Besaw and Rizzo [2007]. 
 
 
It is important to distinguish this method from the traditional feedforward backpropagation 
ANN (used in every software package), which requires stochastic training to select/optimize 
the number of hidden nodes.  With the exception of feedforward backpropagation, the 
majority of the 50 or so existing ANN algorithms found in the literature perform better 
when large numbers of data are available. This custom counterpropagation algorithm does 
not suffer from some of the limitations associated with the feedforward backpropagation in 
that it cannot be over-trained.  The hidden layer is a Kohonen self-organizing-map (SOM) 
used to cluster the data. The output layer maps the clusters to a known a priori classification 
(turning the Kohonen unsupervised ANN into a surpervised ANN).  The more training data 
available, the better the classifications/predictions.  This is true of most ANN algorithms, 
and explains why the majority of most commercial and proprietary data mining applications 
now use ANNs. 
 

4.2    Counterpropagation Preferred over Recurrent Backpropagation 

Comparison of the root-mean-square (RMS) error values between canopy surface wetness 

data (both visual observations and measurements), Wobs, and the ANN predictions, obsŴ  , 

using the two ANNs indicates slightly better predictions using CP over RBP for the 
moisture events shown in this work (Figures 4 and 5). However, comparisons of predictions 
to observations (both visual and sensor) over 28 of the moisture events comprising two of 
the four datasets in Geneva N.Y., indicate no significant advantage in terms of the 
prediction capability of either network over the other.  A significant difference, however, 
was observed in the time required for training each of the ANNs. RBP takes on average 12 
to 13 times longer to train the same number of training patterns to the required RMS error 
value of 1 x 10-6.  
 
[Note: For our largest training set, consisting of 2450 records of multiple types of weather 
data, and corresponding sensor data measurements at approximately 10 minute intervals, the 
recurrent backpropagation network never did converge to the required RMS error value.  As 
a result, only predictions using the counterpropagation model will be presented in this 
paper.] 
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4.3 Site and Data 

A variety of datasets were used for training, testing, and validation. Roger Magarey, while 
at Cornell University, collected an extensive dataset from four grape cultivars growing at 
the Climatological Reference Station (NWS) in Geneva, New York. Drs. Seem and 
Magarey have graciously provided the data needed to train the ANN models for predictions 
of canopy surface wetness (see Figure 3). 
 

Site Site I.D. Cultivar Data Type Data Frequency 

 

Geneva 

GV97 

LO98 

NWS 

Chardonnay 

Concord 

Ag. Monitoring Site 

Ag. Station†; Visual 

Ag. Station; Visual 

Ag. Station 

1 hr 

10 min 

1 hr 

Branchport DE97 Concord Ag. Station; Visual 1 hr 

Romulus SW97 Cabernet Franc Ag. Station; Visual 1 hr 

Syracuse ------ --------------- Weather Station† 

(no net radiation) 

1 hr 

†Ag station = Temperature, relative humidity, wind speed, LW sensors and net radiometers 

with measurements of each at separate elevations. 

††Weather Station= Typical of data collected at a regional weather station, i.e. wet and dry bulb 

temperature, relative humidity, wind speed and direction. 

 
 

Figure 3.  a) Approximate location of the four grape canopy data sets and 
             (b) description of cultivars and types of data collected at each New York data site. 

 
The four cultivar data sets contain temperature, relative humidity, wind speed, canopy net 
radiation, rainfall, soil heat flux, soil moisture, and surface wetness (both visual and sensor 
data).  Leaf surface wetness measurements were collected at three vines within a canopy.  
Each vine supported five sensors. Visual canopy surface wetness, Wobs, was estimated from 
the proportion of observed wet leaves. Visual measurements were replicated for three leaves 
observed at five canopy positions for three vines per site totaling 45 visual measurements at 
any given time. Sensor measurements of Wobs were also estimated from the proportion of 
wet sensors. Painted and unpainted Campbell scientific sensors were placed in the same five 
canopy positions along the same 3 vines. The visual estimates of Wobs provide validation of 

the forecasts of canopy surface wetness, obsŴ  , from the ANN-based models. Observations 

of canopy surface wetness included both rain and dew moisture events. Temperature and 
relative humidity were collected at four elevations within the canopy.  (Note: Surface 
wetness measurements (both visual and sensor) were collected at three of these elevations 
(bottom, middle and top of the canopy).)  The weather stations logging the local data at all 
sites (4 sites in total) were located away from the edge of the field, near the middle of a row. 
Analysis of the Wobs data, (both visual and sensor), indicates a significant dependence on 
elevation within the canopy, an observation echoed by Jacobs et al. [2005] and Batzer et al. 
[2008].  As a result of these analyses, it was decided that 1) visual observations (rather than 
sensor data) would be considered “ground truth” and used throughout this research time 
frame to train the ANNs, 2) Wobs should not be averaged over the three canopy elevations, 
and 3) dew events and rains events would be treated separately (i.e., the ANN will be a 
function of elevation and moisture event-type). 
 

Lake Ontario 
SYRACUSE 

Legend 

Weather Station  

(T, RH, Wind Speed) 

Weather Station  

(T, RH, Wind Speed, Net  

Radiation   Leaf Wetness  

Sensor + Visual) 
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4.4    Methodology 

The CP was developed and trained using ten classes of surface wetness ranging from 0 to 1 
in increments of 0.1.  For the preliminary results shown in Figure 1, only 12 visual 
observations (along with corresponding measurements of temperature, relative humidity, 
wind speed, and canopy net radiation) were used as training patterns. Although not 
discussed here, the selection of training data is crucial to whether or not the network 
“learns” a particular task:  how well a network “learns” depends on the examples presented 
during training. For this particular moisture event consisting of only 12 training patterns, the 
visual canopy surface wetness data (each point being an average over all vines, and 
elevations) contained no instances/classifications of 0.2 or 0.4.  As a result, during the 
testing phase, when input vector patterns to the network consist of temperature, relative 
humidity, wind speed, and canopy net radiation collected at 10-minute intervals, it is not 
possible for the ANN to classify the output as 0.2 or 0.4 (i.e., the CP ANN cannot predict 
outside the data range that it has been trained on).  One of the first datasets used for 
training, testing and validation was Geneva N.Y. (LO98). The growing season consisted of 
173 days and contained 116 visual Wobs measurements. This training dataset used the visual 
measurements of Wobs from the first 8 moisture events (75 records) spanning 40 days (in 
addition to temperature, relative humidity, wind speed, and net canopy radiation) as input 

training patterns, and then predicted obsŴ  over the remaining four moisture events (23 

days). Comparisons of the ANN predictions to the observed visual data (along with the 
corresponding RMS error values and sensor measurements for the same time frames) are 
plotted in Figure 4. Sensor measurements are plotted on the figure, but only to indicate the 
beginning and end of moisture events.  Similar results were obtained for the top and bottom 
canopy elevations; however, only the middle canopy elevations are shown.  

Initially, a sensitivity analysis was performed on an energy-based surface wetness model 
(SWEB28) developed by Drs. Magarey and Seem at Cornell University. The results of this 
analysis indicate that of the four parameters tested (temperature, relative humidity, wind 
speed, and net canopy radiation), the physics-based model is the most sensitive to small 
changes in relative humidity, followed by net canopy, and, to a much less extent, wind 
speed and temperature.  

A suite of sensitivity analyses were also performed on the ANN-based models using the two 
Geneva datasets to determine the most influential parameters needed for forecasting Wobs 
using the ANN. Analysis revealed that two of these 6 inputs (net canopy radiation and leaf 
area index) did not significantly improve predictions of Wobs. Comparison of the RMS error 
values over all moisture events indicates no significant increase in the RMS error values 
when net canopy radiation and leaf area index are omitted from the list of variables. In fact, 
in some cases the error was reduced. As a result, both were removed from the input training 
sets.  A review of the literature corroborates these findings [Kim et al., 2006; Sentelhas et 
al., 2008]. 

 

  
 

Figure 4.  ANN predictions (squares) of canopy surface wetness and visual Wobs                          
measurements (large triangles) obtained using moisture event records of local weather 
data for the Geneva, N.Y. (LO98) data. 
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4.5 Results and Scalability  

The overall RMS error for all moisture events when 75 visual records (8 moisture events) 
are used in training is 0.2512.  The overall RMS error for all moisture events when trained 
on 2450 records (15 sensor events) is 0.1981.  Similar reductions in the RMS error values 
were found for the GV97 data set (RMS = 0.3014 and 0.1613 respectively). Therefore, 
significant decrease in the overall RMS error value is found when the training data are 
increased. Unfortunately, it was only possible to perform this test using the sensor data as 
the training target outputs; the collection of visual data over the same number of moisture 
events and time intervals is too labor intensive and companion data sets do not exist. 

Hewitson and Crane [1996] describe techniques and applications of climate downscaling. 
Magarey et. al [2002] describe some emerging technologies, the limitations, and the 
prospects for future improvements for obtaining site-specific weather data without on-site 
sensors. Weather data may not be available at local spatial and temporal scales and the 
errors associated with spatial interpolation may be too large to provide accurate estimates of 
SWD using local models.  To test and validate the ANN for local forecast errors (associated 
with the use of weather data that has been interpolated or downscaled from regional weather 
station data), the following  test was performed:  Crude local estimates of temperature, 
relative humidity, and wind speed data for Branchport, N.Y. were obtained using the 
ordinary kriging package available in ArcGIS Spatial Analyst and regional data from three 
weather stations located in Geneva, Romulus, and Syracuse, N.Y. (see Figure 3a). The data 
was not adjusted for elevation; the intent was simply to test the robustness and errors 
associated with the ANN’s ability to forecast local canopy surface wetness given weather 
data interpolated from regional weather stations. Validation of the ANN forecast was 
achieved using visual data gathered at the local scale over a trial prediction period. 

For training purposes, we used locally gathered Branchport temperature, relative humidity, 
wind speed measurements, and corresponding leaf wetness sensor measurements provided 
at 1-hour intervals during the month of July 1997.  Estimates of canopy surface wetness 
were forecast by the ANN for the month of August 1997. Comparison of the ANN forecasts 
trained on both locally recorded and spatially interpolated weather data (see Figure 5, 
squares and diamonds respectively) indicate a significant decrease in the RMS error values 
when local weather data are used. We note that other companies such as SkyBit 
Technologies, Inc., have experience in interpolating spatial data such as that gathered at 
weather stations, and deliver weather and disease forecasts in the form of data or maps at 
the crop scale. Improving local weather estimates of temperature, relative humidity, wind 
speed, and net canopy radiation using more sophisticated downscaling interpolation 
methods and shorter prediction intervals will greatly improve ANN forecasts and reduce 
error estimates. However, since there was no significant decrease in the prediction 
capabilities of the ANN when the net canopy radiation was omitted from the input training 
set, downscaling of local weather variables may not be warranted since temperature, relative 
humidity, and wind speed are relative easy to measure by local growers.  
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Figure 5.  Trained on 3 rain events and 12 dew events LO98 sensor data, interpolated on 5 
rain events, where visual and sensor data exist. 

 

5.     CONCLUSIONS 

The work described above leads to several conclusions: 

1. Comparison of the ANN forecasts using both the visual and sensor Wobs measurements 
as target outputs shows a significant increase in the accuracy of prediction when the 
number of training examples increases. That is, the ANN is better able to learn or 
generalize the relationship between input patterns (locally measured weather data) and 
output patterns (locally observed Wobs measurements) when the number of training 
patterns increases. One advantage of incorporating the statistical power of ANNs into 
existing risk disease models is that they “learn” the empirical relationships directly 
from the measured data.  These relationships may be nonlinear and a neural network 
may model physical relationships with high degrees of nonlinearity. 

2. We expect the ANN methodology to be easily transferable to other crops. However, the 
validation of model predictions with sensor and visual observations over a range of 
crop types and climates using standard protocol will be mandatory. 

3. A standard for surface wetness measurements is required to validate models used to 
predict Wobs and SWD. Without standardized measurements to accomplish proper 
validation, these models will face barriers to entry into disease management strategies. 

4. Visual observations and sensor measurements of leaf wetness represent point 
measurements of wetness and, as a result, cannot measure the proportion of leaves wet 
in a canopy (Wobs). Measurements are therefore averaged to provide information that is 
appropriate for the larger, canopy scale. 
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5. There was no significant increase in the prediction capabilities of the ANN when net 
canopy radiation and leaf area index were omitted from the input training set, and in 
some cases, the error was actually reduced. This is a favorable outcome, as net 
radiation measurements and estimates are not as commonly available as wind, rain, 
relative humidity, and temperature measurements.  

6. Local collection of temperature, relative humidity, and wind speed data (as opposed to 
obtaining those weather variables from more complicated downscaling interpolation 
models) may be warranted. 
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