
 Open access Proceedings Article DOI:10.1109/AERO.1998.685789

Using ASPEN to automate EO-1 activity planning — Source link

Rob Sherwood, A. Govindjee, D. Yan, Gregg Rabideau ...+2 more authors

Institutions: California Institute of Technology

Published on: 21 Mar 1998 - IEEE Aerospace Conference

Topics: Automated planning and scheduling, Modeling language and Schedule

Related papers:

 Scheduling and rescheduling with iterative repair

 Planning and Scheduling for Fleets of Earth Observing Satellites

 Three Scheduling Algorithms Applied to the Earth Observing Systems Domain

 Towards an application framework for automated planning and scheduling

 The Application of Genetic Algorithms to Resource Scheduling

Share this paper:

View more about this paper here: https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-
4zrk1q5d50

https://typeset.io/
https://www.doi.org/10.1109/AERO.1998.685789
https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50
https://typeset.io/authors/rob-sherwood-2phehh4r0j
https://typeset.io/authors/a-govindjee-4yezc62hze
https://typeset.io/authors/d-yan-1536181db4
https://typeset.io/authors/gregg-rabideau-4h4afy5m9x
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/conferences/ieee-aerospace-conference-18cwe8ri
https://typeset.io/topics/automated-planning-and-scheduling-2nt4jb06
https://typeset.io/topics/modeling-language-2zrcu0cr
https://typeset.io/topics/schedule-j27sh554
https://typeset.io/papers/scheduling-and-rescheduling-with-iterative-repair-1edqdzqbue
https://typeset.io/papers/planning-and-scheduling-for-fleets-of-earth-observing-2ltpzbtbn3
https://typeset.io/papers/three-scheduling-algorithms-applied-to-the-earth-observing-2ewcgpcku5
https://typeset.io/papers/towards-an-application-framework-for-automated-planning-and-w5gomqvxkq
https://typeset.io/papers/the-application-of-genetic-algorithms-to-resource-scheduling-19u20gqpma
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50
https://twitter.com/intent/tweet?text=Using%20ASPEN%20to%20automate%20EO-1%20activity%20planning&url=https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50
https://typeset.io/papers/using-aspen-to-automate-eo-1-activity-planning-4zrk1q5d50

Using ASPEN to Automate EO-1 Activity Planning
Rob Sherwood, Anita Govindjee, David Yan,
Gregg Rabideau, Steve Chien, Alex Fukunaga

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California 91109
aspen@aig.jpl.nasa.gov

Abstract— This paper describes the application of an
automated planning and scheduling system to the NASA
Earth Orbiting 1 (EO-1) mission. The planning system,
ASPEN, is used to autonomously schedule the daily
activities of the satellite. The satellite and operations
constraints are encoded within a software model used by the
planner. This paper includes a description of the planning
system and the associated modeling language. We then
discuss how we encoded the EO-1 spacecraft operations
with the modeling language. We conclude with a
description of the end-to-end planning system as we
envision it for EO-1.

TABLE OF CONTENTS

1. INTRODUCTION

2. ASPEN

3. MODELING LANGUAGE

Activities

Resources

States

4. EO-1 MODEL

 Creating The EO-1 Model

5. END-TO-END PLANNING SYSTEM

EO-1 Model In Action

Limitations of ASPEN

6. CONCLUSIONS

7. REFERENCES

8. BIBLIOGRAPHY

1. INTRODUCTION

Automated planning/scheduling technologies show great
promise in reducing operations costs by increasing
autonomy of EO-1 mission operations. The Artificial
Intelligence (AI) Group at the Jet Propulsion Laboratory
has been working on a system called ASPEN (A Scheduling
and Planning Environment). ASPEN [3] is a modular, re-
configurable application framework based on AI techniques
[1], which is capable of supporting a variety of planning and
scheduling applications (similar to [4]). The primary
application area for ASPEN is the spacecraft operations
domain.

EO-1 [5] is an Earth imaging satellite to be launched in May
1999. The science payload on EO-1 is an advanced multi-
spectral imaging device. Mission operations on EO-1
consist of managing spacecraft operability constraints such
as power, thermal, pointing, buffers, consumables, and

telecommunications. EO-1 science goals involve imaging of
specific targets within particular observation parameters.
Managing EO-1 spacecraft downlink is particularly difficult
because the amount of data generated by the imaging device
is quite large and ground contacts are limited. In addition,
because science targets for EO-1 are based on short-term
cloud predictions, schedules must be generated daily.

Planning and scheduling spacecraft operations involves
generating a sequence of low-level spacecraft commands
from a set of high-level science and engineering goals.
ASPEN encodes spacecraft operability constraints, flight
rules, spacecraft hardware models, science experiment goals,
and operations procedures to allow for automated generation
of low-level spacecraft sequences. By automating the
command sequence generation process and by encapsulating
the operations specific knowledge, ASPEN will enable the
EO-1 spacecraft to be controlled by a small operations team
and thereby reduce costs.

2. ASPEN

ASPEN is an object-oriented system that provides a reusable
set of software components that implements the elements
commonly found in complex planning/scheduling systems.
These include:

• An expressive constraint modeling language to allow
the user to define naturally the application domain

• A constraint management system for representing and
maintaining spacecraft operability and resource
constraints, as well as activity requirements

• A set of search strategies
• A temporal reasoning system for expressing and

maintaining temporal constraints
• A graphical interface for visualizing plans/schedules

(for use in mixed-initiative systems in which the
problem solving process is interactive

We have implemented the linear programming simplex
algorithm to optimize schedules for ASPEN. At present,
though, ASPEN is not making use of it. There are hooks in
the code to add this and other optimization algorithms at a
later date.

The central data structure in ASPEN is an activity. An
activity represents an action or step in a plan/schedule. An
activity has a start time, an end time, and duration. In

1 Activity ALI_data_take {
2 Fixed fi;
3 Tracking tr;
4 Duration = [1,60];
5 Constraint =
6 starts_after end of SAD_changer with (fi->sad1) by [100,300],
7 ends_before start of SAD_changer with (tr->sad1) by [16,16],
8 Contains SAD_user with (fi->ap1) by [4,4,0,10],
9 Contained_by SAD_user with (fi->sad1) by [300,300,1,16];
10 Subactivities = ALI_user_data, ALI_dark_count;
11 reservations = processor, array_power = 80;
12 };
13
14 Activity SAD_changer {
15 Sad_mode sad1;
16 reservations = solar_array change_to sad1,
17 aperture must_be open;
18 };

Figure 1: Activity Example

addition, activities can use one or more resources. For more
details on ASPEN, see [2,3].

3. MODELING LANGUAGE

The ASPEN modeling language allows the user to define
activities, resources, and states as described above. A
domain model is input at start-up time, so modifications can
be made to the model without requiring ASPEN to be
recompiled. The modeling language has a simple syntax,
which can easily be used by spacecraft mission operations
personnel to create a model. Each spacecraft model is
comprised of several plain-text files, which define and
instantiate activities, resources, and states.

 Activities

As previously mentioned, activities are the central data
structure of ASPEN. An activity is a data structure that
performs a specific function. The example in Figure 1
includes an instrument data take activity and a solar array
drive state change activity. These examples will be used to
explain the components of an activity.

An activity is defined in line 1 and 14 of Figure 1. The
definition includes the name followed by a pair of braces
and a semi-colon similar to the C language syntax. These
are the only required components of an activity definition.
Once the activity is defined, it can be instantiated in the
initial state file. Generally, this instance will consist of the
activity name followed by the instance name and a pair of
braces. Many of the components below that are specified as
ranges can be fixed to specific values in the activity
instance.

Parameters are generally used to store values in activities or
reservations. Lines 2 and 3 contain parameters defined
elsewhere in a parameters file. In this case, they are
constants that represent state names. Parameters can also be
passed into activities from higher level activities (parent
activities). Line 15 contains an example of a parameter that
is passed into an activity. The parameter sad_mode is an
enumerated type variable that contains the current state
value of the solar array drive. Any one of the state values

can be passed into the SAD_changer activity when called
from a parent activity.

The duration of an activity is given as a range [x, y], a list
{a, b, c, d} or a constant. Line 4 defines the duration as a
range of 1-60 seconds. The time scale of the spacecraft
mission planning can also be specified. All ranges within
ASPEN can be specified from negative infinity to infinity.
If a range is given for the duration, ASPEN will have more
flexibility in considering different schedules. This can result
in better-optimized schedules.

Constraints are temporal constraints an activity must satisfy
with respect to the (owner) activity in which the constraint is
defined. There are six types of constraints: starts_before,
starts_after, ends_before, ends_after, contains, and
contained by. The first four constraint types include a time
range and a temporal relationship to the start of or end of the
activity in question. For example, on line 6 in Figure 1, the
ALI_data_take activity must start after the end of the
SAD_changer activity by 100-300 seconds. This constraint
tells the scheduler that the SAD_changer activity must be
completed at least 100 seconds before the ALI_data_take
activity starts. Using the same method, the start or end time
of any activity can be specified relative to the start or end
time of the owner activity. If the time duration is specified
as [0,0], the start or end times will coincide exactly. The
"contains" constraint is used for activities that fall within the
owner activity. This constraint definition combines a
starts_before start of and an ends_after end of pair of
constraints. For example, line 8 defines a constraint for the
SAD_user activity that is contained within owner activity
ALI_data_take. The first two and last two numbers in the
constraint represent ranges of time, which separate the start
times between the two activities and the end times between
the two activities. SAD_user must start exactly four seconds
(4,4) after the start of ALI_data_take but the end time can
coincide with the end time of ALI_data_take or up to 10
seconds (0,10) earlier. This relationship is graphically
represented in Figure 2. Because the ALI_data_take activity
has a variable duration, ASPEN automatically chooses a
duration that satisfies the above temporal constraints.

The [contained_by] constraint is used for activities that are
the same size or larger than the owner activity. For
example, line 9 defines a constraint for activity SAD_user
that starts exactly 300 seconds before the start of and ends 1-
16 seconds after the end of activity ALI_data_take.

Subactivities are activities that can be scheduled any time
within the parent activity subject to resource constraints
within the subactivity. Subactivities are similar to the
constraint-defined activities without the exact temporal
relationship between the parent and subactivities. For
example, line 10 defines subactivities ALI_user_data and
ALI_dark_count. These activities must fall within the
temporal range of the parent activity ALI_data_take. The
main difference between "constraint" and "subactivities" is
that "constraints" can be satisfied by any activity in the
schedule. Subactivities are always created when defined
within a parent activity. There is a one to one relationship
from parents to subactivities.

Reservations are used to reserve a portion of a resource or
state for the duration of the activity. There are two types of
resource reservations: atomic and aggregate. Line 11 of
Figure 1 contains examples of an atomic reservation
(processor) and aggregate reservation (array_power). The
processor reservation reserves the processor for the duration
of the activity. No other activities can use the processor
during this time. The array_power reservation uses 80 units
of array_power for the duration of the activity. If the
array_power were a depletable resource, the 80 units would
be reserved from the start of the activity until the end of the
planning horizon.

State reservations either change the state of a state variable
or reserve a state for the duration of an activity. Line 16 of
Figure 1 changes the state of the solar_array state variable to
the value of parameter sad1. Line 17 of Figure 1 reserves
the "open" state of the aperture state variable for the
duration of the activity. If the aperture state variable was in
a state other than "open" prior to this activity, the scheduler
would have to create a state changer activity to change the
state to "open."

Resources

Resources are a description of a profile of a physical
resource over time. There are four types of resources:
atomic, concurrency, depletable, and non-depletable.
Atomic resources are physical devices that can only be used
(reserved) by one activity at a time. Examples of atomic
resources include: science instrument, star tracker, reaction

wheel, or CPU. Concurrency resources are similar to atomic
except they must be made available to the activity before
they are reserved. An example would be a tele-
communications downlink pass. The telecommunications
station would have to be made available before the
spacecraft could initiate a downlink. Non-depletable
resources are resources that can used by more than one
activity at a time and do not need to be replenished. Each
activity can use a different quantity of the resource.
Examples include solar array power and the 1773 bus.
Depletable resources are similar to non-depletable except
that their capacity is diminished after use. In some cases
their capacity can be replenished (battery energy, memory
capacity) and in other cases it cannot (fuel). A summary of
the four types of resources is presented in Table 1.

 Resource Type Properties
 Atomic Always available when not in use,

only 1 user at a time
 Ex: science instrument, star tracker,
reaction wheel, dedicated CPU

 Concurrency Only available when made available,
only 1 user at a time
 Ex: telecommunications downlink
pass

 Non-depletable Always available when not in use,
many users can use different
quantities
 Ex: solar array power and 1773 bus

 Depletable Capacity is diminished after use, may
or may not be replenished by another
activity
 Ex: battery energy, memory capacity,
fuel

Table 1: Resource Types

The four types of resources are defined in lines 1, 6, 12, and
18 of Figure 3. The definition includes the name followed
by a pair of braces and a semi-colon similar to the C
language syntax. The type is one of: atomic, concurrency,
depletable and non-depletable. The name and type are the
only required components of a resource definition. Once the
resource is defined, it can be instantiated in the initial state
file. Generally, this instance will consist of just the resource
name followed by the instantiated name and a pair of braces.
 Note: concurrency resources are not yet implemented.

The capacity of a resource can be specified as a constant, list
or range. A range would be used if several similar resources

Figure 2: Constraint Relationship: contains

with specific capacities were defined when the resources
were instantiated.

 1 Resource ALI {
 2 Type = atomic;
 3 Capacity = 1;
 4 };
 5
 6 Resource Solar_array {
 7 Type = non_depletable;
 8 Capacity = 600; // watts
 9 };
 10
 11
 12 Resource warp_storage {
 13 Type = depletable;
 14 Capacity = 40000; // Mbits
 15 };
 16
 17
 18 Resource Propellant {
 19 Type = depletable;
 20 Capacity = 15; // kg
 21 };

Figure 3: Resource Examples

An atomic resource has a unit capacity and does not have to
be explicitly set such as on line 3 of Figure 3. Depletable
and non-depletable resources definitions can contain a
minimum capacity such as in lines 9, 15, and 21 of Figure 3.

States

A device, subsystem, or system may be represented by a
state variable that gives information about its state over
time. The state variable contains the state profile, which is
defined as an enumerated type. Some examples of possible
states are: on, off, open, closed, record, playback, standby or
idle. States can be reserved or changed by activities. A
state variable must equal some state at every time. At the
beginning of a planning horizon, this state is just the default
state. Figure 4 contains two examples of state variable
definitions.

A state variable is defined in lines 1 and 7 of Figure 4. The
definition includes the name followed by a pair of braces
and a semi-colon similar to the ’C’ language syntax. Lines 2
and 8 contain a list of the states the state variable can
contain. The default state must be defined and must be one
of the states in the list. Once the state variable is defined, it
can be instantiated in the initial state file.

The allowable state transitions between states can be
indicated using the ‘transitions’ keyword with a forward (->)
arrow, a bi-directional arrow (<->), or with the ‘all’ keyword
(e.g., all<->all).

 Parameters

The ASPEN modeling language includes parameters, which
are variables or constants. Parameters can consist of
integers, strings, floating points, booleans, or lists or ranges
of any of these. Parameters can be defined as enumerated
types for a list of states in a state variable. Ranges of values
can also be used. Some examples are:

• parameter string ALI_mode { domain = (“data”, “idle”,
“standby”, “off”); };

• parameter int warprange { domain = [1,40960]; };

In the first example, the ALI_mode parameter can take on
any of the four values in the list. In the second example, the
warprange parameter can be any integer in the indicated
range from 1 to 40960.

EO-1 MODEL

EO-1 is an Earth imaging satellite that is part of the New
Millennium Program of technology validation missions.
The NASA Goddard Space Flight Center is responsible for
project management. The purpose of EO-1 is to validate
new technologies that can be used on future Landsat class
Earth remote sensing missions. In fact, EO-1 will be flying
in formation one minute behind Landsat-7, with the goal of
imaging as many of the same targets as possible. EO-1 will
be using the Landsat 7 daily scene list as an input file of
potential EO-1 targets.

The main activity in EO-1 operations is the Advanced Land
Imager (ALI) data take. The ALI instrument contains six
separate detectors that output data simultaneously. One
image takes a total of 24 seconds and consumes about 19
gigabits of data on the solid state recorder (WARP).
Because the capacity of the WARP is only 40 Gbits, it is
important to plan the data takes and downlinks to maximize
the amount of data returned. Due to limited amount of
downlink time available, only four data takes per day can be
taken. Data takes can be prioritized based on the following
parameters:

• Cloud cover over the region to be imaged
• Sun angle at the region to be imaged
• Ability to return the data before overflowing the

WARP recorder
• Images coinciding with Landsat 7 images
• Imaging of scientifically interesting areas

Each EO-1 data take has several conditions that must be
satisfied before and after the data take occurs. These
conditions are listed below:

Before:
• Change the ACS mode to science
• Change the solar array to a fixed orientation
• Open the ALI aperture
• Change the data rate to high rate mode

After:
• Close the ALI aperture
• Take one second of calibration data
• Change the ACS, solar array, and data rate modes

back to the previous values

Each of these conditions is modeled as temporal constraints
in the ALI data take activity. The data take activity itself is
only a 24-second activity. The constraints on the activity

 1 State_variable ALI_sv {
 2 states = ("data", "standby", "idle", "off");
 3 transitions = ("standby"->"data", "data"->"standby", "idle"->"standby",

 "standby"->"idle","off"->"idle", "idle->off");
 4 default_state = "idle";
 5 };
 6
 7 State_variable aperture_sv {
 8 states = ("open", "closed");
 9 transitions = ("open"->"closed", "closed"->"open");
 10 default_state = "closed";
 11 };

Figure 4: State Variable Examples

span a period of five minutes before and one minute after the
bounds of the activity. The constraints on the activity could
have been modeled as subactivities. The reason we chose to
model these activities as constraints is because of their tight
temporal constraints. The data take activity breaks down
into 14 separate activities as listed in Table 2.

ALI Scene Collection
ALI_data_take
ALI_user_data
ALI_user_standby
ALI_changer
SAD_user
SAD_changer
aperture_user

aperture_changer
engdata_user
engdata_changer
ACS_user
ACS_changer
cloud_cover_changer
sun_angle_changer

Table 2: EO-1 Science Activities

The ALI must be calibrated by viewing the sun or the moon
regularly. The sun calibration involves pointing at the sun
and changing the aperture filter several times. The moon
calibration points at the lunar limb and pans across the moon
using each of the detectors. Similar to the data take
activities, the calibrations involve several constraints. The
calibration activities and constraints are listed in Table 3.

EO-1 communication activities are modeled as follows:

1. An input file gives the times at which the ground station
is in view of the satellite.

2. The in view times are converted into a state variable
with the value ‘inview’ or ‘outview.’

3. The planner chooses communication links during these
in view times.

4. The communication link is broken down into uplinks (if
required) and downlinks.

ALI_sun_calibration
slew_to_sun
aper_test_changer
ALI_moon_calibration
moon_cal_ms_pan
slew_to_moon
ramp_up_pitch_slew
ramp_down_pitch_slew
roll_to_next_position

Table 3: EO-1 Calibration Activities

The EO-1 model also includes initialization activities for
power, propellant, and memory. These activities are used to
keep track of consumable resources from the previous
planning period.

A key-word ‘command’ is used for activities that represent
an EO-1 spacecraft command. When the command keyword
is included in the activity definition, along with the
command name, the spacecraft command output file will
include a time tagged command for that activity.

The EO-1 spacecraft resources are modeled as either
depletable or non-depletable. It was not necessary to model
every physical device on EO-1 because many devices
consumed a constant power and did not interact with any
spacecraft activities. The power of these devices is included
in the power_init activity. The resources that are modeled
are listed in Table 4.

Non-Depletable Depletable
ALI
S_band_Receiver
Transponders
solar_array
ACDSE
Warp

Processor
Bus_1773
Cat_bed_heater
WFF
DSN

Battery
Warp_storage
Propellant

Table 4: EO-1 Resources

The EO-1 ASPEN model has ten different state variables
which are listed in Table 5. Most of these state variables are
used to represent the state of a spacecraft resource. The
states are used in activities that require a resource to be in a
particular state. These requirements are specified in the
reservations of the activity. For example, the EO-1 data take
activity requires the WARP state variable to be in record
mode during the period of imaging. This requirement
ensures that the data is being recorded during the imaging
operation. Activities are defined that either change or use a
particular state of a state variable. These activities usually
contain a command keyword that corresponds to an EO-1
spacecraft command.

Creating the EO-1 Model

The modeling language has been designed such that it can
model a physical spacecraft system directly. It is a
descriptive language that allows an engineer to directly
represent the physical spacecraft information in the model.
In fact, the EO-1 model was created by an engineer (first

author, Rob Sherwood) who had no knowledge of the
software or its algorithms and procedures. He successfully
created the model by simply taking the EO-1 spacecraft
information and putting it into the modeling language
syntax. This process took three weeks. Another similar
model for the Spacecraft Interferometry Mission took less
than two days.

State Variables

Variable Possible States

ALI_sv data, standby, idle, off
SAD_sv off, tracking, fixed
aperture_sv open, closed
aperture_test_sv small, med, large, blank
engdata_sv high, low
ACS_sv nadir, low_jitter, standby, safe,

orbit_adjust,
WARP_sv off, idle, record, playback
Cloud_Cover_sv low, med_low, med, med_high, high,

none
Sun_Angle_sv low, med, high, none
WFF_inview_sv in, out

Table 5: EO-1 State Variables

The modeling language is flexible and allows for different
ways of representing the same information. Therefore, there
is no one correct model for a given spacecraft. The EO-1
model is constrained to have certain state variables, for
example, as determined by the mission, but, on the other
hand, could have different ways of representing constraints
between activities.

END-TO-END PLANNING SYSTEM

The goal of this EO-1 work is to produce an automated on-
board planning system for spacecraft commanding of the
EO-1 satellite. The system will be validated after launch on
the ground. As a ground based planner, the inputs to
ASPEN include:

• Landsat-7 cloud cover and sun angle predictions
• Current power, propellant, and memory levels
• Sun, moon, and sky calibration requests
• Ground station view files
• Maneuver requests

Once ASPEN is delivered to the EO-1 project, there will
only be minor changes made to the model to integrate
ASPEN into the existing operations. We plan to automate
the loading of the input files such as cloud cover and sun
angle predictions into ASPEN, and link the output schedule
of ASPEN directly to the existing EO-1 software. In fact,
the creation of the input files can be invoked from external
calls from the ASPEN GUI. With ASPEN linked directly to
its input files through the GUI, the EO-1 planning process
will be seamless and efficient.

The output of the ground based validation of the planner will
be a text list of time tagged commands that will be translated
into binary spacecraft commands by the ground system load
generation utility. This utility is already built into the EO-1
ground system.

The on-board planning system will require upload of the
ground station view files and maneuver requests. The cloud
cover could be obtained by using the ALI science instrument
to examine the clouds before a scene. After the image is
taken, the cloud data would be analyzed to determine if the
scene should be saved and downlinked. Clouded scenes
would be erased from the WARP and a new scene would be
planned to take its place.

EO-1 Model in Action

Generating EO-1 mission operations schedules is a fast
process. Given a set of EO-1 requests, ASPEN will generate
a conflict-free schedule within the order of a few minutes for
lengthy schedules, and within seconds for simpler schedules.
 For example, for 162 EO-1 activities, it takes ASPEN 3.53
seconds (on a SUN Ultra-2) to produce a conflict-free
schedule. There are no EO-1 schedules that take more than
a minute to schedule, but with other spacecraft models with
more activities and lengthier schedules, we have seen a
maximum of five minutes to produce a conflict-free
schedule.

In addition to having the activity requests specified in
advance, the user can make changes to the schedule from the
GUI as needed. For example, the user could add an
ALI_data_take activity. If this caused conflicts in the
schedule, then ASPEN would resolve the conflicts. This
whole process takes seconds to execute. For example, with
the EO-1 model, if we add three ALI_data_take activities in
the GUI (randomly placed), this causes 34 conflicts.
Resolving all conflicts, and producing a conflict-free
schedule takes 1.54 seconds (on a SUN Ultra-2). This
means that it is solving approximately 17 conflicts per
second. (Adding just one data-take activity causes a large
number of conflicts because of the constraints between
activities and the states required by different activities.)

Currently, activities can be given a particular score, and
high-level preferences (such as resource max usage) can be
indicated which also determine scores for activities. The
generated schedule is then given a score based on the
activities’ scores. Using this score, the user can then choose
one generated schedule over another. We are presently
working on an algorithm that will automatically optimize
schedules.

Limitations of ASPEN

The algorithms and data structures used in ASPEN impose
some limits on what ASPEN can model and solve. For
example, the iterative repair algorithm used to repair
schedules and make them conflict-free is a local search
algorithm and therefore cannot solve problems where local
search techniques do not work. We are currently developing
a search algorithm framework which will allow many types

of search strategies (global and local) to be used in ASPEN.
 In addition to the current local search algorithm constraint,
at present ASPEN also presumes that the units in the
timelines, which can take linear or exponential functions, are
constant value over a unit. In the future, ASPEN may have
units whose value varies over the unit, but now it is a known
limitation. Lastly, although the modeling language is
expressive, it is limited to what can be defined within the
existing modeling language syntax. For example, it is
currently difficult to model the power interaction between
the solar array and batteries. When the EO-1 satellite is
occulted by the Earth, activities in the plan which use solar
array power must instead use battery power. The reverse is
true when EO-1 is in direct sunlight. There are also periods
where both solar array and batteries are used for power due
to partial illumination of the solar array. Combining these
effects with the complex charging and discharging cycles of
the batteries creates a difficult problem to model. We are
currently improving the modeling language so complex
interactions such as these can be successfully modeled.

CONCLUSIONS

Modeling EO-1 mission operations in ASPEN is easy and
compact. The entire EO-1 model consisting of the activities,
parameters, reservations, resources, and state variables as
described above, is represented in approximately 700 lines
(in plain text files) which also includes comments and
headers. The simplicity of the modeling language will allow
the operations personnel to easily change the model when
needed. The changes will not require a recompile of the
code.

We have successfully modeled EO-1 mission operation
activities with ASPEN. We have created a model which
encapsulates information about: data takes, calibration
activities, maneuvers, uplinks, downlinks, validation
activities, cloud cover and sun angle states, and initialization
activities of power, propellant, and data storage. Using this
model with ASPEN will enable EO-1 to function with a very
small operations team.

REFERENCES

[1] J. Allen, J. Hendler, and A. Tate, Readings in Planning,
 Morgan Kaufmann, 1994.

[2] S. Chien, D. Decoste, R. Doyle, and P. Stolorz, "Making
an Impact: Artificial Intelligence at the Jet Propulsion
Laboratory," AI Magazine, 18(1), 103-122, 1997.

[3] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan,
"ASPEN: A Framework for Automated Planning and
Scheduling of Spacecraft Control and Operations,"
Proceedings of the International Symposium on AI,
Robotics and Automation in Space (i-SAIRAS), Tokyo,
Japan, 1997.

[4] S.F. Smith, O. Lassila, and M. Becker, "Configurable
Mixed-Initiative Systems for Planning and Scheduling,"
Advanced Planning Technology, AAAI Press, 1996.

[5] D. Speer, P. Hestness, M. Perry, and B. Stabnow, The
New Millennium Program EO-1 Mission and Spacecraft
Design Concept, In Proceedings of the IEEE Aerospace
Conference, v. 4, pp. 207-227, Snowmass, CO, 1997.

[6] M. Zweben and M. Fox, Intelligent Scheduling,
Morgan Kaufmann, 1994.

BIBLIOGRAPHY

Rob Sherwood is a Member of

Technical Staff at the Jet Propulsion

Laboratory, California Institute of

Technology. He holds a B.S. in

Aerospace Engineering from

University of Colorado at Boulder,

and a M.S. in Mechanical

Engineering from the University of

California at Los Angeles. He is

currently pursuing an M.B.A. at

Loyola-Marymount University. Robert has received 4 NASA

Achievement Awards for his work in Spacecraft Mission

Operations. He is currently working on several projects

involving Planning and Scheduling technologies.

Anita Govindjee is a Member of

Technical Staff in the Artificial

Intelligence Group at the Jet

Propulsion Laboratory, California

Institute of Technology. She holds

a M.S. in Computer Science from

Stanford University and a B.S. in

Computer Science from the

University of Illinois. Her research

interests are in artificial intelligence and cognitive science.

David S. Yan is a Member of the

Technical Staff in the Artificial

Intelligence Group at the Jet

Propulsion Laboratory, California

Institute of Technology. He holds

a B.S. in Electrical Engineering

and Computer Science from the

University of California at

Berkeley. He is pursuing his M.S. degree in Computer

Science at Stanford University. His research interests

include automated planning/scheduling, operating systems,

computer architecture and computer networks.

Gregg Rabideau is a Member of

the Technical Staff in the Artificial

Intelligence Group at the Jet

Propulsion Laboratory, California

Institute of Technology. His main

focus is in research and

development of planning and

scheduling systems for automated

spacecraft commanding. Projects

include planning and scheduling for the first deep-space

mission of NASA’s New Millennium Program, and for

design trades analysis for the Pluto Express project. Gregg

holds both a B.S. and M.S. degree in Computer Science

from the University of Illinois where he specialized in

Artificial Intelligence.

Steve Chien is Technical Group

Supervisor of the Artificial

Intelligence Group of the Jet

Propulsion Laboratory, California

Institute of Technology where he

leads efforts in research and

development of automated

planning and scheduling systems.

He is also an adjunct assistant

professor in the Department of

Computer Science at the University of Southern California.

He holds a B.S., M.S., and Ph.D. in Computer Science from

the University of Illinois. His research interests are in the

areas of: planning and scheduling, operations research,

and machine learning.

Alex S. Fukunaga is a Member of
the Technical Staff in the Artificial
Intelligence Group at the Jet
Propulsion Laboratory, California
Institute of Technology. He holds
an A.B. in Computer Science from
Harvard University, and a M.S. in
Computer Science from the
University of California at Los
Angeles, where he is currently a
Ph.D. student. His research
interests include optimization, decision theory, search,
machine learning, and automated planning/scheduling.

ACKNOWLEDGMENTS

This paper describes work performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

