
USING ASSERTIONS ABOUT TRACES TO WRITE ABSTRACT SPECIFICATIONS

FOR SOFTWARE MODULES

Wolfram Bartussek

and

David L. Parnas

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina 27514, U.S.A.

ABSTRACT

A specification for a software module is a statement of the requirements

that the final programs must meet. In this paper we concentrate on that

portion of the specification that describes the interface between the

module being specified and other programs (or persons) that will inter-

act with that module. Because of the complexity of software products, it

is advantageous to be able to evaluate the design of this interface with-

out reference to any possible implementations. The first sections of

this paper present an approach to the writing of black box specifications,

that takes advantage of Guttag's work on abstract specification [91.

Then we illustrate it on a number of small examples, and discuss checking

the completeness of a specification. Finally we describe a case history

of a module design. Although the module is a simple one, the early spe-

cifications (written using an earlier notation) contained design flaws

that were not detected in spite of the involvement of several persons

in a series of discussions about the module. These errors are easily re-

cognized using the method introduced in this paper.

I. Introduction

212

The Role of Specifications in Software Design

We are concerned with the building of software products that are so large

that we cannot manage the task unless we reduce it to a series of small

tasks. We further assume that each of the subtasks (which we call mod-

ules) will focus on one portion of the design and hide the details of

that aspect of the design from the rest of the system. This has become

known as the "information hiding principle," encapsulation, data abstrac-

tion, etc. [1,2,33. The design process will only go smoothly if the in-

termodule interfaces are precisely defined. Ideally, the interface de-

scription states only the requirements that the component must satisfy

and does not suggest any other restrictions on the implementation. We

term such a description of the requirements a ~pecification [193. We

also note that any software product is but a module in a still larger

system; its requirements should be specified as precisely as each of

its components.

For a trouble-free development process it is also necessary that one be

able to verify the reasonableness of decisions before proceeding to make

further decisions. If we reverse one of our decisions later (or find

that it was inadequately described), we may have to discard all work

done subsequent to that decision. If we have written a formal specifi-

cation for a module, we should be able to verify that the specification

has such basic properties as consistency and completeness. These aspects

will be discussed later in this paper.

What Are Specifications?

A fair amount of confusion has been caused by the fact that the word

"specification" is used with two distinct meanings in the computer liter-

ature. The dictionary definitions of the word "specification" cover any

communication which provides additional information about the object

being described - any communication that makes the description of the

object more specific. In engineering usage, the word has a narrower

meaning. A specification is a precise statement of the requirements

that a product must satisfy. A description of the number of ones in

the binary representation of a computer program is a specification in

213

the general sense but it is rarely a specification in the engineering

sense.

In the remainder of this paper we will use the engineering sense of

"specification."

Brief History of Work on Specifications

We distinguish two classes of specifications for software, which we shall

denote as P/P (Precondition-Postcondition) and DA (Data Abstract). P/P

specification techniques are based on the pioneering work of Floyd [43

and subsequent work by Hoare [53, Dijkstra [63, and others. P/P tech-

niques describe the effect of a program in terms of predicates that de-

scribe acceptable states of data structures. The Precondition is a

predicate that describes the states in which the program may be started.

The Postcondition describes the states after program termination. Dijks-

tra's predicate transformers replace both of these predicates by a rule

for transforming a postcondition into a precondition [6,73. P/P speci-

fications describe the change of state that the program must effect,

but not how to effect it. Usually, the effect of each individual program

is described separately and in terms of the data structure accessed by

the program.

In DA specifications the specification of a module does not refer to

the data structure used within a module. That data structure is not part

of the requirement; it is part of the solution. It does not belong in a

statement of requirements because it depends on implementation decisions.

Early work on specifications that "hide" implementation data structures

was done by Parnas [83; more recent work by Guttag [9,101 put a sounder

mathematical basis behind the work and suggested some notational improve-

ments.

The DA specification work is motivated by a desire to give a "black-box"

description of a software module. The user is told only of a set of

programs that access the data structure within the module. Some of these

(here termed V-functions) return values that give information about parts

of the data structure. Others (here termed O-functions) change the in-

ternal data. In most cases, the execution of an O-function will even-

tually cause a change in the value of a V-function. The effects of the

call of the O-function may not be visible in terms of V-function values

until some other O-functions have been executed.

Parnas's early work was done on an ad hoc basis. The notation was de-

214

veloped to meet the needs of specific examples [8]. The early examples

had the property that the effects of O-functions were immediately vis-

ible and could be described in terms of the new values of the V-func-

tions. Only in later examples did Parnas and Handzel [20] seek to extend

these techniques to cases where there were delayed effects.

The problem of delayed effects led Price and Parnas E21,11,12] to in-

clude "hidden" functions in their specifications. The "hidden" functions

are not available outside the black box. They need not be implemented;

their purpose is purely descriptive. The effects of O-functions are

described in terms of the values of the hidden functions. These hidden

functions are still in use at SRI E13] and elsewhere~

In spite of all disclaimers, the hidden functions do suggest data struc-

tures and possible implementations of the program. Liskov [14] and others

have suggested writing specifications simply by giving possible imple-

mentations - i.e., by giving a program whose behaviour :would be accept-

able and asking that the programs produced be "equivalent."

The equivalent program approach and the hidden functions disturb us.

They violate the basic motivation for DA specifications by providing

information that is not a requirement. Some of the properties of an

hypothetical implementation may not be required of the actual program.

"One must be very careful not to read too much into such specifications"

[14].

Guttag's method does not rely on hidden functions to describe delayed

effects. His papers [9,10] describe a systematic way of writing the

specification. However, there were cases that he could not handle with-

out the introduction of hidden functions. One of those examples, the

stack with overflow, will be used later in this paper E153.

In this paper, we propose yet another approach. It allows the specifi-

cation of modules with delayed or hidden effects without any reference

to internal data structures. The only statements made are about the

effects of calls on user accessible O-functions or user accessible V-

functions.

When Is a D/A Specification Complete?

For simplicity, we assume that our modules are always created in the

same initial state and could be returned to that state (reinitialized) 0

We further assume that for each access program (O-function or V-function)

there is an applicability condition, if this condition holds, the program

215

may be called. In states where the condition does not hold, the module

will "trap" or refuse to return through the normal exit [163. Values of

V-functions after a trap occurs will not be discussed in this paper.

A trace of a module is a description of a sequence of calls on the func-

tions starting with the module in the initial state. A trace is termed

a lena ! trace if calling the functions in the sequence specified in the

trace with the arguments given in the trace when the module is in its

initial state will not result in a trap. A specification completely de-

termines the externally visible behaviour of a module if for every legal

trace ending with a call of a V-function, the value returned by that V-

function can be derived from the specification. We term such a specifi-

cation complete. A specification is consistent if only one value can be

derived.

There are situations in which one may want a specification that is not

complete in the above sense. In this paper, however, we will concern

ourselves with the problem of recognizing complete and consistent spe-

cifications.

II. A Formal Notation for Specification Based on Traces

A specification will consist of two main parts. The first part, which

we call syntax, gives the names of all of the access programs, and the

type of each of the parameters. For O-functions we will indicate that

it changes an object of the type being specified. For V-functions we

will give the type of value that it delivers. This information is nec-

essary for recognizing whether a program using the functions could be

compiled by a typical compiler. The notation used is that used by Guttag

E9,10~.

The second part of the specification will be called the semantics. It

consists of three types of assertions.

I. Assertions about trace legality. These assertions identify a subset

of the set of legal traces, that is a set of traces such that calling

the functions as described in the trace (starting with a module in its

initial state) will not result in traps. Additional legal traces may

be implied by the equivalence assertions (see below). Any traces that

2t6

cannot be shown to be legal using these assertions will be considered

illegal traces.

2. Assertions about the equivalence of traces. These assertions specify

an equivalence relation on traces, such that (I) equivalent traces

have the same legality (either both are legal or both are not legal)

and (2) that they have the same externally visible effect on the

module or data item. These assertions of equivalence will often en-

able us to extend the class of traces known to be legal. Equivalence

is usually weaker than equality. Two traces are equal if they are

identical in every respect (the same sequence of function calls with

the same parameters).

3. Assertions about the values returned by V-functions at the end of

traces. These statements describe the values delivered by V-functions

for a ~useL of the set of legal traces. The traces ;~ direct-

ly in this section of a specification are called normal form traces.

Using the equivalence statements, one can derive the values of V-

functions at the end of other traces by finding an equivalent normal

form trace.

Remark: In our examples, we have assumed that equality is defined

for values of the types returned by the V-functions. In the unlikely

event that we have no equality operator, V-function values would have

to be described in terms of the operators that are available.

Since assertions about values of V-functions are made only using

normal form traces, assertions about equivalence of traces will also

be used to show that any legal trace can be transformed to a normal

form trace.

The three classes of assertions together with the syntax definition

form a specification or statement of requirements. An implementation

will be considered correct if and only if the assertions are true of

it. Any property that one can deduce from the assertions must be a

property of any correct implementation.

A program that uses the module in such a way that the program's cor-

rectness depends only on properties of the module that can be deduced

from the specification's assertions will be able to use any correct

implementation of the module.

217

Notation

(I) Notation for describing the syntax (taken from Guttag).

<Function Name>: <type of parameter>X,...X<type of parameter>->

<type of result>

If the module maintains only one data item, that parameter need

not be explicitly named in each function call.

(2) Notation for describing traces.

A trace will be represented as a string from the language de-

scribed by the following syntax. The parsing of a trace into com-

ponent subtraces is deliberately ambiguous. The trace denotes

execution of the functions named in a left to right sequence.

<subtrace> ::= LJ I<syntactically correct function call>I

<subtrace>.<syntactically correct function call>

<trace> ::= LJ I<subtrace>[.<subtrace>],

[<T>]* denotes any number of occurrences of T .

,,u- denotes an empty trace. Note that the symbol ,,u " never

occurs in a trace.

We will sometimes use the following shorthand notation.

Let Pi' m4isn, be a list of actual parameters and X(Pi) a syntac-"
N

tically correct function call. Then XM(Pi) denotes the same as

X (pM) .X (PM+I) X (PN-I) .X (pN)

N is simply X.X X
If the list of parameters is empty, then X M N denotes the empty
with n-m+1 repetitions of X.~ If M>N, then X M

trace. For N a I we write X~(Pi) as xN(pi) .

It is always assumed that a function call correctly adheres to

the rules of the syntax section.

(3) Describing !egality of sequences.

We introduce the predicate I(T) where T is a trace. I(T) is true

if T is a legal trace. The appearance of the assertion I(T) in a

specification is a requirement that calling the functions as de-

scribed in T will not result in a trap.

Assuming that the module will not "trap" if it is not used, we

always assume i(LJ) = true. (The empty trace is always legal).

It follows from our discussion of traces that if T is a trace

(4)

(5)

218

and S is a subtrace, then

(T.S) => I(T).

In other words, the prefix of any legal trace is a legal trace.

Describing the values of V-functions at the end of traces.

If T is a legal trace, X is a syntactically correct call on a V-

function, and I(T.X) is TRUE, then V(T.X) describes the value de-

livered by X when called after an execution of T.

Describing equivalence of two traces.

If T I and T 2 are traces then T~ ~ T 2 is an assertion

that:

for any subtrace S (including the empty subtrace) ,

I(TI.S)<=>I(T2.S),

and

for any subtrace S (including the empty subtrace) and V-function X,

I(T I.S.X) => V(T I.S.X) = V(T2.S.X)

Then " ~" is an equivalence relation. Note that the equivalence

of two traces does not imply that they are the same in every re-

spect, only in those respects specified above. F~r example, one

may not conclude that two equivalent traces have the same length

or that the prefixes of equivalent traces are equivalent. Note too

that the above does not define a particular equivalence relation;

that is done in each specification.

In the following specifications we have omitted universal quanti-

fiers for variables representing traces (T) and values of specific

types.

III.

219

Some Simple Examples (To be explained and discussed in the next

Section.)

Example I. A Stack for Integer Values

Syntax:

PUSH:

POP:

TOP:

DEPTH:

Legality:

(I)

(2)

<integer> x <stack> -> <stack>

<stack> -> <stack>

<stack> -> <integer>

<stack> -> <integer>

I(T) => I(T.PUSH(a))

I (T.TOP) <--> I (T.POP)

Equivalences:

(3) T.DEPTH ~ T

(4) T.PUSH(a) .POP H T

(5) I(T.TOP) => T.TOP ~ T

Values:

(6) I(T) => V(T.PUSH (a) .TOP) = a

(7) I~(T) => V(T.PUSH(a).DEPTH) = I + V(T.DEPTH)

(8) V(DEPTH) = 0

Example 2. An Integer Queue

220

Syntax:

ADD:

REMOVE:

FRONT:

<integer> x <queue> -> <queue>

<queue> -> <queue>

<queue> -> <integer>

Legality:

(I) l(T) => I(T.ADD(a))

(2) I(T) => I (T.ADD(a) .REMOVE)

(3) ~ (T .REMOVE) <=> 1 (T .FRONT)

Equivalences :

(4) I(T.FRONT) => T.FRONT - T

(5) I(T.REMOVE) => T.ADD (a) .REMOVE - T.

(6) ADD(a) .REMOVE - LJ

Values:

REMOVE. ADD (a)

(7) V(ADD(a) .FRONT) = a

(8) I(T.FRONT) => V(T.ADD(a).FRONT) = V(T.FRONT)

The above specification assumes that only one queue exists and omits

the queue parameter in the calls on the access programs.

221

Example 3. Sorting Queue = (SQUEUE)

Syntax:

INSERT:

REMOVE:

FRONT:

Legality:

(I)

(2)

(3)

<integer> x <squeue> -> <squeue>

<squeue> -> <squeue>

<squeue> -> <integer>

(T) => I(T.INSERT(a))

(T) => I(T.INSERT(a) .REMOVE)

(T. FRONT) < = > ~ (T. REMOVE)

Equivalences :

(4) I (T.FRONT) => T.FRONT 5 T

(5) T.INSERT(a) .INSERT(b) -= T. INSERT (b) . INSERT (a)

(6) INSERT(a) .REMOVE - LJ

(7) I(T.FRONT) cand (V(T.FRONT) -< b) =>

T. INSERT (b) .REMOVE -- T

Values:

(8) V (INSERT (a) .FRONT) = a

(9) I(T.FRONT) cand V(T.FRONT) -< b =>

V(T.INSERT(b) .FRONT) = b

Note the value of X cand Y is false if X is false, and the value of X

cand Y is the value of Y if X is true. Y need not have a defined value

if X is false.

Example 4.

222

Stack that Overflows (Stac)

Syntax :

PUSH: <stac> x <integer> -> <stac>

POP: <stac> -> <stac>

VAL: <stac> -> <integer>

Legality:

For all T, I(T)

Equivalences :

O < N -< 124 => P u s H N (a i) .POP - PUSH N-1 (a i)

PUSH(ao).PUSH 1124" (a i) - PUSH 1124(ai)

T.VAL =- T

N >- 0 => popN.PuSH(a) = PUSH(a)

Values :

V(T.PUSH(a) .VAL) = a mod 255

223

Example 5. Alternative Formal Specifications (Gutta~ Type) for STAC

This alternative includes two "hidden functions," which are marked in

the syntactic specifications with asterisk.

TYPE:

stac

SYNTACTIC SPECIFICATION:

NEWSTAC :

PUSH (s, I) :

POP (s) :

VAL (s) :

SPSLFT (s) :

*ADD (s,I) :

*DEQ (s) :

-> <stac>

<stac> X <inte@er> -> <stac>

<stac> -> <stac>

<stac> -> <integer>

<stac> -> <!nte@er>

<stac> X <integer> -> <stac>

<stac> -> <stac>

SEMANTIC SPECIFICATION:

SPSLFT (NEWSTAC) = 124

SPSLFT(ADD(s,I)) = SPSLFT(s) - I

POP (NEWSTAC) = NEWSTAC

POP (ADD (s , I)) = s

DEQ (NEWSTAC) = NEWSTAC

DEQ (ADD(s,I)) = if SPSLFT(s) = 124

then s

else ADD(DEQ(s) ,I)

PUSH(s,I) = if SPSLFT(s) > 0

then ADD(s,I)

else ADD(DEQ(s) ,I)

VAL (NEWSTAC) = undefined

VAL(ADD(s,I)) = I rood 255

,denotes a hidden function

I V .

224

Discussion of the Simple Examples

Example I is the classic example for abstract specifications. It is a

stack with unlimited capacity. The legality section shows that any se-

quence of PUSH operations is a legal trace. The first statement in the

value section shows the value of TOP after any trace that ends with a

PUSH. (7) shows that PUSH always increments the value of DEPTH. (8)

specifies the initial value of DEPTH to be zero. The equivalence section

allows us to reduce any legal trace with PUSH, TOP, and POP to one that

is equivalent but contains only PUSH operations. We will be able to

determine the value of the V-functions for any legal trace by making

such reductions.

In Example 2 (an integer queue) the "legality" section allows traces

that consist of any number of ADDS but each occurrence of REMOVE or

FRONT must be preceded directly by an ADD. However, the equivalence

statements allow other traces because the sequence ADD.REMOVE may either

be replaced by REMOVE.ADD or (at the start of a trace) deleted and the

resulting trace will be equivalent to the original trace. The value

section shows the value of FRONT after (a) an item is added to an empty

queue and (b) an item is added to the queue that already has a value

of FRONT (same as before). To find the value of FRONT after a trace that

has REMOVES in it, one must apply (5) and (6) repeatedly until one has

an equivalent trace that does not contain a REMOVE. Each application of

(5) can move a REMOVE to the left one place. When REMOVE follows the

first ADD directly, both can be deleted using (6).

In Example 3 we have a queue that always shows the largest item at the

front. The largest object is also the one removed by REMOVE. The legal

traces are the same as those in Exampl~ II (except for an obvious change

of function names). The most important difference is (5) in which it is

asserted that the order of two consecutive inserts is irrelevant. Asser-

tion (7) shows the effect of a REMOVE after an INSERT that had a para-

meter larger than the value at the front of the SQUEUE. In that case it

simply cancels the effect of the INSERT. However, because of (5), we

can always rearrange the order of INSERTs so that the last one is the

one that inserts the largest value. This allows us to use (7) for any

REMOVE at the end of a trace with at least two inserts in it. (6) de-

scribes the effect of REMOVE in the case that it is preceded by only

one INSERT. The value section shows us the value of FRONT after an

225

INSERT in an empty queue and after inserting a value that is greater

than the value of FRONT.

The discussion of the first three examples is intended to show that the

formal specifications do correspond to our intuitive notions of the way

that these modules perform. The correspondence with intuition must, of

necessity, remain informal. The demonstration of completeness can be

performed systematically. This will be discussed lateron.

The fourth example is the problem that John Guttag could not specify

without the use of hidden functions [153 (which follows from restrictions

of the mathematical model underlying his technique). His specification

is included as Example 5. We believe that the b~vity of our specifi-

cation shows the advantages of the trace method. This is a situation

in which the values of V-functions for some legal traces are deliberately

not defined. Any syntactically correct trace is legal. The module will

never "trap". However the value of VAL initially (or after a POP on an

"empty stack") is not defined. The implementation can deliver any value

in these situations without violating the specifications. If a value,

I, greater than 255, is inserted only I mod 255 will be stored.

The above examples show a number of advantages over previous methods of

DA specifications. There appears to be no need for hidden functions;

the specifications are quite compact and the individual statements are

simple. The derivations needed to demonstrate completeness are sometimes

quite involved but they need not be performed during the implementation

or during the verification that an implementation is correct.

The ideas are rather new and we are aware of a number of important un-

answered questions. Nonetheless, we believe that this report demonstrates

that the method is as good as any of the previously published ones and

can help to discover design errors early in the design process.

V. A Compressed History of the Development of an Abstract Specification

In this section we present the history of the development of an abstract

specification for a "table/list"-(T/L) module. The programs offered by

this module support the processing of linearly ordered data structures,

~6

regardless of whether they are implemented as tables or lists. This

module is currently implemented to help in generating address trans-

lation tables as we need them for a virtual memory mechanism within a

family of operating systems [173. It is also expected that this speci-

fication can be used for various other table or list handling purposes.

An Informal Picture of the T/L Module

Because it is the purpose of this report to introduce a method of de-

scribing such modules, we must begin with an intuitive description of

our example. One physical implementation of this module would be by

means of a set of children's blocks where it is possible to write one

"entry" on the upper surface. The blocks are arranged in a single row

and covered with an opaque lid with a single window. Through this window

one may read the entry on a single block, insert and remove blocks, or

change the entry written on the block that shows through the window. The

entry on the block that shows through the window is referred to as the

current entry. Because the cover is opaque it is not possible to tell

how many blocks are currently under it, but the cover is fitted with

signals that tell whether or not there is a block to the right of the

current entry, whether or not there is a block to the left of the current

entry, and whether there are any blocks under the cover at all.

The operations that we want to perform include reading the value of the

current entry, moving the lid one place to the right, moving the lid

one place to the left, moving the lid and all blocks at the right hand

side of the current block to the right so that a new current block may

be inserted through the window, and removing the current block (moving

the lid and all blocks to the right of the deleted block one place to

the left).

It was our goal that all operations that could be easily performed with

the physical model described above be allowed by our specification.

In our specification we will have five operations (O-functions): INSERT,

DELETE, ALTER, GOLEFT, and GORIGHT. ALTER will just be a shorthand for a

sequence of DELETE and INSERT. The first two indicators mentioned above

will be named EXLEFT(EXist entries to the LEFT), EXRIGHT, and the third

is represented by EMPTY. The current entry will be available through

the V-function CURRENT. The precise relationship among the V-functions

and the way that their values are changed by the module's operations

will be described in the specifications.

227

Example 6. (Incorrect)
Module

Version of a Specification for a Table/List

Syntax of Functions

O-Functions: INSERT(e):
DELETE:
ALTER(e):
GOLEFT:
GORIGHT:

<entry> x <TL> -> <TL>
<TL> -> <TL>
<entry> x <TL> -> <TL>
<TL> -> <TL>
<TL> -> <TL>

V-Functions: CURRENT:
EMPTY:
EXLEFT:
EXRIGHT:

<TL> -> <entry>
<TL> -> <boolean>
<TL> ~ <boolean>
<TL> -> <boolean>

Legal Traces

(I) %(T) => %(T.INSERT(e))
(2) %(T) => X(T.INSERT(e).CURRENT)
(3) %(T.CURRENT)<=> %(T.EXLEFT)
(4) %(T.OURRENT)<=> X(T.EXRIGHT)
(5) X(T.CURRENT)<=> X(T.ALTER(e))
(6) %(T.CURRENT)<=> %(T.INSERT(e).GOLEFT)
(7) %(T.GOLEFT) <=> %(T.GOLEFT.GORIGHT)

Equivalences

(8)
(9)
(1o)
(1 t)
(12)
(13)
(14)

T.EMPTY ~ T
T.INSERT(e).DELETE ~ T
T.GOLEFT.GORIGHT ~ T
T.ALTER(e) ~ T,DELETE.INSERT(e)
%(T.CURRENT) => T.CURRENT ~ T
%(T.EXLEFT) => T.EXLEFT ~ T
%(T.EXRIGHT) => T.EXRIGHT ~ T

Values

(15) V(EMPTY) = true
(16) %(T) => V(T.INSERT(e);£URRENT) = e
(17) %(T) => V(T.INSERT(e)eEMPTY) = false
(18) X(T) cand (V(T.EMPTY) = true) => V(T.INSERT(e).EXLEFT) = false
(19) X(T) cand (V(T.EMPTY) = false) ^ (V(T.EXLEFT) = false) =>

V(T.INSERT(e).EXLEFT) = true
(20) %(T) => V(T.INSERT(e).EXRIGHT) = V(T.EXRIGHT
(21) %(T.GOLEFT) => V(T.GOLEFT.EXRIGHT) = true
(22) %(T,GORIGHT) => V(T.GORIGHT.EXLEFT) = true
(23) %(T.ALTER(e)) => V(T.ALTER(e).CURRENT) = e
(24) %(T.ALTER(e)) => V(T.ALTER(e).EMPTY) = V(T.EMPTY)
(25) %(T.ALTER(e)) => V(T.ALTER(e).EXLEFT) = V(T.EXLEFT)
(26) %(T.ALTER(e)) => V(T.ALTER(e).EXRIGHT) = V(T.EXRIGHT)
(27) V(T.INSERT(e).GOLEFT.CURRENT) = V(T.CURRENT)
(28) V(T.INSERT(e).GOLEFT.EXLEFT) = V(T.EXLEFT)

228

A. The First Version (Example 6)

We do not display the original specification but instead present a trans-

lation using traces. We were not using traces for specification purposes

at the time that the original was written. The use of traces makes many

deficiencies in the first version obvious. They were originally dis-

covered after much hard labor. We show an abbreviated histroy of the

development to provide evidence controverting the claim that abstract

specifications state "only the obvious."

The "syntax" section is as in the earlier examples. We use elements of

a type "entry" only to store them into the data structure of the T/L

module, or to fetch them. We assume that the relation of equality over

entries is defined elsewhere.

Statements (3) through (5) tell us that V-functions EXLEFT and EXRIGHT

and O-function ALTER(e) have the same applicability condition as CURRENT.

The "equivalences" section should allow the reader to transform any legal

trace to one shown to be legal by (I) through (7). The alert reader will

notice that this section does not satisfy this requirement. This will be

investigated in some detail later.

Statement (8) is unconditional because a call on EMPTY can always be

added to or removed from any trace without making the module trap.

Statements (9) and (10) say that subtraces INSERT(e).DELETE and

GOLEFT.GORIGHT have no effect. Statement (11) is supposed to tell us

that a call on ALTER has the same effect as two consecutive calls on

DELETE and INSERT, provided that INSERT has the same actual parameter

as ALTER. Statements (12) through (14) tell us that V-functions CURRENT,

EXLEFT, and EXRIGHT can be removed from a legal trace to get an equiv-

alent trace.

Statement (15) gives the initialization of the module. Statements (16)

through (20) describe the effects of INSERT at the end of a legal trace

on the values of EMPTY, CURRENT, EXLEFT, and EXRIGHT.

Statements (23) through (26) define the effects of ALTER at the end of

a trace on the four V-functions. Note that only CURRENT is changed.

Statements (27) and (28) say that two consecutive calls on INSERT and

GOLEFT have no effect on the values of CURRENT and EXLEFT.

229

B. Discussion of Flaws in the First Version of the T/L Module

Specification

The use of traces and the way in which the present specifications are

divided into sections allows us to discuss flaws in version I of the

T/L module in a straightforward way and to omit two or three interme-

diate stages of the original development. However, all errors below were

actually included in the original design of the T/L module (where a

different method of specification was used) and allowed to remain in

the design after formal discussions among the members of our group.

Incompleteness

In examining the first specification we first attempt to make certain

that the specification is complete. We will (by definition) consider

the specification to be incomplete if there are some traces ending in

calls on V-functions which can be shown to be legal but for which no

value can be derived.

One example of incompleteness concerns the value of the function EXRIGHT.

Only (20) and (26) make any statement about the value of EXRIGHT and

these make no statement about the initial value of EXRIGHT or

V(INSERT(e).EXRIGHT) which can be shown to be legal.

The specification is similarly incomplete with respect to EXLEFT.

Another form of incompleteness can be found by attempting to derive the

value of V(INSERT(a).INSERT(b).GOLEFT.EMPTY). There is no statement

about the value of EMPTY when immediately preceded by GOLEFT and no

equivalence assertion that would allow us to remove GOLEFT.

Specification Versus Intuitive Understanding

In addition to the instances of incompleteness that have been demon-

strated, we can show that a number of statements in the "legal trace"

section and "equivalences" section do not meet our intuitive expecta-

tions. There is a problem with the legality of traces beginning with

a call on GOLEFT. For example, we would expect that a call on GOLEFT

before the first entry has been inserted into the data structure should

not be permitted. However, the value of I(GOLEFT.GORIGHT) can by state-

ment (10) always be calculated to be I(LJ) , -which is (by definition)

"true". Since by definition I(T.X) => I(T) we can conclude that (for

T { GOLEFT and X = GORIGHT) we have I(GOLEFT) = true. A similar problem

exists concerning the legality of traces ending with a call on GOLEFT.

230

Statements (2) and (6) eliminate the possibility of insertion to the

left of the leftmost entry. We can move the window in our cover over

the leftmost entry but not further. An insert would then make EXLEFT

true again (statement (19)) but we would have inserted to the right

of the leftmost entry.

The mnemonic "EMPTY" was an obstacle to a straightforward solution.

Imagine that one moves left from the left end. By statement (18), EMPTY

would become true although there are entries in the data structure.

We will eliminate these problems by renaming "EMPTY" to "OUT" and allow-

ing one move to the left beyond the left end. The value of CURRENT is

then undefined, while OUT is true, EXLEFT is false, and EXRIGHT is true.

This is in contrast to the new initial state (no entries in the data

structure) where EXRIGHT is false.

A problem that initiated the development of the specification teohnique

presented in this paper is best formulated by posing the following ques-

tion.

How can the designer be sure that he specified the effects of all traces

that he wants to be executable programs?

Or, put in other way and applied to our example, how do we determine

the subset of

(INSERT(e) ,DELETE,ALTER(e) ,GOLEFT,GORIGH-T,

CURRENT,OUT,EXLEFT,EXRIGHT)*,

(where "*" is the Kleene star) that comprises the set of executable,

i.e. legal traces? (Rules for including V-functions are easy to find

and are therefore not considered now.)

We now note some quantitative properties of such traces: Let IX1 denote

the number of calls on X in a given trace. Then for all legal traces:

~GOLEFTI > IGORIGHTI

IINSERTI >!GOLEFTI -]GORIGHTI

IINSERTI > IDELETEI+ IGOLEFTI - IGORIGHTI

These relations alone, howeverr help little. The obviously unreasonable

trace

GORIGHT.GOLEFT.GOLEFT.INSERT(a).INSERT(b)

satisfies the above inequalities.

We therefore have to make some additional assertions to characterize

the set of legal traces.

The specification of Example 6 did not capture the language of the mod-

ule, as we intuitively understand it.

231

Example 7, Table/List Module with Unlimited Capacity

Syntax

O-Functions:

V-Functions;

INSERT:
ALTER:
DELETE:
GOLEFT:
GORIGHT:

CURRENT:
OUT:
EXLEFT:
EXRIGHT:

<entry> x <TL> -> <TL>
<entry> x <TL> -> <TL>
<TL> -> <TL>
<TL> -> <TL>
<TL> -> <TL>

<TL> -> <entry>
<TL> -> <boolean>
<TL> -> <boolean>
<TL> -> <boolean>

Legal Traces

(I) l(T) => %(T.INSERT(a))
(2) I(T) => %(T.INSERT(a).GO~LEFT)
(3) I(T.GOLEFT)<=> %(T.CURRENT)

Equivalences

(4)
(5)
(6,,)
(7)
(8)
(9)
(Io
(I i

(12

T.OUT E T
T.EXLEFT z T
T,EXRIGHT ~ T
I(T.CURRENT) => T.CURRENT ~ T
k(T.GOLEFT) => T.GOLEFT.GORIGHT s T
T.INSERT(a),DELETE ~ T
T,INSERT(a).GOLEFT.DELETE ~ T.DELETE.INSERT(a),GOLEFT
%(T) => T.INSERT(a).INSERT(b).GOLEFT E

T.INSERT(b),GOLEFT.INSERT(a)
T.ALTER(a) ~ T.DELETE.INSERT(a)

Values

13) V(OUT) = true
14) V(EXLEFT) = ~(EXRIGHT) = false

15) %(T) => V(T.INSERT(a),CURRENT) = a
16) %(T) => V(T.INSERT(a).OUT) = false
17) %(T) => V{T.INSERT(a).EXLEFT) = not V(T.OUT)
18) %(T) => V(T.INSERT(a),EXRIGHT) = V(T.EXRIGHT)

19) %(T.CURRENT) => V(T.INSERT(a).GOLEFT.CURRENT) = V(T.CURRENT)
20) %(T) => V(T.INSERT(a).GOLEFT.OUT) = V(T.OUT)
21) %(T) => V(T.INSERT(h0.GOLEFT.EXLEFT) = V(T.EXLEFT)
22) %(T,GOLEFT) => V(T.GOLEFT.EXRIGHT) = true

232

For example:

I (INSERT(a).INSERT(b) .GOLEFT.GOLEFT)

Other examples can easily be found.

= false

C. The Current Specification for the T/L Module

After discovering the above errors (over a period of several months)

we made an observation that allowed us to write the specification given

in Example 7.

Any legal trace for the T/L module must be equivalent to a trace in

which there is a (possibly empty) sequence of INSERTs followed by any

number of repetitions of the sequence INSERT.GOLEFT. This observation

is based on our intuitive model of the object that we are trying to

specify. (We have no other possible basis). We could create the table

contents ao, a I ... a i ... aN, where a i is the current entry by suc-

cessivly inserting ao,a I ... a i and then executing INSERT(ai).GOLEFT

for j = n, n-1 i+1. Each INSERT(ai) .GOLEFT sequence leaves CURRENT

unchanged but inserts a block to the right of current.

Traces in this form are the normal form traces of this module. We will

therefore have to provide a set of assertions that allow to transform

any legal tra~e to such a normal form trace.

The assertions labeled "legal traces" in Example 7 ((I) - (3)) state

that all traces in normal form (and some additional traces) are legal.

We also indicate that CURRENT may be called whenever a GOLEFT would be

allowed.

The assertions (4) - (7) state that the V-functions do not effect any

changes on the module. (8) and (9) give the obvious facts that GOLEFT

can be cancelled by a GORIGHT that follows it and that an INSERT can be

cancelled by a DELETE that follows it. Note that (8) only applies when

GOLEFT is legal.

If our specification is a good one, we should be able to show that every

legal trace is equivalent to a trace in normal form. The V-functions can

be trivially deleted. We are able to delete a DELETE if it immediately

follows an INSERT and a GORIGHT if it follows immediately after a GOLEFT.

Using statement (11) we can move a GOLEFT right or left through a se-

quence of INSERTs to get an equivalent trace. That will allow us to

remove instances of DELETE by bringing an INSERT up to them if only

GOLEFTs intervene. Using assertion (10) one may transform sequences

containing GOLEFT.DELETE and ~ELETE.GOLEFT into equivalent sequences

233

where either the DELETE has been moved to the left (bringing it closer

to the INSERT that it cancels) or the GOLEFT has been moved to the right

(bringing it close to any GORIGHT that would cancel it) . Assertion (12)

allows the removal of all occurrences of ALTER. Repeated application of

these rules allows the removal of all functions except INSERT and GOLEFT.

Completeness of the Current Specification

To demonstrate completeness we examine primarily the value section (13) -

(22). (13) and (14) specify the initial values of all V-functions except

CURRENT. The failure to specify an initial value for CURRENT is not an

instance of incompleteness because CURRENT is not a legal trace. Using

(15) - (18) we have specified the values of all four V-functions for

traces containing only INSERT.

Using (19) - (22) we can determine the values of the V-functions for

any trace of the form T.INSERT~ .GOLEFT provided that we know the values

of those functions after T. It follows that we know the values for any

trace in the normal form. Since the equivalence statements allow any

legal trace to be reduced to an equivalent trace in that form, the spe-

cification is complete.

Consistency

Demonstration of consistency is more complex. It is quite clear that

the value section ((13) - (22)) is in itself consistent, but it is

necessary to show that the transformations allowed by the equivalence

section that produce a trace ending in a given V-function result in

traces with the same value. Such a proof is beyond the scope of this

paper.

VI. Conclusion

It is clear that when we entered into the design of the T/L module inter-

face we did not expect the difficulties that we encountered. Each pro-

234

posal seemed intuitively obvious and the formal specifications that we

wrote appeared to correspond to our intuition. Several people examined

the specifications (which were written using weakest preconditions);

all thought that they were acceptable. The type~ of difficulties de-

scribed in connection with the first version of the T/L module specifi-

cation came as a complete surprise. We had expected that writing the

formal specifications was "only a formality" for so simple a module.

Our first conclusion then is simply that writing the formal specifi-

cations is useful even for simple modules. Had we been forced to make

the change from the first version to the second version after coding

was underway, it would have been expensive in terms of the amount of

code (both in the module and in programs that use the module) that

would have needed revision.

Once we became aware of the difficulties, we found attempts to convince

ourselves of the correctness of new versions to be extremely frustrat-

ing. The specifications that were written (using predicate transformers

for programs consisting of calls on the functions) did not lend them-

selves well to examination for completeness and consistency. The mathe-

matical model underlying those specifications is complex and there were

difficulties instrinsic in the decision to talk about programs rather

than traces. Although we have not yet produced a complete formal proof

that this specification is complete and consistent, the intuitive justi-

fications are far more convincing than our more formal arguments about

the old specifications. Our second conclusion therefore is that the

concept seems to be superior ±o other forms of data abstract specifi-

cation known to us.

It is becoming popular among software specialists to speak of "front

end" investment. The proposal is that by investing time and intellectual

energy in the early d~sign phase one can reduce the overall systems

costs because of time saved at the later stages. A weakness of the ma-

jority of such proposals is that they provide little in the way of

specific suggestions about what to do at those early stages. There is

little evidence that the effort invested in the early stages will ac-

tuelly pay off. There is lots of evidence that just writing vague state-

ments of good intentions ("The system will have a user-oriented inter-

face") will not pay off. In this paper we have made a specific proposal

for the use of that "front end" energy. We have shown how to write such

specifications, and indicated how one may evaluate them for completeness

and consistency.

Further work on verifying properties of these specifications is clearly

235

necessary. As Price has shown [21], there are clear advantages to doing

as much verification as possible before implementation begins. Similar

views are found in [18], but Price included some (machine assisted)

proofs.

Acknowledgement

The authors are grateful to Professor D. Stanat for his advice while

the research was being performed and on the writing of this paper. Dave

Weiss, Lou Chmura, John Shore, and Janusz Zamorski also made helpful

comments. This research was supported by the U.S. Army under contract

#DAAG 29-76-G-O240. W. Bartussek was also supported by the German Aca-

demic Exchange Service (DAAD) under stipend #4-USA-CDN-AUS-NZ-3-EB.

REFERENCES

[l] Parnas, D.L. "Information Distribution Aspects of Design Metho-
1; dology. Proc. IFIP Congress, 1971

[2] Parnas, D.L. "On the Criteria to be Used in Decomposing Systems
into Modules." Communications of the ACM (Programming Techniques
Department), December 1972.

[3] Parnas, D.L., Shore, J.E., and D. Weiss. "Abstract Types Defined
as Classes of Variables." Proc. Conference on Data: Abstraction,
Definition, and Structure, pp. 22-24, Salt Lake City, Utah,
March 1976.

[4] Floyd, R.W. "Assigning Meanings to Programs." In "Mathematical
Aspects of Computer Science" (J.T. Schwartz, ed.). Proc. Symp. of
Applied Mathematics, Vol. 19, American Math. Society, Providence,
1967,]9-32.

[5] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming."
Comm. ACM 12, iO. October ~969, 576-583.

[6] Dijkstra, E.W. "Guarded Commands, Nondeterminancy, and the Formal
Derivation of Programs." CACM 18, 8, August 1975.

E7] Dijkstra, E.W. ~ Discipline of Programming. Prentice Hall, 1976.

[8] Parnas, D.L. "A Technique for Software Module Specification with
Examples." Comm. ACM, May 1972.

[9] Guttag, J. "The Specification and Application to Programming of
Abstract Data Types." Ph. D. Thesis, CSRG TR 59, University of
Toronto, September 1975.

[10] Guttag, J. "Abstract Data Types and the Development of Data
Structures." SIGPLAN/SIGMOD Conference on DATA: Abstraction,
Definition and Structure (to be published in CACM).

Ill] Parnas, D.L. and W.R. Price. "The Design of the Virtual Memory
Aspects of a Virtual Machine" Proceedi~s of the ACM SIGARCH-SIGOPS
Wbrkshop on Virtual Computer SyStems, March i9737

[;2] Parnas, D.L. and W.R. Price. "Using Memory Access Control as the

236

Only Protection Mechanism." Proc. of International Workshop on
Protection in Operating System , 13-]4 August, IRIA.

[13] Roubine, O. and L. Robinson. "Special Reference Manual" (Second
Edition), Technical Report CSG-45, Stanford Research Institute,
Menlo Park, Calif.

[14] Liskov, B. and V. Berzins. "An Appraisal of Program Specifications."
Research Direction in Software Technology (P. Wegner, ed.). To be
published by MIT Press.

[15] J. Guttag. Private communication, 1976.

[16] Parnas, D.L. and H. Wuerges. "Response to Undesired Events in
Software Systems." Proc. of the 2nd International Conference on
Software Eng.ineering, 13-15 October 1976, San Francisco, California.

[]7] Parnas, D.L., Handzel, G. and H. Wuerges. "Design and Specification
of the Minimal Subset of an Operating System Family." Presented at
2nd International Conference on Software Engineering, 13-15 October
1976; published in special issue of IEEE Transactions on Software
Engineering, December 1976.

[18] Neumann, P.G., et.al. A Provably Secure Operating System: The
System, Its App!ications, and proofs. Final Report, Stanford Re-
search Institue, 11 February]977, Menlo Park, California

[19] Parnas, D.L. "The Use of Precise Specifications in the Development
of Software." Proof . IFIP Congress |977, North Holland Publishing
Company.

[20] Parnas, D.L. and G. Handzel. "More on Specification Techniques for
Software Modules." Technical Report, Technische Hochschule Darm-
stadt, Darmstadt, West Germany, February 1975.

[21] Price, W.R. "Implications of a Virtual Memory Mechanism for Im-
plementing Protection in a Family of Operating Systems." Technical
Report (Ph. D. Thesis), Carnegie-Mellon University, June 1973,
AD766292.

