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ABSTRACT 

A specification for a software module is a statement of the requirements 

that the final programs must meet. In this paper we concentrate on that 

portion of the specification that describes the interface between the 

module being specified and other programs (or persons) that will inter- 

act with that module. Because of the complexity of software products, it 

is advantageous to be able to evaluate the design of this interface with- 

out reference to any possible implementations. The first sections of 

this paper present an approach to the writing of black box specifications, 

that takes advantage of Guttag's work on abstract specification [91. 

Then we illustrate it on a number of small examples, and discuss checking 

the completeness of a specification. Finally we describe a case history 

of a module design. Although the module is a simple one, the early spe- 

cifications (written using an earlier notation) contained design flaws 

that were not detected in spite of the involvement of several persons 

in a series of discussions about the module. These errors are easily re- 

cognized using the method introduced in this paper. 
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The Role of Specifications in Software Design 

We are concerned with the building of software products that are so large 

that we cannot manage the task unless we reduce it to a series of small 

tasks. We further assume that each of the subtasks (which we call mod- 

ules) will focus on one portion of the design and hide the details of 

that aspect of the design from the rest of the system. This has become 

known as the "information hiding principle," encapsulation, data abstrac- 

tion, etc. [1,2,33. The design process will only go smoothly if the in- 

termodule interfaces are precisely defined. Ideally, the interface de- 

scription states only the requirements that the component must satisfy 

and does not suggest any other restrictions on the implementation. We 

term such a description of the requirements a ~pecification [193. We 

also note that any software product is but a module in a still larger 

system; its requirements should be specified as precisely as each of 

its components. 

For a trouble-free development process it is also necessary that one be 

able to verify the reasonableness of decisions before proceeding to make 

further decisions. If we reverse one of our decisions later (or find 

that it was inadequately described), we may have to discard all work 

done subsequent to that decision. If we have written a formal specifi- 

cation for a module, we should be able to verify that the specification 

has such basic properties as consistency and completeness. These aspects 

will be discussed later in this paper. 

What Are Specifications? 

A fair amount of confusion has been caused by the fact that the word 

"specification" is used with two distinct meanings in the computer liter- 

ature. The dictionary definitions of the word "specification" cover any 

communication which provides additional information about the object 

being described - any communication that makes the description of the 

object more specific. In engineering usage, the word has a narrower 

meaning. A specification is a precise statement of the requirements 

that a product must satisfy. A description of the number of ones in 

the binary representation of a computer program is a specification in 
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the general sense but it is rarely a specification in the engineering 

sense. 

In the remainder of this paper we will use the engineering sense of 

"specification." 

Brief History of Work on Specifications 

We distinguish two classes of specifications for software, which we shall 

denote as P/P (Precondition-Postcondition) and DA (Data Abstract). P/P 

specification techniques are based on the pioneering work of Floyd [43 

and subsequent work by Hoare [53, Dijkstra [63, and others. P/P tech- 

niques describe the effect of a program in terms of predicates that de- 

scribe acceptable states of data structures. The Precondition is a 

predicate that describes the states in which the program may be started. 

The Postcondition describes the states after program termination. Dijks- 

tra's predicate transformers replace both of these predicates by a rule 

for transforming a postcondition into a precondition [6,73. P/P speci- 

fications describe the change of state that the program must effect, 

but not how to effect it. Usually, the effect of each individual program 

is described separately and in terms of the data structure accessed by 

the program. 

In DA specifications the specification of a module does not refer to 

the data structure used within a module. That data structure is not part 

of the requirement; it is part of the solution. It does not belong in a 

statement of requirements because it depends on implementation decisions. 

Early work on specifications that "hide" implementation data structures 

was done by Parnas [83; more recent work by Guttag [9,101 put a sounder 

mathematical basis behind the work and suggested some notational improve- 

ments. 

The DA specification work is motivated by a desire to give a "black-box" 

description of a software module. The user is told only of a set of 

programs that access the data structure within the module. Some of these 

(here termed V-functions) return values that give information about parts 

of the data structure. Others (here termed O-functions) change the in- 

ternal data. In most cases, the execution of an O-function will even- 

tually cause a change in the value of a V-function. The effects of the 

call of the O-function may not be visible in terms of V-function values 

until some other O-functions have been executed. 

Parnas's early work was done on an ad hoc basis. The notation was de- 
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veloped to meet the needs of specific examples [8]. The early examples 

had the property that the effects of O-functions were immediately vis- 

ible and could be described in terms of the new values of the V-func- 

tions. Only in later examples did Parnas and Handzel [20] seek to extend 

these techniques to cases where there were delayed effects. 

The problem of delayed effects led Price and Parnas E21,11,12] to in- 

clude "hidden" functions in their specifications. The "hidden" functions 

are not available outside the black box. They need not be implemented; 

their purpose is purely descriptive. The effects of O-functions are 

described in terms of the values of the hidden functions. These hidden 

functions are still in use at SRI E13] and elsewhere~ 

In spite of all disclaimers, the hidden functions do suggest data struc- 

tures and possible implementations of the program. Liskov [14] and others 

have suggested writing specifications simply by giving possible imple- 

mentations - i.e., by giving a program whose behaviour :would be accept- 

able and asking that the programs produced be "equivalent." 

The equivalent program approach and the hidden functions disturb us. 

They violate the basic motivation for DA specifications by providing 

information that is not a requirement. Some of the properties of an 

hypothetical implementation may not be required of the actual program. 

"One must be very careful not to read too much into such specifications" 

[14]. 

Guttag's method does not rely on hidden functions to describe delayed 

effects. His papers [9,10] describe a systematic way of writing the 

specification. However, there were cases that he could not handle with- 

out the introduction of hidden functions. One of those examples, the 

stack with overflow, will be used later in this paper E153. 

In this paper, we propose yet another approach. It allows the specifi- 

cation of modules with delayed or hidden effects without any reference 

to internal data structures. The only statements made are about the 

effects of calls on user accessible O-functions or user accessible V- 

functions. 

When Is a D/A Specification Complete? 

For simplicity, we assume that our modules are always created in the 

same initial state and could be returned to that state (reinitialized) 0 

We further assume that for each access program (O-function or V-function) 

there is an applicability condition, if this condition holds, the program 
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may be called. In states where the condition does not hold, the module 

will "trap" or refuse to return through the normal exit [163. Values of 

V-functions after a trap occurs will not be discussed in this paper. 

A trace of a module is a description of a sequence of calls on the func- 

tions starting with the module in the initial state. A trace is termed 

a lena ! trace if calling the functions in the sequence specified in the 

trace with the arguments given in the trace when the module is in its 

initial state will not result in a trap. A specification completely de- 

termines the externally visible behaviour of a module if for every legal 

trace ending with a call of a V-function, the value returned by that V- 

function can be derived from the specification. We term such a specifi- 

cation complete. A specification is consistent if only one value can be 

derived. 

There are situations in which one may want a specification that is not 

complete in the above sense. In this paper, however, we will concern 

ourselves with the problem of recognizing complete and consistent spe- 

cifications. 

II. A Formal Notation for Specification Based on Traces 

A specification will consist of two main parts. The first part, which 

we call syntax, gives the names of all of the access programs, and the 

type of each of the parameters. For O-functions we will indicate that 

it changes an object of the type being specified. For V-functions we 

will give the type of value that it delivers. This information is nec- 

essary for recognizing whether a program using the functions could be 

compiled by a typical compiler. The notation used is that used by Guttag 

E9,10~. 

The second part of the specification will be called the semantics. It 

consists of three types of assertions. 

I. Assertions about trace legality. These assertions identify a subset 

of the set of legal traces, that is a set of traces such that calling 

the functions as described in the trace (starting with a module in its 

initial state) will not result in traps. Additional legal traces may 

be implied by the equivalence assertions (see below). Any traces that 
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cannot be shown to be legal using these assertions will be considered 

illegal traces. 

2. Assertions about the equivalence of traces. These assertions specify 

an equivalence relation on traces, such that (I) equivalent traces 

have the same legality (either both are legal or both are not legal) 

and (2) that they have the same externally visible effect on the 

module or data item. These assertions of equivalence will often en- 

able us to extend the class of traces known to be legal. Equivalence 

is usually weaker than equality. Two traces are equal if they are 

identical in every respect (the same sequence of function calls with 

the same parameters). 

3. Assertions about the values returned by V-functions at the end of 

traces. These statements describe the values delivered by V-functions 

for a ~useL of the set of legal traces. The traces ;~ ...... direct- 

ly in this section of a specification are called normal form traces. 

Using the equivalence statements, one can derive the values of V- 

functions at the end of other traces by finding an equivalent normal 

form trace. 

Remark: In our examples, we have assumed that equality is defined 

for values of the types returned by the V-functions. In the unlikely 

event that we have no equality operator, V-function values would have 

to be described in terms of the operators that are available. 

Since assertions about values of V-functions are made only using 

normal form traces, assertions about equivalence of traces will also 

be used to show that any legal trace can be transformed to a normal 

form trace. 

The three classes of assertions together with the syntax definition 

form a specification or statement of requirements. An implementation 

will be considered correct if and only if the assertions are true of 

it. Any property that one can deduce from the assertions must be a 

property of any correct implementation. 

A program that uses the module in such a way that the program's cor- 

rectness depends only on properties of the module that can be deduced 

from the specification's assertions will be able to use any correct 

implementation of the module. 
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Notation 

(I) Notation for describing the syntax (taken from Guttag). 

<Function Name>: <type of parameter>X,...X<type of parameter>-> 

<type of result> 

If the module maintains only one data item, that parameter need 

not be explicitly named in each function call. 

(2) Notation for describing traces. 

A trace will be represented as a string from the language de- 

scribed by the following syntax. The parsing of a trace into com- 

ponent subtraces is deliberately ambiguous. The trace denotes 

execution of the functions named in a left to right sequence. 

<subtrace> ::= LJ I<syntactically correct function call>I 

<subtrace>.<syntactically correct function call> 

<trace> ::= LJ I<subtrace>[.<subtrace>], 

[<T>]* denotes any number of occurrences of T . 

,,u- denotes an empty trace. Note that the symbol ,,u ...... " never 

occurs in a trace. 

We will sometimes use the following shorthand notation. 

Let Pi' m4isn, be a list of actual parameters and X(Pi) a syntac-" 
N 

tically correct function call. Then XM(Pi) denotes the same as 

X (pM) .X (PM+I) ..... X (PN-I) .X (pN) 

N is simply X.X .... X 
If the list of parameters is empty, then X M N denotes the empty 
with n-m+1 repetitions of X.~ If M>N, then X M 

trace. For N a I we write X~(Pi) as xN(pi) . 

It is always assumed that a function call correctly adheres to 

the rules of the syntax section. 

(3) Describing !egality of sequences. 

We introduce the predicate I(T) where T is a trace. I(T) is true 

if T is a legal trace. The appearance of the assertion I(T) in a 

specification is a requirement that calling the functions as de- 

scribed in T will not result in a trap. 

Assuming that the module will not "trap" if it is not used, we 

always assume i(LJ) = true. (The empty trace is always legal). 

It follows from our discussion of traces that if T is a trace 
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and S is a subtrace, then 

(T.S) => I(T). 

In other words, the prefix of any legal trace is a legal trace. 

Describing the values of V-functions at the end of traces. 

If T is a legal trace, X is a syntactically correct call on a V- 

function, and I(T.X) is TRUE, then V(T.X) describes the value de- 

livered by X when called after an execution of T. 

Describing equivalence of two traces. 

If T I and T 2 are traces then T~ ~ T 2 is an assertion 

that: 

for any subtrace S (including the empty subtrace) , 

I(TI.S)<=>I(T2.S), 

and 

for any subtrace S (including the empty subtrace) and V-function X, 

I(T I.S.X) => V(T I.S.X) = V(T2.S.X) 

Then " ~" is an equivalence relation. Note that the equivalence 

of two traces does not imply that they are the same in every re- 

spect, only in those respects specified above. F~r example, one 

may not conclude that two equivalent traces have the same length 

or that the prefixes of equivalent traces are equivalent. Note too 

that the above does not define a particular equivalence relation; 

that is done in each specification. 

In the following specifications we have omitted universal quanti- 

fiers for variables representing traces (T) and values of specific 

types. 
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Some Simple Examples (To be explained and discussed in the next 

Section.) 

Example I. A Stack for Integer Values 

Syntax: 

PUSH: 

POP: 

TOP: 

DEPTH: 

Legality: 

(I) 

(2) 

<integer> x <stack> -> <stack> 

<stack> -> <stack> 

<stack> -> <integer> 

<stack> -> <integer> 

I(T) => I(T.PUSH(a)) 

I (T.TOP) <--> I (T.POP) 

Equivalences: 

(3) T.DEPTH ~ T 

(4) T.PUSH(a) .POP H T 

(5) I(T.TOP) => T.TOP ~ T 

Values: 

(6) I(T) => V(T.PUSH (a) .TOP) = a 

(7) I~(T) => V(T.PUSH(a).DEPTH) = I + V(T.DEPTH) 

(8) V(DEPTH) = 0 
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Syntax: 

ADD: 

REMOVE: 

FRONT: 

<integer> x <queue> -> <queue> 

<queue> -> <queue> 

<queue> -> <integer> 

Legality: 

(I) l(T) => I(T.ADD(a)) 

(2) I(T) => I (T.ADD(a) .REMOVE) 

(3) ~ (T .REMOVE) <=> 1 (T .FRONT) 

Equivalences : 

(4) I(T.FRONT) => T.FRONT - T 

(5) I(T.REMOVE) => T.ADD (a) .REMOVE - T. 

(6) ADD(a) .REMOVE - LJ 

Values: 

REMOVE. ADD (a) 

(7) V(ADD(a) .FRONT) = a 

(8) I(T.FRONT) => V(T.ADD(a).FRONT) = V(T.FRONT) 

The above specification assumes that only one queue exists and omits 

the queue parameter in the calls on the access programs. 
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Example 3. Sorting Queue = (SQUEUE) 

Syntax: 

INSERT: 

REMOVE: 

FRONT: 

Legality: 

(I) 

(2) 

(3) 

<integer> x <squeue> -> <squeue> 

<squeue> -> <squeue> 

<squeue> -> <integer> 

(T) => I(T.INSERT(a)) 

(T) => I(T.INSERT(a) .REMOVE) 

(T. FRONT ) < = > ~ ( T. REMOVE ) 

Equivalences : 

(4) I (T.FRONT) => T.FRONT 5 T 

(5) T.INSERT(a) .INSERT(b) -= T. INSERT (b) . INSERT (a) 

(6) INSERT(a) .REMOVE - LJ 

(7) I(T.FRONT) cand (V(T.FRONT) -< b) => 

T. INSERT (b) .REMOVE -- T 

Values: 

(8) V (INSERT (a) .FRONT) = a 

(9) I(T.FRONT) cand V(T.FRONT) -< b => 

V(T.INSERT(b) .FRONT) = b 

Note the value of X cand Y is false if X is false, and the value of X 

cand Y is the value of Y if X is true. Y need not have a defined value 

if X is false. 
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Stack that Overflows (Stac) 

Syntax : 

PUSH: <stac> x <integer> -> <stac> 

POP: <stac> -> <stac> 

VAL: <stac> -> <integer> 

Legality: 

For all T, I(T) 

Equivalences : 

O < N -< 124 => P u s H N ( a  i )  .POP - PUSH N-1 (a i )  

PUSH(ao).PUSH 1124" (a i) - PUSH 1124(ai) 

T.VAL =- T 

N >- 0 => popN.PuSH(a) = PUSH(a) 

Values : 

V(T.PUSH(a) .VAL) = a mod 255 
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Example 5. Alternative Formal Specifications (Gutta~ Type) for STAC 

This alternative includes two "hidden functions," which are marked in 

the syntactic specifications with asterisk. 

TYPE: 

stac 

SYNTACTIC SPECIFICATION: 

NEWSTAC : 

PUSH (s, I) : 

POP (s) : 

VAL (s) : 

SPSLFT (s) : 

*ADD (s,I) : 

*DEQ (s) : 

-> <stac> 

<stac> X <inte@er> -> <stac> 

<stac> -> <stac> 

<stac> -> <integer> 

<stac> -> <!nte@er> 

<stac> X <integer> -> <stac> 

<stac> -> <stac> 

SEMANTIC SPECIFICATION: 

SPSLFT (NEWSTAC) = 124 

SPSLFT(ADD(s,I)) = SPSLFT(s) - I 

POP (NEWSTAC) = NEWSTAC 

POP (ADD (s , I) ) = s 

DEQ (NEWSTAC) = NEWSTAC 

DEQ (ADD(s,I)) = if SPSLFT(s) = 124 

then s 

else ADD(DEQ(s) ,I) 

PUSH(s,I) = if SPSLFT(s) > 0 

then ADD(s,I) 

else ADD(DEQ(s) ,I) 

VAL (NEWSTAC) = undefined 

VAL(ADD(s,I)) = I rood 255 

,denotes a hidden function 
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Discussion of the Simple Examples 

Example I is the classic example for abstract specifications. It is a 

stack with unlimited capacity. The legality section shows that any se- 

quence of PUSH operations is a legal trace. The first statement in the 

value section shows the value of TOP after any trace that ends with a 

PUSH. (7) shows that PUSH always increments the value of DEPTH. (8) 

specifies the initial value of DEPTH to be zero. The equivalence section 

allows us to reduce any legal trace with PUSH, TOP, and POP to one that 

is equivalent but contains only PUSH operations. We will be able to 

determine the value of the V-functions for any legal trace by making 

such reductions. 

In Example 2 (an integer queue) the "legality" section allows traces 

that consist of any number of ADDS but each occurrence of REMOVE or 

FRONT must be preceded directly by an ADD. However, the equivalence 

statements allow other traces because the sequence ADD.REMOVE may either 

be replaced by REMOVE.ADD or (at the start of a trace) deleted and the 

resulting trace will be equivalent to the original trace. The value 

section shows the value of FRONT after (a) an item is added to an empty 

queue and (b) an item is added to the queue that already has a value 

of FRONT (same as before). To find the value of FRONT after a trace that 

has REMOVES in it, one must apply (5) and (6) repeatedly until one has 

an equivalent trace that does not contain a REMOVE. Each application of 

(5) can move a REMOVE to the left one place. When REMOVE follows the 

first ADD directly, both can be deleted using (6). 

In Example 3 we have a queue that always shows the largest item at the 

front. The largest object is also the one removed by REMOVE. The legal 

traces are the same as those in Exampl~ II (except for an obvious change 

of function names). The most important difference is (5) in which it is 

asserted that the order of two consecutive inserts is irrelevant. Asser- 

tion (7) shows the effect of a REMOVE after an INSERT that had a para- 

meter larger than the value at the front of the SQUEUE. In that case it 

simply cancels the effect of the INSERT. However, because of (5), we 

can always rearrange the order of INSERTs so that the last one is the 

one that inserts the largest value. This allows us to use (7) for any 

REMOVE at the end of a trace with at least two inserts in it. (6) de- 

scribes the effect of REMOVE in the case that it is preceded by only 

one INSERT. The value section shows us the value of FRONT after an 
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INSERT in an empty queue and after inserting a value that is greater 

than the value of FRONT. 

The discussion of the first three examples is intended to show that the 

formal specifications do correspond to our intuitive notions of the way 

that these modules perform. The correspondence with intuition must, of 

necessity, remain informal. The demonstration of completeness can be 

performed systematically. This will be discussed lateron. 

The fourth example is the problem that John Guttag could not specify 

without the use of hidden functions [153 (which follows from restrictions 

of the mathematical model underlying his technique). His specification 

is included as Example 5. We believe that the b~vity of our specifi- 

cation shows the advantages of the trace method. This is a situation 

in which the values of V-functions for some legal traces are deliberately 

not defined. Any syntactically correct trace is legal. The module will 

never "trap". However the value of VAL initially (or after a POP on an 

"empty stack") is not defined. The implementation can deliver any value 

in these situations without violating the specifications. If a value, 

I, greater than 255, is inserted only I mod 255 will be stored. 

The above examples show a number of advantages over previous methods of 

DA specifications. There appears to be no need for hidden functions; 

the specifications are quite compact and the individual statements are 

simple. The derivations needed to demonstrate completeness are sometimes 

quite involved but they need not be performed during the implementation 

or during the verification that an implementation is correct. 

The ideas are rather new and we are aware of a number of important un- 

answered questions. Nonetheless, we believe that this report demonstrates 

that the method is as good as any of the previously published ones and 

can help to discover design errors early in the design process. 

V. A Compressed History of the Development of an Abstract Specification 

In this section we present the history of the development of an abstract 

specification for a "table/list"-(T/L) module. The programs offered by 

this module support the processing of linearly ordered data structures, 
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regardless of whether they are implemented as tables or lists. This 

module is currently implemented to help in generating address trans- 

lation tables as we need them for a virtual memory mechanism within a 

family of operating systems [173. It is also expected that this speci- 

fication can be used for various other table or list handling purposes. 

An Informal Picture of the T/L Module 

Because it is the purpose of this report to introduce a method of de- 

scribing such modules, we must begin with an intuitive description of 

our example. One physical implementation of this module would be by 

means of a set of children's blocks where it is possible to write one 

"entry" on the upper surface. The blocks are arranged in a single row 

and covered with an opaque lid with a single window. Through this window 

one may read the entry on a single block, insert and remove blocks, or 

change the entry written on the block that shows through the window. The 

entry on the block that shows through the window is referred to as the 

current entry. Because the cover is opaque it is not possible to tell 

how many blocks are currently under it, but the cover is fitted with 

signals that tell whether or not there is a block to the right of the 

current entry, whether or not there is a block to the left of the current 

entry, and whether there are any blocks under the cover at all. 

The operations that we want to perform include reading the value of the 

current entry, moving the lid one place to the right, moving the lid 

one place to the left, moving the lid and all blocks at the right hand 

side of the current block to the right so that a new current block may 

be inserted through the window, and removing the current block (moving 

the lid and all blocks to the right of the deleted block one place to 

the left). 

It was our goal that all operations that could be easily performed with 

the physical model described above be allowed by our specification. 

In our specification we will have five operations (O-functions): INSERT, 

DELETE, ALTER, GOLEFT, and GORIGHT. ALTER will just be a shorthand for a 

sequence of DELETE and INSERT. The first two indicators mentioned above 

will be named EXLEFT(EXist entries to the LEFT), EXRIGHT, and the third 

is represented by EMPTY. The current entry will be available through 

the V-function CURRENT. The precise relationship among the V-functions 

and the way that their values are changed by the module's operations 

will be described in the specifications. 
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Example 6. (Incorrect) 
Module 

Version of a Specification for a Table/List 

Syntax of Functions 

O-Functions: INSERT(e): 
DELETE: 
ALTER(e): 
GOLEFT: 
GORIGHT: 

<entry> x <TL> -> <TL> 
<TL> -> <TL> 
<entry> x <TL> -> <TL> 
<TL> -> <TL> 
<TL> -> <TL> 

V-Functions: CURRENT: 
EMPTY: 
EXLEFT: 
EXRIGHT: 

<TL> -> <entry> 
<TL> -> <boolean> 
<TL> ~ <boolean> 
<TL> -> <boolean> 

Legal Traces 

(I) %(T) => %(T.INSERT(e)) 
(2) %(T) => X(T.INSERT(e).CURRENT) 
(3) %(T.CURRENT)<=> %(T.EXLEFT) 
(4) %(T.OURRENT)<=> X(T.EXRIGHT) 
(5) X(T.CURRENT)<=> X(T.ALTER(e)) 
(6) %(T.CURRENT)<=> %(T.INSERT(e).GOLEFT) 
(7) %(T.GOLEFT) <=> %(T.GOLEFT.GORIGHT) 

Equivalences 

(8) 
(9) 
(1o) 
(1 t )  
(12) 
(13) 
(14) 

T.EMPTY ~ T 
T.INSERT(e).DELETE ~ T 
T.GOLEFT.GORIGHT ~ T 
T.ALTER(e) ~ T,DELETE.INSERT(e) 
%(T.CURRENT) => T.CURRENT ~ T 
%(T.EXLEFT) => T.EXLEFT ~ T 
%(T.EXRIGHT) => T.EXRIGHT ~ T 

Values 

(15) V(EMPTY) = true 
(16) %(T) => V(T.INSERT(e);£URRENT) = e 
(17) %(T) => V(T.INSERT(e)eEMPTY) = false 
(18) X(T) cand (V(T.EMPTY) = true) => V(T.INSERT(e).EXLEFT) = false 
(19) X(T) cand (V(T.EMPTY) = false) ^ (V(T.EXLEFT) = false) => 

V(T.INSERT(e).EXLEFT) = true 
(20) %(T) => V(T.INSERT(e).EXRIGHT) = V(T.EXRIGHT 
(21) %(T.GOLEFT) => V(T.GOLEFT.EXRIGHT) = true 
(22) %(T,GORIGHT) => V(T.GORIGHT.EXLEFT) = true 
(23) %(T.ALTER(e)) => V(T.ALTER(e).CURRENT) = e 
(24) %(T.ALTER(e)) => V(T.ALTER(e).EMPTY) = V(T.EMPTY) 
(25) %(T.ALTER(e)) => V(T.ALTER(e).EXLEFT) = V(T.EXLEFT) 
(26) %(T.ALTER(e)) => V(T.ALTER(e).EXRIGHT) = V(T.EXRIGHT) 
(27) V(T.INSERT(e).GOLEFT.CURRENT) = V(T.CURRENT) 
(28) V(T.INSERT(e).GOLEFT.EXLEFT) = V(T.EXLEFT) 



228 

A. The First Version (Example 6) 

We do not display the original specification but instead present a trans- 

lation using traces. We were not using traces for specification purposes 

at the time that the original was written. The use of traces makes many 

deficiencies in the first version obvious. They were originally dis- 

covered after much hard labor. We show an abbreviated histroy of the 

development to provide evidence controverting the claim that abstract 

specifications state "only the obvious." 

The "syntax" section is as in the earlier examples. We use elements of 

a type "entry" only to store them into the data structure of the T/L 

module, or to fetch them. We assume that the relation of equality over 

entries is defined elsewhere. 

Statements (3) through (5) tell us that V-functions EXLEFT and EXRIGHT 

and O-function ALTER(e) have the same applicability condition as CURRENT. 

The "equivalences" section should allow the reader to transform any legal 

trace to one shown to be legal by (I) through (7). The alert reader will 

notice that this section does not satisfy this requirement. This will be 

investigated in some detail later. 

Statement (8) is unconditional because a call on EMPTY can always be 

added to or removed from any trace without making the module trap. 

Statements (9) and (10) say that subtraces INSERT(e).DELETE and 

GOLEFT.GORIGHT have no effect. Statement (11) is supposed to tell us 

that a call on ALTER has the same effect as two consecutive calls on 

DELETE and INSERT, provided that INSERT has the same actual parameter 

as ALTER. Statements (12) through (14) tell us that V-functions CURRENT, 

EXLEFT, and EXRIGHT can be removed from a legal trace to get an equiv- 

alent trace. 

Statement (15) gives the initialization of the module. Statements (16) 

through (20) describe the effects of INSERT at the end of a legal trace 

on the values of EMPTY, CURRENT, EXLEFT, and EXRIGHT. 

Statements (23) through (26) define the effects of ALTER at the end of 

a trace on the four V-functions. Note that only CURRENT is changed. 

Statements (27) and (28) say that two consecutive calls on INSERT and 

GOLEFT have no effect on the values of CURRENT and EXLEFT. 
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B. Discussion of Flaws in the First Version of the T/L Module 

Specification 

The use of traces and the way in which the present specifications are 

divided into sections allows us to discuss flaws in version I of the 

T/L module in a straightforward way and to omit two or three interme- 

diate stages of the original development. However, all errors below were 

actually included in the original design of the T/L module (where a 

different method of specification was used) and allowed to remain in 

the design after formal discussions among the members of our group. 

Incompleteness 

In examining the first specification we first attempt to make certain 

that the specification is complete. We will (by definition) consider 

the specification to be incomplete if there are some traces ending in 

calls on V-functions which can be shown to be legal but for which no 

value can be derived. 

One example of incompleteness concerns the value of the function EXRIGHT. 

Only (20) and (26) make any statement about the value of EXRIGHT and 

these make no statement about the initial value of EXRIGHT or 

V(INSERT(e).EXRIGHT) which can be shown to be legal. 

The specification is similarly incomplete with respect to EXLEFT. 

Another form of incompleteness can be found by attempting to derive the 

value of V(INSERT(a).INSERT(b).GOLEFT.EMPTY). There is no statement 

about the value of EMPTY when immediately preceded by GOLEFT and no 

equivalence assertion that would allow us to remove GOLEFT. 

Specification Versus Intuitive Understanding 

In addition to the instances of incompleteness that have been demon- 

strated, we can show that a number of statements in the "legal trace" 

section and "equivalences" section do not meet our intuitive expecta- 

tions. There is a problem with the legality of traces beginning with 

a call on GOLEFT. For example, we would expect that a call on GOLEFT 

before the first entry has been inserted into the data structure should 

not be permitted. However, the value of I(GOLEFT.GORIGHT) can by state- 

ment (10) always be calculated to be I(LJ) , -which is (by definition) 

"true". Since by definition I(T.X) => I(T) we can conclude that (for 

T { GOLEFT and X = GORIGHT) we have I(GOLEFT) = true. A similar problem 

exists concerning the legality of traces ending with a call on GOLEFT. 
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Statements (2) and (6) eliminate the possibility of insertion to the 

left of the leftmost entry. We can move the window in our cover over 

the leftmost entry but not further. An insert would then make EXLEFT 

true again (statement (19)) but we would have inserted to the right 

of the leftmost entry. 

The mnemonic "EMPTY" was an obstacle to a straightforward solution. 

Imagine that one moves left from the left end. By statement (18), EMPTY 

would become true although there are entries in the data structure. 

We will eliminate these problems by renaming "EMPTY" to "OUT" and allow- 

ing one move to the left beyond the left end. The value of CURRENT is 

then undefined, while OUT is true, EXLEFT is false, and EXRIGHT is true. 

This is in contrast to the new initial state (no entries in the data 

structure) where EXRIGHT is false. 

A problem that initiated the development of the specification teohnique 

presented in this paper is best formulated by posing the following ques- 

tion. 

How can the designer be sure that he specified the effects of all traces 

that he wants to be executable programs? 

Or, put in other way and applied to our example, how do we determine 

the subset of 

(INSERT(e) ,DELETE,ALTER(e) ,GOLEFT,GORIGH-T, 

CURRENT,OUT,EXLEFT,EXRIGHT)*, 

(where "*" is the Kleene star) that comprises the set of executable, 

i.e. legal traces? (Rules for including V-functions are easy to find 

and are therefore not considered now.) 

We now note some quantitative properties of such traces: Let IX1 denote 

the number of calls on X in a given trace. Then for all legal traces: 

~GOLEFTI > IGORIGHTI 

IINSERTI >!GOLEFTI - ]GORIGHTI 

IINSERTI > IDELETEI+ IGOLEFTI - IGORIGHTI 

These relations alone, howeverr help little. The obviously unreasonable 

trace 

GORIGHT.GOLEFT.GOLEFT.INSERT(a).INSERT(b) 

satisfies the above inequalities. 

We therefore have to make some additional assertions to characterize 

the set of legal traces. 

The specification of Example 6 did not capture the language of the mod- 

ule, as we intuitively understand it. 
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Example 7, Table/List Module with Unlimited Capacity 

Syntax 

O-Functions: 

V-Functions; 

INSERT: 
ALTER: 
DELETE: 
GOLEFT: 
GORIGHT: 

CURRENT: 
OUT: 
EXLEFT: 
EXRIGHT: 

<entry> x <TL> -> <TL> 
<entry> x <TL> -> <TL> 
<TL> -> <TL> 
<TL> -> <TL> 
<TL> -> <TL> 

<TL> -> <entry> 
<TL> -> <boolean> 
<TL> -> <boolean> 
<TL> -> <boolean> 

Legal Traces 

(I) l(T) => %(T.INSERT(a)) 
(2) I(T) => %(T.INSERT(a).GO~LEFT) 
(3) I(T.GOLEFT)<=> %(T.CURRENT) 

Equivalences 

(4) 
(5) 
(6,,) 
(7) 
(8) 
(9) 
( Io  
( I i  

(12 

T.OUT E T 
T.EXLEFT z T 
T,EXRIGHT ~ T 
I(T.CURRENT) => T.CURRENT ~ T 
k(T.GOLEFT) => T.GOLEFT.GORIGHT s T 
T.INSERT(a),DELETE ~ T 
T,INSERT(a).GOLEFT.DELETE ~ T.DELETE.INSERT(a),GOLEFT 
%(T) => T.INSERT(a).INSERT(b).GOLEFT E 

T.INSERT(b),GOLEFT.INSERT(a) 
T.ALTER(a) ~ T.DELETE.INSERT(a) 

Values 

13) V(OUT) = true 
14) V(EXLEFT) = ~(EXRIGHT) = false 

15) %(T) => V(T.INSERT(a),CURRENT) = a 
16) %(T) => V(T.INSERT(a).OUT) = false 
17) %(T) => V{T.INSERT(a).EXLEFT) = not V(T.OUT) 
18) %(T) => V(T.INSERT(a),EXRIGHT) = V(T.EXRIGHT) 

19) %(T.CURRENT) => V(T.INSERT(a).GOLEFT.CURRENT) = V(T.CURRENT) 
20) %(T) => V(T.INSERT(a).GOLEFT.OUT) = V(T.OUT) 
21) %(T) => V(T.INSERT(h0.GOLEFT.EXLEFT) = V(T.EXLEFT) 
22) %(T,GOLEFT) => V(T.GOLEFT.EXRIGHT) = true 
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For example: 

I (INSERT(a).INSERT(b) .GOLEFT.GOLEFT) 

Other examples can easily be found. 

= false 

C. The Current Specification for the T/L Module 

After discovering the above errors (over a period of several months) 

we made an observation that allowed us to write the specification given 

in Example 7. 

Any legal trace for the T/L module must be equivalent to a trace in 

which there is a (possibly empty) sequence of INSERTs followed by any 

number of repetitions of the sequence INSERT.GOLEFT. This observation 

is based on our intuitive model of the object that we are trying to 

specify. (We have no other possible basis). We could create the table 

contents ao, a I ... a i ... aN, where a i is the current entry by suc- 

cessivly inserting ao,a I ... a i and then executing INSERT(ai).GOLEFT 

for j = n, n-1 ...... i+1. Each INSERT(ai) .GOLEFT sequence leaves CURRENT 

unchanged but inserts a block to the right of current. 

Traces in this form are the normal form traces of this module. We will 

therefore have to provide a set of assertions that allow to transform 

any legal tra~e to such a normal form trace. 

The assertions labeled "legal traces" in Example 7 ( (I) - (3) ) state 

that all traces in normal form (and some additional traces) are legal. 

We also indicate that CURRENT may be called whenever a GOLEFT would be 

allowed. 

The assertions (4) - (7) state that the V-functions do not effect any 

changes on the module. (8) and (9) give the obvious facts that GOLEFT 

can be cancelled by a GORIGHT that follows it and that an INSERT can be 

cancelled by a DELETE that follows it. Note that (8) only applies when 

GOLEFT is legal. 

If our specification is a good one, we should be able to show that every 

legal trace is equivalent to a trace in normal form. The V-functions can 

be trivially deleted. We are able to delete a DELETE if it immediately 

follows an INSERT and a GORIGHT if it follows immediately after a GOLEFT. 

Using statement (11) we can move a GOLEFT right or left through a se- 

quence of INSERTs to get an equivalent trace. That will allow us to 

remove instances of DELETE by bringing an INSERT up to them if only 

GOLEFTs intervene. Using assertion (10) one may transform sequences 

containing GOLEFT.DELETE and ~ELETE.GOLEFT into equivalent sequences 
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where either the DELETE has been moved to the left (bringing it closer 

to the INSERT that it cancels) or the GOLEFT has been moved to the right 

(bringing it close to any GORIGHT that would cancel it) . Assertion (12) 

allows the removal of all occurrences of ALTER. Repeated application of 

these rules allows the removal of all functions except INSERT and GOLEFT. 

Completeness of the Current Specification 

To demonstrate completeness we examine primarily the value section (13) - 

(22). (13) and (14) specify the initial values of all V-functions except 

CURRENT. The failure to specify an initial value for CURRENT is not an 

instance of incompleteness because CURRENT is not a legal trace. Using 

(15) - (18) we have specified the values of all four V-functions for 

traces containing only INSERT. 

Using (19) - (22) we can determine the values of the V-functions for 

any trace of the form T.INSERT~ .GOLEFT provided that we know the values 

of those functions after T. It follows that we know the values for any 

trace in the normal form. Since the equivalence statements allow any 

legal trace to be reduced to an equivalent trace in that form, the spe- 

cification is complete. 

Consistency 

Demonstration of consistency is more complex. It is quite clear that 

the value section ((13) - (22) ) is in itself consistent, but it is 

necessary to show that the transformations allowed by the equivalence 

section that produce a trace ending in a given V-function result in 

traces with the same value. Such a proof is beyond the scope of this 

paper. 

VI. Conclusion 

It is clear that when we entered into the design of the T/L module inter- 

face we did not expect the difficulties that we encountered. Each pro- 
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posal seemed intuitively obvious and the formal specifications that we 

wrote appeared to correspond to our intuition. Several people examined 

the specifications (which were written using weakest preconditions); 

all thought that they were acceptable. The type~ of difficulties de- 

scribed in connection with the first version of the T/L module specifi- 

cation came as a complete surprise. We had expected that writing the 

formal specifications was "only a formality" for so simple a module. 

Our first conclusion then is simply that writing the formal specifi- 

cations is useful even for simple modules. Had we been forced to make 

the change from the first version to the second version after coding 

was underway, it would have been expensive in terms of the amount of 

code (both in the module and in programs that use the module) that 

would have needed revision. 

Once we became aware of the difficulties, we found attempts to convince 

ourselves of the correctness of new versions to be extremely frustrat- 

ing. The specifications that were written (using predicate transformers 

for programs consisting of calls on the functions) did not lend them- 

selves well to examination for completeness and consistency. The mathe- 

matical model underlying those specifications is complex and there were 

difficulties instrinsic in the decision to talk about programs rather 

than traces. Although we have not yet produced a complete formal proof 

that this specification is complete and consistent, the intuitive justi- 

fications are far more convincing than our more formal arguments about 

the old specifications. Our second conclusion therefore is that the 

concept seems to be superior ±o other forms of data abstract specifi- 

cation known to us. 

It is becoming popular among software specialists to speak of "front 

end" investment. The proposal is that by investing time and intellectual 

energy in the early d~sign phase one can reduce the overall systems 

costs because of time saved at the later stages. A weakness of the ma- 

jority of such proposals is that they provide little in the way of 

specific suggestions about what to do at those early stages. There is 

little evidence that the effort invested in the early stages will ac- 

tuelly pay off. There is lots of evidence that just writing vague state- 

ments of good intentions ("The system will have a user-oriented inter- 

face") will not pay off. In this paper we have made a specific proposal 

for the use of that "front end" energy. We have shown how to write such 

specifications, and indicated how one may evaluate them for completeness 

and consistency. 

Further work on verifying properties of these specifications is clearly 
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necessary. As Price has shown [21], there are clear advantages to doing 

as much verification as possible before implementation begins. Similar 

views are found in [18], but Price included some (machine assisted) 

proofs. 
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