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Abstract
Association or linkage disequilibrium mapping has become a very popular method for dissecting the genetic basis of
complex traits in plants.The benefits of association mapping, comparedwith traditional quantitative trait locus map-
ping, is, for example, a relatively detailed mapping resolution and that it is far less time consuming since no mapping
populations need to be generated. The surge of interest in association mapping has been fueled by recent develop-
ments in genomics that allows for rapid identification and scoring of genetic markers which has traditionally limited
mapping experiments. With the decreasing cost of genotyping future emphasis will likely focus on phenotyping,
which can be both costly and time consuming but which is crucial for obtaining reliable results in association map-
ping studies. In addition, association mapping studies are prone to the identification of false positives, especially if
the experimental design is not rigorously controlled. For example, population structure has long been known to
induce many false positives and accounting for population structure has become one of the main issues when imple-
menting association mapping in plants. Also, with increasing numbers of genetic markers used, the problem
becomes separating true from false positive and this highlights the need for independent validation of identified
association.With these caveats in mind, association mapping nevertheless shows great promise for helping us under-
stand the genetic basis of complex traits of both economic and ecological importance.

Keywords: association mapping; complex traits; genotyping; plants; population structure

INTRODUCTION
Complex quantitative traits are usually influenced by

a large number of genes as well as environmental

effects. Understanding the genetic basis of complex

traits have traditionally been the focus of quantitative

genetics, which relies on partitioning phenotypic

variation within and among individuals with

known degrees of relatedness [1]. However, as the

availability of useful genetic markers have increased,

it has become possible to associate genome regions

containing these markers to variation in complex

traits. In quantitative trait locus (QTL) mapping,

early generation crosses (F1 or F2) are used to dissect

quantitative variation separating the individuals of

the parental generation. QTL mapping has proven

to be extremely useful in identifying many genome

regions that influence complex traits in a large

number of species [2–4]. However, the QTL

approach suffers from a number of limitations.

First, allelic variation in each cross is usually

restricted because typically only two parents are

used to initiate a QTL mapping populations.

Second, since early generation crosses are used, the

number of recombination events per chromosome is

usually small, limiting the resolution of the genetic

map. A typical QTL identified from a cross of
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consisting of a few hundred offspring can span any-

where between a few to tens of centiMorgans,

which might correspond to genomic regions encom-

passing several megabases. Such large genome

regions contain, typically, hundreds if not thousands

of genes, making the process of identifying the causal

gene in a QTL region, through techniques such as

map-based cloning, a tedious and quite time-

consuming task [5]. In addition, for many organisms

the generation of mapping populations is either not

possible or at least very time consuming. For

instance, the long generation time of most forest

trees have thus far either slowed down or completely

prevented any progress in elucidating the genetic

basis of complex traits using QTL mapping experi-

ments [6].

Association or linkage disequilibrium mapping

have been hailed as a more efficient way of deter-

mining genetic basis of complex traits. Association

mapping relies on utilizing occurring variation in

diverse germplasms and therefore does not suffer

from the lack of variation that characterizes many

QTL mapping populations. In addition, the naturally

occurring recombination events that have occurred

over evolutionary history also means that linkage

blocks are substantially smaller in an association map-

ping population compared with a QTL mapping

population and hence association mapping results

in much more fine-scale mapping [7]. On the

other hand, the limited extent of linkage disequili-

brium suggests that a substantially greater number of

genetic markers are needed to ensure adequate

power to detect linkage between a marker and a

causal locus [8]. Association mapping has rapidly

come into focus as a very promising approach for

the genetic dissection of complex traits, but it is

also associated with potential problems and pitfalls.

In this article, we review current aspects of using

association mapping in plants, including how to ini-

tiate association mapping studies, the common meth-

ods for genotyping, phenotyping and how to

ultimately analyze data to identify and verify causal

association.

GENOTYPING
A common practice in many association genetic stu-

dies is to use unlinked and putatively neutral markers

to characterize genetic variation in the accessions

used in the mapping study and to account for

population structure (for more on this, see below).

There are many types of markers that can be used for

this, including AFLP [9] and single sequence repeats

(SSRs, also known as microsatellite markers). AFLP

markers are easily obtained in almost any organism,

even for those lacking previously existing genomics

data. However, AFLP markers are almost exclusively

dominant, that is the heterozygous genotype cannot

be distinguished from one of the homozygous gen-

otypes, and this introduces a number of problems

when using AFLP markers for estimating, for

instance, population structure [10] or for use directly

in mapping [11]. SSR markers, on the other hand,

are usually highly polymorphic but require a great

deal of work to isolate and are rarely transferable

between anything but the most closely related spe-

cies [12]. The high variability of SSR markers, com-

bined with the availability of semi-automatic

detection methods, have, until recently, made them

the markers of choice for use in estimating popula-

tion structure or pairwise relatedness among

individuals.

The development of next-generation sequencing

technologies has allowed for unprecedented geno-

typing capabilities, even in organisms that have tra-

ditionally not been considered model organisms (see

for example Varshney et al. [13], Simon et al. [14] or

Nordborg and Weigel [15] for reviews of some

recent applications in plants). The current next-

generation sequencing technologies are capable of

analyzing anywhere from hundreds of thousands to

tens of millions of DNA molecules in parallel com-

pared with hundreds at a time which is the maxi-

mum throughput of most traditional (i.e. Sanger-

based) sequencing instruments. This massive increase

in throughput stems from a change in methodology,

from the traditional Sanger-sequencing method that

produce read lengths of up to 1 kb from individual

DNA clones to the current state-of-the-art sequen-

cing technologies which produce read lengths in the

range from 30 to 400 bp (although lengths are rapidly

increasing) from templates consisting of beads or

spots of DNA. The next step in sequencing technol-

ogy will likely be the development of single mole-

cule sequencing which will all but eliminate the need

for extensive template preparation [16].

The rapid development in genomics has opened

up the possibility to both identify and score a large

number of genotypes in virtually any organism with

relatively little effort. Next-generation sequencing

technologies allows for rapid identification of a

large number of genetic markers, mainly single
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nucleotide polymorphisms (SNPs) [17–19]. SNP

markers have both a higher genome density and a

lower mutation rate than SSR markers and they are

also more easily amenable to high-throughput gen-

otyping in multiplex or microarray format [20, 21].

The mutational processes underlying SNP variation

is well-understood whereas the mutational processes

of other types of markers, such as SSRs and AFLPs,

are poorly understood and this sometimes hampers

analyses using such markers. The vast majority

of SNPs are bi-allelic and the information content

per marker is therefore much lower than in

SSR markers. This, however, is more than compen-

sated for by the fact that they are more widely

distributed across the genome in most organisms

[21]. SNP markers are therefore rapidly becom-

ing the markers of choice for most association map-

ping studies in both model and non-model plant

species.

One issue that has been receiving an increasing

interest is how the selection of SNPs to include in an

association study can potentially bias the results. Such

ascertainment bias is usually attributed to the process

of identifying and selecting SNPs for further use in

an association study. For instance, SNP discovery

panels are often small, suggesting that low-frequency

mutations are more likely to go undetected. This will

bias the frequency spectrum of the identified muta-

tions compared with what would be obtained from

the full sample, with relatively more SNPs occurring

at intermediate frequencies [22]. The ascertainment

bias introduced in the SNP selection process have

important consequences for any inferences that are

drawn from the data; for association mapping the

most detrimental effect is an over-sampling of muta-

tions at intermediate frequencies which results in

lower levels of linkage disequilibrium (LD) than if

SNPs were selected completely at random. The

effect of ascertainment bias on the power of associ-

ation studies is more complex, and largely depends

on whether low or intermediate frequency are

assumed to have a larger effect on the trait of interest

[22, 23]. Another important problem to be aware of

in association mapping is the genotyping error rate.

While state-of-the-art SNP scoring methods are usu-

ally quite robust, the rate of genotyping errors can

vary a lot between different SNPs even when scored

on a single chip. This is important to remember since

even low error rates (around 3% or less) can have

dramatic consequences for the accuracy of estimates

of LD [24] and hence also for association mapping.

CANDIDATEGENESVERSUS
WHOLEGENOME SCANS
Another issue that a prospective scientist will face

when embarking on an association study is whether

to base the study on candidate genes or whether to

apply association mapping to the whole genome of

the organism of interest. The absolutely most impor-

tant aspect when deciding between a candidate gene

approach and a whole-genome study is the extent

of LD in the organism of interest, because the extent

of LD determines not only the mapping resolution

that can be achieved, but also the numbers of

markers that are needed for an adequate coverage

of the genome in a genome-wide study [25].

When considering the extent of LD one should

preferably also account for variation of recombina-

tion rates across the genome, although this may be

hard to implement in organisms where regional vari-

ation in LD is poorly documented. In species where

LD extends over long physical distances, relatively

few markers are needed to ensure adequate

genome coverage; for example the extensive LD

seen in species like Arabidopsis thaliana or in inbred

lines of barley, where LD can extend for tens or

even hundreds of kilo base pairs, allow for

genome-wide association mapping with a relatively

low number of evenly spaced SNPs markers

([26, 27], see also Table 1). However, in many pre-

dominantly or obligately outcrossing organisms, such

as maize [28] and many forest trees [6, 29], LD only

extends a few hundred base pairs at the most and

adequate genome-wide coverage would require sev-

eral million SNPs.

The alternative approach to take when genome-

wide association mapping is precluded, is to perform

a candidate gene-based association study. A candi-

date-gene association mapping study is more

hypothesis-driven than a genome-wide study, since

association mapping is restricted to relevant candi-

dates genes thought to be involved in controlling

the trait of interest [6]. The selection of candidates

is not straightforward, but choices can be based on

relevant information obtained from, for instance,

genetic, biochemical, or physiology studies in both

model and non-model plant species [6]. Candidate-

gene selection is usually quite straightforward when

restricted to well characterized developmental path-

ways, like the flowering pathways in Arabidopsis and

other plants [30], or to traits with a well-understood

biochemical basis, such as the starch-synthesis path-

way in maize [31]. Candidate gene studies are less
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demanding in terms of the number of markers that

are required and many candidate gene association

studies have successfully been completed using tens

to hundreds of markers in mapping populations

consisting of a few hundred individuals (Table 1).

However, it is important to remember that a candi-

date gene approach is limited by the choice of can-

didate genes that are identified and hence always runs

the risk of missing out on identifying causal muta-

tions that are located in non-identified candidate

genes. In addition, candidate genes are often initially

discovered from loss-of-function mutations in inbred

lab strains and it is not clear how well such mutations

describe the variation that actually underlie quanti-

tative trait variation in natural populations.

PHENOTYPING
As the costs of genotyping is rapidly declining, a

greater fraction of the budget of any association map-

ping project will be spent on phenotyping. In fact,

while the importance of accurate identification and

scoring of genotypes have received quite a deal of

attention ([24, 32, 22]; see also above), the effects of

phenotyping has yet to be evaluated in any greater

detail. It has been shown, however, that increasing

the number of individuals phenotyped is far more

efficient than increasing the number of SNPs for

increasing the power in association studies [33].

Also, several new experimental designs are actively

being developed that combine the best aspects of

traditional QTL mapping and association mapping

(e.g. nested association mapping [34]).

A typical association mapping study usually

involves a diverse set of accessions (see Table 1 for

some recent examples), and phenotypic scoring with

adequate accuracy can be both costly and time-

consuming. Replication of individual accessions

within a site is usually needed to increase precision

in phenotypic measurements, by eliminating envir-

onmentally induced noise and measurement errors.

Data on replicates of each accession can then be

combined to produce an estimate of the ‘mean’ phe-

notype of the accession which is less influenced by

environment or measurement errors. One example

of such an approach is the estimation of breeding

values which is common practice in quantitative

genetics and breeding [1]. These breeding values

are used as dependent traits in an association analysis

in an attempt to dissect the genetic basis of the trait in

question [35].

Table 1: A sample of recent association mapping studies in both crop and wild plant species.

Plant species Populations Sample
size

Background
markers

Traits Method Associations
found

References

Arabidopsis Accessions 95 LþR Genome-wide 4 Aranzana et al. [26]
Accessions 96 L Candidate gene 3 Ehrenreich et al. [30]

Barley Germplasm accessions 220 EST-SSR: 25 L Candidate gene 1 Stracke et al. [67]
Cotton Germplasm accessions 335 SSR: 202 M Genome-wide 20/trait Abdurakhmonov et al. [68]
Douglas fir Diverse families 700 SNP: 384 L Candidate gene 30 Eckart et al. [30]
European aspen Natural population 116 SNP: 42 SSR: 25 A Candidate gene 2 Ingvarsson et al. [51]
Loblolly pine Diverse clones 961 SNP: 46 A Candidate gene 4 Gonza¤ lez-Marti¤nez et al. [71]

Lines 435 SNP: 58 M Candidate gene 4 Gonza¤ lez-Marti¤nez et al. [70]
Maize Elite inbred lines 553 SNP: 8590 Y Genome-wide 1 Belo¤ et al. [72]

Inbred lines 282 SSR: 47 Y Candidate gene 4 Harjes et al. [73]
Pearl millet Inbred lines/accessions 90/598 SSR: 27/25

AFLP: 306
MþLþY Candidate gene 3 Sa|« dou et al. [74]

Perennial
ryegrass

Germplasm accessions 26 AFLP: 589 L Genome-wide 3 Sk�t et al. [75]

Potato Diverse cultivars 221 AFLP: 250 MþRþY Candidate gene 68 D’hoop et al. [76]
Diverse cultivars 123 NBS: 49 R Candidate gene 2 Malosetti et al. [77]

Rice Diverse cultivars 103 SSR: 123 MþY Genome-wide 25 Agrama et al. [78]
Soybean Breeding lines 139/115 SSR: 84 M Candidate gene 3 Wang et al. [79]

Germplasm accessions 96 SSR: 150 Y Genome-wide 11 Jun et al. [80]
Sugar beet Inbred lines 111 SSR: 26 M Candidate gene 4 Stich et al. [81]

Elite clones 768 SSR: 49 RFLP: 9 MþY Genome-wide 44 Stich et al. [82]
Wheat Germplasm accessions 108 SSR: 85

EST-SSR: 40
MþY Genome-wide 14 Yao et al. [83]

M, morphology; L, life history; R, resistance;Y, yield; A, adaptive.
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An additional benefit of replication can be

achieved if the entire association mapping collection

is replicated across multiple environments. Such a

design can provide important information on the

robustness of positive associations across environ-

ments and on the importance of genotype by envi-

ronment interactions in shaping allelic contributions

to the trait of interest [1].

CONTROLLING FOR POPULATION
STRUCTURE
One of the main hurdles for using association map-

ping to dissect the genetic architecture of complex

traits in plants is the risk of incurring false positives

due to population structure [36, 37]. The problem of

population structure arises because any phenotypic

trait that is also correlated with the underlying pop-

ulation structure at neutral loci will show an inflated

number of positive associations. The problem of

population structure is well known and many meth-

ods have, not surprisingly, been developed to deal

with this problem. Several of these methods are also

implemented in software packages that are freely

available (Table 2).

One of the first methods proposed was the

method of ‘genomic control’ (GC) developed by

Devlin and Roeder [38]. The rationale for GC is

to estimate association using a large number of puta-

tive neutral markers or markers not thought to be

involved in controlling the trait of interest. The dis-

tribution of the test statistic of interest is then calcu-

lated from these associations and a critical value

corresponding to the desired Type I error rate is

chosen from this distribution. While GC is straight-

forward to perform computationally, it requires a

large number of control loci to accurately capture

the extent of variation in population structure

across the genome of an organism. Furthermore, in

some situations it is possible for GC to ‘over-

correct’ for population structure effects resulting

in a loss of power to detect true associations

[39, 40].

Another method that is commonly used to con-

trol for population structure is structured associations

(SA) [41]. The idea of SA builds on the method of

Pritchard et al. [36] who infer details of population

structure and the ancestry of sampled individuals

using a set of unlinked genetic markers. This infor-

mation is then used to identify populations

within which mating is random. Markers are then

tested for associations within these sub-populations

identified by the genetic markers [41].

The most recent, and most promising approach,

for correcting the spurious effects of population

structure is the mixed-model approach outlined by

Yu et al. [42; see also 43, 44]. Mixed-model methods

use information on both population structure and

more cryptic relatedness among members of an asso-

ciation study to correct for the spurious effects of

populations structure and relatedness. These two

types of population structure are incorporated into

a matrix of population effects (Q) and a matrix

describing the relative kinship of individuals in a

sample (K) and a model is then fitted using the

mixed-model framework developed in, for instance,

animal breeding [45]. The Q matrix consists of one

or more vectors describing the underlying

Table 2: Non-commercial computer packages for performing population structure or kinship estimation and for
performing association mapping

Software package Website Citation

General purpose
R http://www.r-project.org/ R Development CoreTeam [66]

Population structure and relatedness
STRUCTURE http://pritch.bsd.uchicago.edu/structure.html Pritchard et al. [36]
EIGENSOFT http://genepath.med.harvard.edu/�reich/Software.htm Price et al. [47]
BAPS http://web.abo.fi/fak/mnf//mate/jc/software/baps.html Corander et al [62]
ADMIXTURE http://www.genetics.ucla.edu/software/admixture/ Alexander et al. [63]
SPAGeDi http://www.ulb.ac.be/sciences/ecoevol/spagedi.html Hardy and Vekemans [64]
InStruct http://cbsuapps.tc.cornell.edu/InStruct.aspx Gao et al. [59]

Association analysis
EMMA http://mouse.cs.ucla.edu/emma/ Kang et al. [43]
STRAT http://pritch.bsd.uchicago.edu/software/STRAT.html Pritchard et al [41]
TASSEL http://www.maizegenetics.net Bradbury et al. [65]
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population structure and this matrix can be estimated

in several ways. For example, one common approach

is to use the method implemented in

STRUCTURE [36] or by using principle compo-

nent analysis (PCA) of the complete genotype data

[46]. Using PCA to estimate population structure is

especially appealing since it is far less computationally

demanding than analyses based on STRUCTURE

[46, 47]. A similar approach to PCA is to use non-

metric multidimensional scaling (nMDS, Zhu and

Yu [61]) which have been shown to reduce the

false positive rate compared to other methods in

structured populations.

The kinship matrix (K), on the other hand, can be

estimated from pedigree data or, for non-model spe-

cies where pedigree information is usually lacking,

using relative kinship coefficients estimated using

genetic marker data (e.g. [35, 48, 49]). The strength

of the mixed-model approach is that it handles and

performs well under many types of population

structure [42, 43]. For instance, in a genome-wide

association study in Arabidopsis thaliana, the mixed-

model provided the most accurate control of the

false-positive rate among the methods tested, despite

a very complex sub-structuring of the association

population [37].

The original intent of the Q and K matrices is to

capture different types of population structure [42]

and several studies have found that including either

the Q or the K matrix alone is not sufficient to con-

trol for all aspects of the underlying population struc-

ture of the data. However, the relative utility

of the two matrices depends on the actual pattern

of the underlying population structure. Both

STRUCTURE [36] and the PCA-based analyses

[46] have problems identifying low levels of popu-

lation structure when a low to moderate number of

markers are used. Patterson et al. [46] even defined a

minimum study design that is needed to effectively

evaluate population structure and showed that for a

given design there exists a minimum level of popu-

lation structure that can be detected. For example, a

STRUCTURE-based analysis failed to identify any

obvious signs of population structure in European

aspen (Populustremula), despite evidence for significant

population structure and isolation-by-distance based

on population groupings chosen a priori [50].

However, the same set of markers, when used to

estimate the K for the sampled trees, provided a

reasonable control of the underlying weak, but

nevertheless significant, isolation by distance [51].

REPLICATIONANDVALIDATION
Association mapping techniques are increasingly

being used to dissect quantitative trait variation

in both economically and ecologically important

traits (for a collection of recent studies, see

Table 1). However, as the number of studies docu-

menting alleles showing significant associations with

quantitative trait variation, there is an increasing need

to replicate findings and to validate estimates of alle-

lic effects. These issues are being highlighted in the

human genetics community, where guidelines for

conducting both initial and replication studies are

being devised [52]. Replication of genotype-

phenotype association are crucial for separating true

from false positives and to provide less biased esti-

mates of allelic effect sizes. However, failure to repli-

cate a previously documented association can occur

because of a large number of issues, both in the initial

and the replication study, including factors like diffi-

culties in replicating the environment, small sample

size, poor study design or lack of rigorous phenotype

scoring [23]. The literature on association mapping

in plants does, however, include a few cases where

associations have been replicated in independent

mapping experiments. For example, Thornsberry

et al. [53] found that mutations in the gene Dwarf 8
affect the quantitative variation of flowering time

and plant height in maize (Zeamays). This association

has subsequently been verified in a larger maize asso-

ciation mapping population containing a different set

of maize inbred lines [54]. Finally, it is worth point-

ing out that verification of genotype–phenotype

associations does not necessarily have to come from

replicate association studies, but can include valida-

tion of biological function through transgenic

experiments and other molecular biology

techniques [55].

Another concern is that allelic effects of pre-

viously documented associations usually decline in

replication studies. This phenomenon is known as

the ‘Beavis effect’ [56] in the QTL mapping litera-

ture and occurs because significant associations are

reported only when test statistics exceed a predeter-

mined critical threshold. The estimated effects of

detected associations are therefore sampled from a

truncated distribution, and the weaker the initial

effect the more serious this overestimation is [57].

The Beavis effect has also been shown to occur in

association mapping studies. For instance, Ingvarsson

etal. [51] showed that na|« ve estimates of the effects of

mutations in the photoreceptor gene PHYB2 were
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overestimated by �2- to 3-fold. The Beavis effect is

known to be weaker when the mapping population

used in the experiment is larger [56], hence careful

consideration of the power of the prospective asso-

ciation study should be taken early on in the exper-

iment, so that things like the Beavis effect can be

minimized or eliminated.

CONCLUSIONS
Earlier, the largest hurdle to clear in the search for

the molecular basis of complex phenotypes has been

the generation of genetic markers and the scoring of

genotypes. However, with the rapidly dropping costs

of modern sequencing and genotyping technologies

generation of genotype data is no longer the limiting

factor for most studies. This has resulted in a need for

new refined statistical methods for association analysis

that cover entire genomes and the greatest costs are

utilized towards rigorous phenotyping instead of

generation of genotypic data. A large fraction of

the cost is associated with the establishment of asso-

ciation mapping collections, housed in, for instance

establishing common gardens to minimize environ-

mental influence and possible epigenetic effects. The

current status of association mapping in plants largely

draws from two fields, and those have proven to be

valuable for finding associations between molecular

markers and traits [36]. First, the human genetics

research community is actively developing sophisti-

cated statistical methods for handling genome-wide

association studies with massive amounts of data.

Second, animal breeding methods are being devel-

oped that partition phenotypic variation into genetic

variance components using detailed information on

relatedness between individuals. These tools

together, combined into robust mixed model

approaches [36, 43, 44], which account for different

levels of relatedness and population stratification

decrease the number of false positives which would

otherwise be a problem with the rapid increase in the

number of associations tested per study. However,

individual alleles or QTLs identified in association

studies usually explain only a few percent of the

variation in traits studied and even when many loci

associated to a trait are taken into account the pro-

portion of variation explained is usually far below

than prediction-based heritabilities of the traits, a

phenomenon highlighted in the human-genetics

community as the ‘missing heritability problem’

[23]. The problem of ‘missing heritability’ has several

likely causes that are poorly accounted for in current

association mapping studies, such as low-frequency

alleles of large effect, allelic interactions (i.e. epistasis),

copy number variation and possible epigenetic effects

[23]. As more and more putative causative alleles are

identified, it becomes increasingly necessary for

methods that can deal with associations across gene

networks of interacting genes and across devel-

opmental pathways (i.e. epistasis; [57, 58]).

An additional question that should be addressed is

about how the effects of individual alleles vary

across different environments. Given the ubiquity

of genotype environment for many traits in plants

[1], to what degree QTL effects vary across environ-

ments has important implications, e.g. the utility of

QTLs in breeding applications.
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35. Stich B, Möhring J, Piepho HP, et al. Comparison of
mixed-model approaches for association mapping. Genetics
2008;178:1745–54.

36. Pritchard JK, Stephens M, Donnelly P. Inference of popu-
lation structure using multilocus genotype data. Genetics
2000;155:945–59.

37. Zhao K, Aranzana MJ, Kim S, et al. An Arabidopsis example
of association mapping in structured samples. PLoSGenetics
2007;3:e4.

38. Devlin B, Roeder K. Genomic control for association stu-
dies. Biometrics 1999;55:997–1004.

39. Reich DE, Goldstein DB. Detecting association in a case-
control study while correcting for population stratification.
Genetic Epidemiol 2001;20:4–16.

40. Marchini J, Cardon LR, Phillips MS, Donnelly P.
The effects of human population structure on large genetic
association studies. Nat Genet 2004;36:512–17.

41. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P.
Association mapping in structured populations. Am J
Human Genet 2000;67:170–81.

42. Yu J, Pressoir G, Briggs WH, et al. A unified mixed-model
method for association mapping that accounts for multiple
levels of relatedness. Nat Genet 2006;38:203–8.

43. Kang HM, Zaitlen NA, Wade CM, etal. Efficient control of
population structure in model organism association map-
ping. Genetics 2008;178:1709–23.

44. Stich B, Melchinger AE. Comparison of mixed-
model approaches for association mapping in rapeseed,
potato, sugar beet, maize and Arabidopsis. BMC Genomics
2009;10:94.

45. Mrode RA. Linear Models for the Prediction of Animal Breeding
Values. Oxfordshire, UK: CABI Publishing, 2005.

46. Patterson N, Price AL, Reich D. Population structure and
eigenanalysis. PLoSGenet 2006;2:e190.

47. Price AL, Patterson NJ, Plenge RM, et al. Principal compo-
nents analysis corrects for stratification in genome-wide
association studies. Nat Genet 2006;38:904–9.

48. Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic
structure of a tropical understory shrub, Psychotria officinalis
(Rubiaceae). AmJ Botany 1995;82:1420–5.

49. Ritland K. Estimators for pairwise relatedness and individual
inbreeding coefficients. Genet Res 1996;67:175–85.

164 Hall et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/9/2/157/215661 by U
.S. D

epartm
ent of Justice user on 17 August 2022



50. Hall D, Luquez V, St. Onge KR, et al. Adaptive population
differentiation in bud phenology across a latitudinal gradient
in European aspen (Populus tremula, L., Salicaeae): a compar-
ison of neutral markers, candidate genes and quantitative
traits. Evolution 2007;61:2849–60.

51. Ingvarsson PK, Garcia MV, Luquez V, et al. Nucleotide
polymorphism and phenotypic associations within and
around the phytochromeB2 locus in European aspen
(Populus tremula, Salicaceae). Genetics 2008;178:2217–26.

52. Chanock SJ, Maniolo T, Boehnke M, et al. Replicating
genotype-phenotype associations. Nature 2007;447:655–60.

53. Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8
polymorphisms associate with variation in flowering time.
Nat Genet 2001;28:286–9.

54. Camus-Kulandaivelu L, Veyrieras JB, Madur D, et al. Maize
adaptation to temperate climate: relationship between
population structure and polymorphism in the Dwarf8
gene. Genetics 2006;172:2449–63.

55. Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally
occurring genetic variation in Arabidopsis thaliana. Annu Rev
Plant Biol 2004;55:141–72.

56. Beavis WD. QTL analyses: power, precision, and accuracy.
In: Paterson AH (ed). Molecular Dissection of ComplexTraits.
New York: CRC Press, 1998:145–62.

57. Rockman MV. Reverse engineering the genotype-
phenotype map with natural genetic variation. Nature
2008;456:738–44.

58. Xu S. Theoretical basis of the Beavis effect. Genetics 2003;
165:2259–68.

59. Gao H, Williamson S, Bustamante CD. A Markov chain
Monte Carlo approach for joint inference of population
structure and inbreeding rates from multilocus genotype
data. Genetics\ 2007;176:1635–51.

60. Pritchard JK, Rosenberg NA. Use of unlinked genetic mar-
kers to detect population stratification in association studies.
AmJHumanGenet 1999;65:220–8.

61. Zhu C, Yu J. Nonmetric multidimensional scaling corrects
for population structure in association mapping with differ-
ent sample types. Genetics 2009;182:875–88.

62. Corander J, Marttinen P, Sirén J, Tang J. Enhanced bayesian
modelling in BAPS software for learning genetic structures
of populations. BMCBioinformatics 2008;9:539–53.

63. Alexander DH, Noembrve J, Lange K. Fast model-based
estimation of ancestry in unrelated individuals. Genome Res
2009;19:1655–64.

64. Hardy OJ, Vekemans X. SPAGeDi: a versatile computer
program to analyse spatialgenetic structure at the individual
or population levels. Mol Ecol Notes 2002;2:618–20.

65. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM,
Ramdoss Y, Buckler ES. TASSEL: software for association
mapping of complex traits in diverse samples. Bioinformatics
2007;23:2633–5.

66. R Development Core Team. R: A language and environ-
ment for statistical computing. R Foundation for Statistical
Computing 2009 Development Vienna Austria. ISBN
3-900051-07-0, URL http://www.R-project.org

67. Stracke S, Haseneyer G, Geiger J-B, Veyrieras HH, Sauer
S, Graner A, H-P Piepho. Association mapping reveals
gene action and interactions in the determination of
flowering time in barley. Theor Appl Genet 2009;118:
259–27.

68. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT,
Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel
RJ, Abdukarimov A. Linkage disequilibrium based associa-
tion mapping of fiber quality traits in G. hirsutum L. variety
germplasm. Genetica 2009;136:40–417.

69. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD,
Krutovsky KV, St Clair JB, Neale DB. Association genetics
of coastal douglas fir (Pseudotsuga menziesii var. menziesii,
Pinaceae). I. Cold-hardiness related traits. Genetics 2009;182:
1289–302.
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