
Using Authority Certificates to Create

Management Structures ⋆

Babak Sadighi Firozabadi1, Marek Sergot2, and Olav Bandmann1

1 Swedish Institute of Computer Science (SICS)
{babak,olav}@sics.se

2 Imperial College of Science, Technology and Medicine
mjs@doc.ic.ac.uk

Abstract. We address the issue of updating privileges in a dynamic en-
vironment by introducing authority cerrtificates in a Privilege Manage-
ment Infrastructure. These certificates can be used to create access-level
permissions but also to delegate authority to other agents, thereby pro-
viding a mechanism for creating management structures and for changing
these structures over time. We present a semantic framework for privi-
leges and certificates and an associated calculus, encoded as a logic pro-
gram, for reasoning about them. The framework distinguishes between
the time a certificate is issued or revoked and the time for which the as-
sociated privilege is created. This enables certificates to have prospective
and retrospective effects, and allows us to reason about privileges and
their consequences in the past, present, and future. The calculus provides
a verification procedure for determining, given a set of declaration and
revocation certificates, whether a certain privilege holds.

1 Introduction

Many applications require a decentralised management of access permissions to
their resources. We have identified the following kinds of applications in which
management of access permissions should be decentralised.

– Applications operating in a highly dynamic environment, such as adaptive
networks, where access permission updates have to be done frequently, lo-
cally, and partly automatically.

– Applications in which the administration of access permissions becomes so
heavy that it affects the core business activities.

– Cases where security administrators are not fully trustworthy, and are po-
tential security threats, whether deliberately or unintentionally.

To address the issue of updating access permissions, each organisation may
define its own management structure. A management structure is normally a
hierarchical structure defining how authorities and responsibilities are, or can

⋆ This research is funded by Microsoft Research, Cambridge, UK.



be, distributed within an organisation. In [MS91], the authors identify four typ-
ical roles for a management structure, namely User, Security Administrator,
Manager, and Owner. An authority can be delegated within a domain using a
predefined management structure. The idea is that the owner of an object has
full authority concerning access and disposition of his object, and he can also
delegate these authorities to managers. A manager defines a set of users and a
set of objects as the administrative scope of a security administrator. The se-
curity administrator has the authority to give permissions to the users of his
predefined domain to access the objects in this domain. Notice that a security
administrator may or may not be part of the scope of his administration, which
means that he may or may not be able to give himself access permissions.

In the current paper, we generalise the idea of management structure, because
in real world scenarios there is a need for creating different types of management
structures, and because the management structures may themselves be subject
to frequent changes.

In [FS99] we distinguish between having a permission and being institution-
ally empowered, within a given organisation or management structure, to create
a permission. In this paper, we employ the term ‘authority’ in place of ‘institu-
tional power’ (because the term ‘power’, which has a technical meaning in this
context, can also have unintended connotations). We use this notion of ‘author-
ity’ as a prerequisite for creating and changing management structures as well
as for creating and deleting permissions. We use the term ‘privilege’ as a general
term to cover both ‘authority’ and ‘permission’.

Separating the concept of authority from the concept of permission allows us
to represent scenarios in which an agent has the authority to create a privilege
(a permission or an authority) without having that privilege himself, or without
having the authority to create that privilege for himself.

2 Delegation

In the information security literature, delegation normally describes the act of
distributing access permissions to agents in a distributed system. Here, we al-
low for delegation of privileges, that is, for delegation of authorities as well as
permissions. We distinguish between two possible kinds of delegation:

1. Delegation as creation of new privileges: The delegatee receives his
own privilege which is independent of the delegator’s privilege in the sense
that if the delegator’s privilege is revoked, then it does not necessarily mean
that the delegatee’s privilege is revoked. In this case the delegation is the act
of issuing a new privilege. An agent may be an authority to create a privilege
for another agent without having that particular privilege himself, or even
without being an authority to create that privilege for himself. Transfer of
a privilege can be seen as a creation of a new privilege and revocation of an
old one.

2. Delegation by proxy: The delegatee does not receive his own privilege,
but he can exercise the privilege of the delegator, in the sense that he speaks



for or acts on behalf of the delegator. In this case, if the delegator’s privilege
is revoked then the delegatee cannot exercise that privilege any more.

Some applications may require support for both kinds of delegation, and a
framework capturing both would provide a flexible treatment for management
of permissions. However, in this paper we will focus only on delegation of the
first type.

3 Attribute Certificates and Privilege Management

Infrastructure

Attribute Certificates (AC), sometimes called Privilege Attribute Certificates
(PAC), have been proposed in various forums for securely providing privilege
information using public key technology. The main proposal for use of AC is
for distribution of authorisations [FPD99]. Beside this, ACs can also be used
for other purposes such as group and role assignment as suggested in [HBM98],
and for qualification certificates as suggested in [WP]. Similar to the need for
public key infrastructure (PKI) for use of public key certificates (PKC), there is
a need for an infrastructure for the use of attribute certificates. In [FPD99] this
infrastructure is called the Privilege Management Infrastructure (PMI).

There are several reasons for decoupling an attribute certificate from a public
key/identity certificate. For example:

– An agent’s attributes (privileges) change more often than the public key
associated to his identity.

– The authority issuing attribute certificates is usually not the same as the
authority issuing public key certificates.

In PKI models, the public key certificate authorities (CAs) are usually large
institutions at national or even international level, which are trusted or legally
empowered to issue identity certificates. The structure formed by the relations
between the CAs is fairly static and globally recognised by users of the PKI
system.

Here, we argue that in contrast to the PKI model, in the PMI model the
management structures for attribute authorities (AAs) can be highly dynamic
and mainly determined locally, i.e. at organisational level. Being an authority to
create a privilege is itself a privilege that is subject to change.

We propose the use of attribute certificates for delegating privileges and
creating management structures. A certificate is a signed and time-stamped
statement, which can be seen as an illocutionary act with a declarative force
performed by its issuer1.

1 In speech act theory (see e.g. [Sea69]), one distinguishes between different types
of illocutionary acts. Here, we are mainly concerned with one type of illocutionary
act, viz. declarative acts, or illocutionary acts with declarative force. The performer
of a declaration (an illocutionary act with a declarative force) brings about the



The issuing of a certificate can be seen as a declaration made by its issuer to
bring about the propositional content given in the certificate. Notice that this
type of certificate will not be effective unless its issuer has the authority for its
content. A certificate issued by an agent without the necessary authority can be
seen as an unsuccessful attempt by its issuer to declare its content.

The main components of an attribute certificate are:

– Issuer (the distinguished name, or the public key of the issuer)

– Subject (the distinguished name, or a pointer to the subject’s public key
certificate, i.e. its serial number)

– Attribute (the set of attributes that are associated to the subject)

– Validity Interval (the time-interval within which the given attributes are said
to be valid)

– Signature (the digital signature algorithm used to sign the certificate)

– Certificate Serial Number (a unique ID number for the certificate, assigned
to the certificate by its issuer)

An attribute certificate of this type says that the issuer is declaring that
the subject has the set of attributes listed in the attribute field. The content
of certificates can be a proposition stating various things, e.g. that the subject
belongs to the group of administrators, that the subject is assigned the role of
senior manager, that the subject is 20 years old, that the balance of the subject’s
bank account is £100, and so on. The validity interval field indicates the period
of time for which the attributes hold for the subject.

We call an attribute certificate in which the issuer assigns some authority (or
institutional power in the terminology of [FS99]) to the subject of the certificate
as an authority certificate. An authority certificate can be used by an agent to
delegate some authority to others, as for example when the owner of an object
delegates, to some managers, the authority to create permissions to his object.

An authority certificate may be used to create an authority to initiate sev-
eral chains of authority delegations. By expressing constraints on future delega-
tions one defines the scope of future management structures in an organization
[BDF01]. However, any delegation chain must originate from a source of author-
ity for what is delegated. Who is recognized as a source of an authority, and in
what conditions, is a policy issue and is application–domain specific. Different
applications may have different policies for recognising sources of authorities.
In many applications, but not all, the owner(s) of a resource are recognised as
sources of authority for permissions and authorities concerning that resource,
for example.

proposition that is the content of his declaration, if, and only if, he has the required
authority for doing so. It is also possible to view some certificates as assertions, that
is, in speech act terms, as illocutionary acts that assert the truth of a proposition
without necessarily creating it. However, in this present framework nothing is gained
from making the distinction and so we choose to treat all certificates as having
declarative illocutionary force.



Source of Authority

Claimant Verifier

Unconditionally

Empowered

Delegates
Privelege

Delegates

Priv
ile

ge

Claims
Privilege

Fig. 1. The Control Model

Figure 1 shows the control model given in [FPD99] in which the claimant
receives a privilege, directly or indirectly, from the source of authority. In order
for the claimant to exercise his privilege (his access permission), the verifier
needs sufficient credentials, in the form of certificates, to verify the claimant’s
privilege. Note that there may be a number of intermediary authorities between
the source of authority and the final claimant of the privilege. This means that
the set of certificates provided to the verifier may contain a number of authority
certificates showing a proper delegation chain originating from the source of
authority and leading to the claimant.

There are at least two possible models for the control model:

1. Centrally updated model : Any delegation step is reported directly to the
verifier, by sending the authority certificates to the verifier, who updates the
existing management structures in its database.

2. Distributed model : At the delegation step, the delegatee (the claimant) re-
ceives his new privilege and all the intermediate authority certificates origi-
nating from the source of authority to the delegator. The claimant provides
this set of certificates to the verifier at the time of his privilege request.

Each of these models has a number of advantages and disadvantages making
them suitable for different kinds of applications. We will not discuss the issues
associated to each model in this paper. However, in both models the verifier
needs a mechanism for deciding, given a set of certificates, whether the claimant’s
privilege holds. In the next section, we describe a calculus that can be used by
the verifier for reasoning about privileges and delegated authorities.

4 The Framework

In this section we present a framework for a privilege management system using
attribute certificates. The issuing of certificates is the only type of action con-
sidered in this framework. Issued certificates are submitted to a privilege verifier
as shown in figure 1.



The privileges managed by the verifier are of the following two types.

– Access-level permission (e.g., permission to read or write a file, or permission
to execute a program).

– Management-level authority (i.e., authority to declare an access-level per-
mission, or authority to declare a management-level authority).

Here, we consider only two types of certificates, declaration and a simple
form of revocation.

– Declaration certificates are represented as:

declares(issuer , p[I], time-stamp, id).

We interpret a declaration certificate as an action description for a declaration
performed by its issuer at time time-stamp to bring about that privilege p holds
during time interval [I]. The id is the unique id of the certificate, either generated
by its issuer or generated by the privilege management system which the verifier
is a part of. Validation of signatures is of course an essential component of
verifying a certificate, but signatures are not part of the reasoning process for
verifying that a privilege holds, and for this reason signatures do not appear in
the representation of certificates.

– Revocation certificates are represented as:

revokes(issuer , id, time-stamp).

Note that a revocation certificate does not have an id itself, but it contains
the id of the certificate that it is revoking. In the present framework, we do not
allow revocation of a revocation certificate. Of course, one can imagine scenarios
in which there is a need for recovery from earlier revocations. However, in the
current framework we do not consider this type of scenario.

4.1 Semantics of the Calculus of Privileges

Informally, the idea is that a privilege p holds at a time-point t when there
is a certificate C declaring that p holds for some interval I containing t; the
certificate C moreover must be ‘effective’ at t, in the sense that it was issued by
s at a time when s had the authority to declare p to hold for interval I. The
authority of s, in turn, requires a certificate that was effective at the time C

was issued — and so on, in a chain of effective certificates back to some source
whose authority can be accepted without certification (as determined by the
organisational structure).

The following definitions make these ideas precise. The complication is that
we are here dealing with two levels of time — the time at which a certificate is
issued, when it can be effective or not, and the time at which a given privilege
holds or not. It it important to notice that we do not require that a certificate
declaring privilege p for time interval I must be issued before I. In our scheme,
a certificate can create a privilege retrospectively. We comment further on this
and other features after presenting the definitions.



Definition 1. Let AGN, ACT, and OBJ be the sets of agents, actions, and
objects, repectively. We define the set of privileges Φ as:

– perm(s, a, o)[I] ∈ Φ, if s ∈ AGN, a ∈ ACT, and o ∈ OBJ ;
– pow(s, φ)[I] ∈ Φ, if s ∈ AGN, and φ ∈ Φ.

We define the set of declaration certificates Σ+ and the set of revocation certifi-
cates Σ− as:

– declares(s, φ, t, id) ∈ Σ+, if s ∈ AGN, φ ∈ Φ, t ∈ R, and id ∈ N, where R

denotes the real numbers, and N denotes the natural numbers;
– revokes(s, id, t) ∈ Σ−, if s ∈ AGN, id ∈ N, and t ∈ R.

Privileges of the form perm(s, a, o)[I] denote access-level permissions, while priv-
ileges of the form pow(s, φ)[I] denote management-level authorities.
(In the definitions above [I] = [tstart, tend], where tstart ∈ R, tend ∈ R and
tstart ≤ tend.)

Definition 2. We define a certificate database to be a tuple D = (SoA,D+,D−),
where SoA ⊂ Φ is a finite set of Source of Authority privileges, D+ ⊂ Σ+ is a
finite set of declaration certificates and D− ⊂ Σ− is a finite set of revocation
certificates. We adopt the following constraints on a certificate database.

1. If declares(s1, φ1, t1, id) ∈ D+, and declares(s2, φ2, t2, id) ∈ D+, then s1 =
s2, φ1 = φ2, and t1 = t2,

This says that D+ cannot contain two different certificates with the same id.

2. If declares(s1, φ, t1, id) ∈ D+ and revokes(s2, id, t2) ∈ D−, then s1 = s2

and t1 ≤ t2.

This says that a certificate can be revoked only by its issuer and not before
it is declared. In fact, the first restriction can be relaxed but this introduces
the need for extra components which are omitted here for simplicity.

3. If revokes(s1, id, t1) ∈ D− and revokes(s2, id, t2) ∈ D−, then s1 = s2 and
t1 = t2.

This says that there cannot be two revocations of the same declaration certifi-
cate in the same database. We adopt this restriction to simplify the database
in order to streamline the theory.

Definition 3. Let ⊢ be the validates relation between a privilege and a declaration
certificate, where

pow(s, φ)[I] ⊢ declares(s, φ, t, id), if t ∈ [I];

and, if Γ ⊆ Φ, then

Γ ⊢ d, if ∃ q ∈ Γ such that q ⊢ d.



Definition 4. We define the set of effective declaration certificates ED(t) ⊆ D+

of a database D at a certain time t, as:

ED(t) = {declares(s, p[I], t1, id) ∈ D+| t ∈ [I] &

(revokes(s, id, t2) ∈ D− → t2 > t)}.

Definition 5. Let d1, d2 ∈ D+, where d1 = declares(s1, φ1, t1, id1) and d2 =
declares(s2, φ2, t2, id2). We define the supports relation SD as follows:

d1 SD d2 if d1 ∈ ED(t2) and φ1 ⊢ d2.

Definition 6. The set of certificate chains CD in a certificate database D is the
transitive closure of SD.

Note that, CD at a time-point t may contain chains that are no longer of
use; chains that can be extended with further certificates; and chains that are
dormant (see figures in the following section).

Definition 7. We define the set of true privilege statements at a time-point t, in
our calculus of privileges, by defining function hD : R → 2Φ as:

hD(t) = {p | p[I] ∈ Φ ∧

(p[I] ∈ SoA ∨

(d1, declares(s, p[I], t2, id)) ∈ CD ∧ declares(s, p[I], t2, id) ∈ ED(t) ∧

SoA ⊢ d1)}.

We also say that a privilege p holds at time-point t when p ∈ hD(t).

4.2 Examples

In this section we present some diagrams to illustrate the formal definitions just
given.

Each horizontal line of the diagram represents a (declaration) certificate. The
vertical arrows depict the times at which certificates were issued. The shaded
rectangles show the time intervals of the privileges declared by the certificates.
For simplicity, the examples show only one privilege for each certificate, though
this is not a restriction of the framework. Short vertical bars depict revocations;
in Figure 2, the certificates issued at d3, d2, and d4 have been revoked. The
certificates issued at d3 and d2 were revoked before the associated privilege
intervals expired, as indicated by the lighter shading. The certificate issued at d4

declared a privilege for an interval which begins before the certificate was issued.
The framework allows certificates to make retrospective declarations. Although
not shown in this figure (but see Figure 3), it is possible that a certificate issued
at time-point t could declare a privilege that holds for an interval entirely in the
past of t.

The arrangement of the vertical arrows is intended to illustrate the supports
relation between certificates. So the certificate issued at d1 (which was issued



SoA

✲❄
d1

✲❄
d3

✲❄
d5

✲❄
d2

✲❄
d4

✲❄
d6

q

p

t

Fig. 2. Two certificate chains

by some source of authority SoA) supports the certificate issued at d3, which
in turn supports the certificate issued at d5. The chain (d1, d3, d5) is rooted
since the certificate issued at d1 is rooted (it was issued by a source of authority,
we are supposing). The chain (d2, d4, d6), on the other hand, is not rooted : d2

is not issued by a source of authority, nor supported (we are supposing) by a
rooted certificate. We call such chains dormant chains. Therefore, the privilege
q declared by the certificate issued at d5 holds at the time-point t shown in the
diagram, but the privilege p declared by the certificate issued at d6 does not hold
at t (assuming there are no other chains besides those shown in the diagram).

Because certificates can have retrospective effects, a dormant chain can be-
come rooted as a result of a later declaration. This is illustrated in Figure 3,
where the previously dormant chain (d2, d4, d6) becomes rooted as a result of
the issuing of the declaration certificate at d7.

Retrospective effects of this kind can be used to implement a type of approval
mechanism. In the example, the issuer of certificate d2 creates one or more chains
of privilege-creating certificates. These remain dormant until eventually made
effective (‘approved’) by the issuing of a suitable certificate at d7.

Some observations:

– revoking a certificate declaring p[I] before the interval I has started means
that this certificate can never be used to create a chain (the privilege p can
never be exercised on the basis of this certificate);

– revoking a certificate declaring p[I] after the interval I has ended has no
effect — any chain created using this certificate is not destroyed by the
revocation;

– more generally, revocation of a certificate that has already been used to
create a chain will not affect the chain — ‘what’s done is done’, according
to the specific notion of revocation supported in the present framework.



SoA

✲❄
d1

✲❄
d3

✲❄
d5

✲❄
d7

✲❄
d2

✲❄
d4

✲❄
d6

p

t

Fig. 3. A rooted certificate chain

As observed in the introductory section, it is also possible to conceive of other
forms of revocation which can undo past effects. These forms of revocation are
not discussed further in this paper, but will be presented in an extended version
of the framework in future work.

4.3 The Calculus of Privileges

In this section we present a logic program which implements the semantics
given above. The predicate holds(P, T ) is used to query the system to deter-
mine whether a privilege P holds at time-point T given a set of certificates
database. (The program can be executed as a Prolog program as it stands, once
the symbol ‘:’ is declared as an infix functor).

[PC 1.] holds(P, T ) ← C = declares(S, P :[Ts, Te], T0, ID),
effective(C, T ),
Ts ≤ T ≤ Te.

[PC 2.] effective(C,T) ← C = declares(S, P :[Ts, Te], T0, ID),
rooted(C),
T0 ≤ T,

not [revokes(S, ID, T1), T1 ≤ T ].

[PC 3.] rooted(C) ← chain(C1, C),
C1 = declares(S, P, T0, ID),
sourceOfAuthority(S, P ).

[PC 4.] chain(C,C).

[PC 5.] chain(C1, C2) ← supports(C1, C2).



[PC 6.] chain(C1, C2) ← supports(C1, C3),
chain(C3, C2).

[PC 7.] validates(pow(S, P ):[Ts, Te], C) ← C = declares(S, P, T, ID),
Ts ≤ T ≤ Te.

[PC 8.] supports(C1, C2) ← C1 = declares(S1, Q:[Ts, Te], T1, ID1),
C2 = declares(S2, P, T2, ID2),
validates(Q:[Ts, Te], C2),
not [revokes(S1, ID1, T3), T3 ≤ T2].

In this program it is assumed that there is an up-to-date source of authority
database, and that a source of authority privilege is created using a declaration
certificate issued by the source of authority of that privilege.

The program can be generalised very easily to define a predicate holds(P, T, TD)
representing that, according to the certificates issued up to and including time
TD, privilege P holds at time T . This generalized form allows one to query not
only the current state of the set of certificates database, but all past states as
well. The required modification is very straightforward. Details are omitted here.

5 Implementation issues

The scheme presented in the preceding sections supports many different models.
For example, in a centralized system (ref. Figure 1), the holds relation can be
materialized, that is, computed and stored for immediate look-up as required by
the verifier, and updated incrementally whenever a new declaration or revoca-
tion certificate is received. There are well-established techniques for executing
logic programs in this fashion. The database of all declaration and revocation
certificates can also be queried to determine which privileges held at which times
in the past, which may be useful for, e.g., auditing purposes.

In a distributed model, the ‘claimant’ presents a portfolio of certificates,
which provide a set of certificates database on which the verifier can execute the
reasoning calculus directly. Here there are several further options for the treat-
ment of revocations. In one model the verification engine generates requests to a
trusted revocation server as required. In another possible model, the verification
engine checks locally against a list of revocation certificates broadcast from time
to time by the revocation server. There are many other possible combinations.
The point is that the same reasoning mechanism presented in the preceding
section can be applied in each case.

Although we have presented the reasoning engine as a logic program, which
can be executed in Prolog or in some other logic programming system, it is also
easy to re-code the algorithm in another database formalism or programming
language if that is preferred. We leave detailed discussion of such implementation
techniques to another paper.



6 Conclusion and further extensions

We have addressed the issue of privilege management by using a type of attribute
certificate that we call an authority certificate. We have made a distinction
between two types of delegations — delegation as creation of new privileges,
and delegation by proxy — though only the first of these is discussed in this
paper.

We have presented a semantic framework and a calculus for reasoning about
privileges based on a distinction between access level permissions and manage-
ment level authorities. The calculus can be used by a verifier to check whether
a certain privilege holds given a set of declarations and revocations. The frame-
work supports flexible reasoning with time, such that certificates can be issued
to create privileges in the past, present and future.

In the framework we present in this paper we have kept revocation certificates
as simple as possible. Only the issuer of a declaration certificate can revoke it, and
once revoked, a certificate cannot be reinstated. We are currently extending the
framework by allowing more complex revocation certificates providing a richer
set of revocation mechanisms. Finally, we intend to extend the framework with
roles. These do not affect the core calculus but introduce a number of further
choices which we are currently investigating.

Acknowledgement

We would like to thank Jason Crampton for suggesting a number of improve-
ments to an earlier draft of this paper, which made the final draft tidier and
easier to read.

References

[BDF01] Olav Bandmann, Mads Dam, and Babak Sadighi Firozabadi. Constrained
Delegation. 2001. In preparation.

[FPD99] Final Proposed Draft Amendment on Certificate Extensions(v6). generated
from Collaborative ITU and ISO/IEC meeting on the Directory, April 1999.
Orlando, Florida, USA.

[FS99] Babak Sadighi Firozabadi and Marek Sergot. Power and Permission in Se-
curity Systems. In B. Christianson, B. Crispo, and M. Roe, editors, Security
Protocols, number 1796 in Lecture Notes of Computer Science, pages 48–53,
Cambridge, UK, April 1999. Springer Verlag.

[HBM98] R. J. Hayton, J.M. Bacon, and K. Moody. Access Control in an Open Dis-
tributed Enviroment. In Proceeding of IEEE Symposium on Security and
Privacy, pages 3–14, Oakland, CA, 1998.

[MS91] J. Moffett and M. Sloman. Delegation of Authority. In I. Krishnan and
W. Zimmer, editors, Integrated Network Management II, pages 595–606.
North Holland, April 1991.

[Sea69] John R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.



[WP] Petra Wohlmacher and Peter Pharow. Applications in health care using
public-key certificates and attribute certificates. In Proceedings of the 16th
Annual Computer Security Applications Conference 2000 (ACSAC 2000),
pages 128–137, New Orleans, Dec. IEEE Press.


