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Abstract

Background: During a pandemic, it is important for clinicians to stratify patients and decide who receives limited medical
resources. Machine learning models have been proposed to accurately predict COVID-19 disease severity. Previous studies have
typically tested only one machine learning algorithm and limited performance evaluation to area under the curve analysis. To
obtain the best results possible, it may be important to test different machine learning algorithms to find the best prediction model.

Objective: In this study, we aimed to use automated machine learning (autoML) to train various machine learning algorithms.
We selected the model that best predicted patients’ chances of surviving a SARS-CoV-2 infection. In addition, we identified
which variables (ie, vital signs, biomarkers, comorbidities, etc) were the most influential in generating an accurate model.

Methods: Data were retrospectively collected from all patients who tested positive for COVID-19 at our institution between
March 1 and July 3, 2020. We collected 48 variables from each patient within 36 hours before or after the index time (ie, real-time
polymerase chain reaction positivity). Patients were followed for 30 days or until death. Patients’ data were used to build 20
machine learning models with various algorithms via autoML. The performance of machine learning models was measured by
analyzing the area under the precision-recall curve (AUPCR). Subsequently, we established model interpretability via Shapley
additive explanation and partial dependence plots to identify and rank variables that drove model predictions. Afterward, we
conducted dimensionality reduction to extract the 10 most influential variables. AutoML models were retrained by only using
these 10 variables, and the output models were evaluated against the model that used 48 variables.

Results: Data from 4313 patients were used to develop the models. The best model that was generated by using autoML and
48 variables was the stacked ensemble model (AUPRC=0.807). The two best independent models were the gradient boost machine
and extreme gradient boost models, which had an AUPRC of 0.803 and 0.793, respectively. The deep learning model (AUPRC=0.73)
was substantially inferior to the other models. The 10 most influential variables for generating high-performing models were
systolic and diastolic blood pressure, age, pulse oximetry level, blood urea nitrogen level, lactate dehydrogenase level, D-dimer
level, troponin level, respiratory rate, and Charlson comorbidity score. After the autoML models were retrained with these 10
variables, the stacked ensemble model still had the best performance (AUPRC=0.791).

Conclusions: We used autoML to develop high-performing models that predicted the survival of patients with COVID-19. In
addition, we identified important variables that correlated with mortality. This is proof of concept that autoML is an efficient,
effective, and informative method for generating machine learning–based clinical decision support tools.
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Introduction

Many regions worldwide are still fighting the first wave of the
COVID-19 pandemic, while other areas that have reopened are
experiencing a resurgence of cases [1]. During such an emergent
situation, it is important for clinicians to effectively and
efficiently triage patients. In recent months, studies have
proposed several machine learning models that can accurately
predict COVID-19 disease severity. Many of these studies have
been successful in generating a high-performing model [2-4].
However, until now, these models have only been trained on
one kind of machine learning algorithm, and many researchers
have limited the evaluation of their models’performance to area
under the curve (AUC) analysis. Studies have either not reported
areas under the precision-recall curve (AUPRCs) or have only
reported low AUPRCs. Furthermore, these studies have been
difficult to replicate due to hyperparameter tuning. The
automation of machine learning end-to-end processes has
allowed for the development of simple, fast, and
easy-to-replicate models that often outperform manually
designed models. This study was designed to (1) optimize the
performance of predictive models by using automated machine
learning (autoML) to generate various machine learning models
and automate hyperparameter optimization; and (2) choose the
best performing machine learning model based on AUPRCs.

Artificial intelligence (ie, machine learning) models have often
been criticized for being black-box models. We tried to stare
into this so-called “black box,” identify the variables that drive
model performance, and understand the extent of these variables’
effects on model performance. The interpretability of models
is crucial in medical environments; for results to be widely
accepted, they must be explainable to medical providers. To
assess the correctness of a model, clinicians must be able to use
their intuition. Therefore, a model’s response must be
understandable to clinicians and comparable to biologically
plausible expectations.

In this study, we aimed to generate multiple machine learning
models, assess their performance, and select the
highest-performing model. After ranking variables by
importance, we chose the top 10 most influential variables and
retrained the autoML models to generate new models that only
used these 10 variables. This was done to create high-performing
models with low dimensionality. In addition, we sought to
provide interpretable black-box model results to clinicians and
patients. Finally, the COVID-19 mortality calculator, which is
based on this study, was developed and freely available online
as a web application [5].This study provides proof of concept
that autoML is an efficient, effective, and informative method
for building machine learning–based clinical decision support
tools.

Methods

Variable Selection and Collection

After conducting a literature review, we selected 48 variables
for generating high-performing machine learning models. These
variables included demographics such as gender; race; age;
comorbidities; physical signs/symptoms; and laboratory test
results, such as ferritin, interleukin-6, tumor necrosis factor-α,
D-dimer, C-reactive protein, and lactic dehydrogenase (LDH)
levels [2-4, 6-12].

Data collection and analysis were approved by the Albert
Einstein College of Medicine Institutional Review Board. The
data were collected by using Clinical Looking Glass (CLG),
which is an interactive software application that was developed
at the Montefiore Medical Center. This application is used to
evaluate health care quality, effectiveness, and efficiency. CLG
integrates clinical and administrative data sets, thereby allowing
clinicians to build temporally sophisticated cohorts and assess
outcomes [13-16].

We queried the CLG database for patients who were aged >18
years, tested positive for COVID-19 (ie, confirmed with a
nasopharyngeal specimen and real-time polymerase chain
reaction) within 24 hours before or after admission, and were
admitted to our institution from March 1 to July 3, 2020. The
index time was when a patient tested positive for COVID-19
based on their real-time polymerase chain reaction results. We
investigated a total of 48 variables and used the earliest values
that were available within 36 hours before or after the index
time. The outcome of interest was mortality from any cause
within 30 days after the index time.

Model Development and Evaluation

We used the open-source H2O.ai autoML package for the R
language [17-19]. The package can be downloaded to a local
device. This allowed us to avoid uploading patient data to a
third-party cloud service. The H2O.ai autoML package trains
and cross-validates common machine learning algorithms, such
as gradient boosting machine (GBM), extreme gradient boosting
(XGBoost), general linear models (GLMs), random forest (RF),
and deep learning (DL). In addition, the package trains two
types of stacked ensemble models—one based on all previously
trained models and another based on the best model of each
model family. Additional information on how each model was
built and which hyperparameters were tuned via autoML can
be found in documentation that is provided by H2O.ai [18,19].

We used the 10-fold cross-validation method to train the autoML
model on a randomly selected data set that included 80% of the
original data. We then used the trained autoML model to
generate 20 models and rank them in order of performance (ie,
AUPRC). These 20 models were based on the remaining 20%
of the original data set.
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The AUPRC is a measure of a model’s predictive performance,
which is based on the relationship between the positive
predictive value (PPV) for the outcome (ie, death; y-axis) and
the model’s sensitivity for detecting patients who actually die
(ie, x-axis). For reproducibility, we did not use the DL method
and trained each model separately. For convenience, we named
the best model that was generated with 48 variables MODEL-48.
After creating Shapley additive explanation (SHAP) and partial
dependence (PD) plots to evaluate MODEL-48, we selected the
10 most influential variables. We used these 10 variables to
repeat model training, model ranking, and the selection of the
best performing autoML-generated model. For convenience,
we named the best model that was generated with these 10
variables MODEL-10.

To further evaluate MODEL-48 and MODEL-10, we generated
a binary classifier (ie, dead or alive within 30 days). We chose
a threshold probability that maximized the F2 score of each
model. Unlike the F1 score, which gives equal weight to
precision (ie, PPV) and sensitivity (ie, recall), the F2 score gives
more weight to sensitivity and penalizes a model for generating
more false negatives than false positives. As our goal was to
identify patients who were at a high risk of death (ie, patients
who need more attention and further intervention), our model’s
metric of success was based on enhancing its sensitivity for
detecting patients who were at risk of death. However, this came
with the drawback of overcalling death as a predicted outcome.
Sensitivity, specificity, PPVs, and negative predicative values
(NPVs) were calculated for each binary classifier. The F-score
calculation formula was as follows:

In this formula, to calculate the F2 score, β must equal 2.

Opening the Black Box: Intuitive Understanding of

Model Variable Utility

Once a model determined the most important variable in its
internal black box, we used SHAP and PD plots to develop our
understanding of the black box. A SHAP plot displays variables
in a top-to-bottom format; the most important variable is
displayed at the top and the least important variable is displayed
at the bottom. Variable importance is determined by the model
in question. In this study, SHAP values (ie, x-axis) were
indicative of the relative contribution of each patient’s variable
values (eg, a systolic blood pressure of 50 mmHg) to the overall
prediction of a patient’s mortality. SHAP values of >0 on the
x-axis were indicative of variables that contribute to a greater
chance of mortality, and SHAP values of <0 were indicative of
variables that contribute to a lower chance of mortality. In our
SHAP plots, each patient was represented by a dot on a
horizontal line (ie, a line for each variable). Each dot’s color
reflected patients’ variable values, which were scaled to a
normal, color-coded distribution (ie, red indicates large values
and blue indicates small values) [20].

A PD plot is a graphical depiction of a variable’s marginal effect
on the predicted outcome (ie, mortality). The effect of a variable
was measured with mean response values. In this study,
mortality had a response value of 1, which indicates a 100%
chance of dying. A PD plot can show whether the relationship
between a target and a feature is linear, monotonic, or complex
[21].

Choosing the Top 10 Most Important Variables:

Dimensionality Reduction

Dimensionality reduction is an important process in machine
learning model development. Sometimes, the variables in a
model correlate with each other, making them redundant
variables (ie, blood urea nitrogen [BUN] level, creatinine level,
and estimated glomerular filtration rate are all indicators of renal
function). If we could generate a model with a low number of
unique variables, we would be able to shorten computation
times in real clinical settings. In addition, dimension reduction
allows models to overcome data sparsity by using variables that
have more data points. Furthermore, by identifying the top 10
most important variables, clinicians can focus on ordering
medical tests instead of obtaining data on 48 variables, and
machine learning developers can have fewer concerns about
handling missing values.

In this study, after evaluating SHAP and PD plots, we chose
the 10 most influential variables for generating MODEL-10 (ie,
a model that requires only 10 input variables to predict
mortality). We first ranked each variable’s influence according
to the SHAP values in the highest-performing models.
Afterward, we chose variables that were influential in these
models. Subsequently, if the rank of a variable was not the same
in each model, we chose variables based on clinical insights.
Clinically speaking, we wanted at least one unique variable for
each biological process (ie, cardiac processes, renal processes,
coagulation processes, etc). If there was more than a single
variable for describing the same clinical domain or biological
process (ie, troponin and probrain natriuretic peptide levels),
we chose the variable with the fewest number of missing data
points (ie, variables that are commonly ordered by clinicians).

Handling Missing Values

Different autoML models have different methods for handling
missing values. For example, in a tree-based model (ie, GBM,
XGBoost, RF models), missing values are interpreted as data
that contain information (ie, data that are missing for a reason)
instead of data that are missing at random. During tree building,
split decisions are made at every node. Each decision is based
on the option that minimizes the loss of model functionality and
treats missing values as a separate category. This category is
then used as the basis for another split decision. Alternatively,
GLMs and DL models use the mean imputation method to
handle missing values. Further explanations for how each model
imputes missing values can be found in documentation that is
provided by H2O.ai [18].

The workflow of our study design is depicted in Figure 1.
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Figure 1. Flowchart summary of our methodology. AutoML: automated machine learning; AUPRC: area under the precision-recall curve; NPV:
negative predictive value; PD: partial dependence; PPV: positive predictive value; SHAP: Shapley additive explanation.

Data Access, Responsibility, and Analysis

KI had full access to all the data in this study. KI takes
responsibility for the integrity of the data and the accuracy of
the data analysis.

Results

Study Population

Between March 1 and July 3, 2020, 4313 adult patients tested
positive for COVID-19 and were admitted to a Montefiore
Health System hospital within 24 hours of their first
COVID-19–positive test. Of these 4313 patients, 1087 (25.2%)
died within 30 days of infection (Figure 2).

Figure 2. A graph that shows the number of patients who were admitted to the hospital due to SARS-CoV-2 infection (ie, blue line; number of cases
per day) and the number of patients who died (ie, red line; number of deaths per day). Data were collected from March 1 to July 3, 2020 at the Montefiore
Medical Center.
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A summary of case data, patients’ survival rates, and patients’
demographic characteristics is shown in Table 1. The training
set consisted of 3468 patients, and the test set consisted of 845

patients. Summaries of the variables for the entire cohort, the
training data set, and the testing data sets are provided in Tables
S1, S2, and S3 in Multimedia Appendix 1.

Table 1. Summary of patients’ demographic characteristics.

ValueCharacteristics

63.97 (16.77)Age (years), mean (SD)

Gender, n (%)

2289 (53.07)Male

2024 (46.93)Female

1785 (41.38)Hispanic ethnicity, n (%)

Race, n (%)

113 (2.61)Asian

1560 (36.17)Black

428 (9.92)White

4 (0.09)Other Pacific Islander

5 (0.12)Native American or Alaskan

418 (9.69)Unknown/undeclared

1785 (41.39)Other

2.3 (2.34)Charlson score, mean (SD)

Charlson score of 1, n (%)

235 (5.44)Myocardial infarction

702 (16.28)Congestive heart failure

145 (3.36)Peripheral vascular disease

334 (7.74)Cerebrovascular disease

716 (16.6)Dementia

1030 (23.88)Chronic pulmonary disease

70 (1.62)Rheumatic disease

33 (0.77)Peptic ulcer disease

197 (4.57)Mild liver disease

616 (14.28)Diabetes without chronic complications

Charlson score of 2, n (%)

999 (23.16)Diabetes with chronic complications

118 (2.74)Hemiplegia or paraplegia

1314 (30.47)Renal disease

178 (4.13)Any malignancy

Charlson score of 3, n (%)

28 (0.65)Moderate or severe liver disease

Charlson score of 6, n (%)

58 (1.34)Metastatic solid tumor

40 (0.93)AIDS/HIV

3226 (74.8)Survivors after 30 days, n (%)

8.4 (6.91)Length of hospital stay to death (number of days)a, mean (SD)

aIn total, 1087 patients died within 30 days of infection.
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MODEL-48 Generation and Performance

The output of the 20 machine learning models that were trained
via autoML is depicted in Table 2. The best performing model
was the stacked ensemble of all machine learning models
(AUPRC=0.806). This was MODEL-48. The best performing

independent models were the GBM and XGBoost models, which
had an AUPRC of 0.803 and 0.793, respectively. The distributed
RF model (AUPRC=0.783) came in 14th place and the GLM
(AUPRC=0.738) came in last place. The DL model was
generated separately from the autoML models for reproducibility
purposes. The AUPRC of the DL model plateaued at 0.736.

Table 2. Output of the automated machine learning models that used 48 variables. Model ranks are ordered according to AUPRCsa.

Area under the curveAUPRCModel IDRank

0.9170.807StackedEnsemble_AllModels_AutoML_20201219_1410571

0.9110.803GBM_2_AutoML_20201219_1410572

0.9120.800StackedEnsemble_BestOfFamily_AutoML_20201219_1410573

0.9070.793XGBoost_grid__1_AutoML_20201219_141057_model_54

0.9070.792GBM_5_AutoML_20201219_1410575

0.9080.791GBM_3_AutoML_20201219_1410576

0.9050.790XGBoost_2_AutoML_20201219_1410577

0.9100.790XGBoost_grid__1_AutoML_20201219_141057_model_68

0.9030.788XGBoost_grid__1_AutoML_20201219_141057_model_49

0.9100.788XGBoost_3_AutoML_20201219_14105710

0.9090.785GBM_grid__1_AutoML_20201219_141057_model_311

0.8980.785GBM_grid__1_AutoML_20201219_141057_model_212

0.9140.784GBM_4_AutoML_20201219_14105713

0.9050.784DRF_1_AutoML_20201219_14105714

0.9130.782GBM_grid__1_AutoML_20201219_141057_model_115

0.9030.781GBM_1_AutoML_20201219_14105716

0.8960.779XGBoost_grid__1_AutoML_20201219_141057_model_117

0.9090.779XGBoost_grid__1_AutoML_20201219_141057_model_318

0.8990.775XRT_1_AutoML_20201219_14105719

0.8930.769XGBoost_grid__1_AutoML_20201219_141057_model_220

0.8990.763XGBoost_1_AutoML_20201219_14105721

0.8770.738GLM_1_AutoML_20201219_14105722

aAUPRC: area under the precision-recall curve.

Variable Importance

Figure 3 shows the SHAP plots for the GBM and XGBoost
models. In these plots, variables were ranked in descending
order of importance. Each patient was represented by one dot
on each variable line. The horizontal location of each dot

indicated whether the effect of a variable was associated with
a higher or lower chance of death [22]. Variable-specific SHAP
values of >0 indicated an increased risk of death. For example,
the GBM and XGBoost models determined that systolic blood
pressure was the most important variable, followed by age and
diastolic blood pressure.
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Figure 3. SHAP summary plots of the GBM and XGBoost models. According to the GBM and XGBoost models, higher systolic blood pressure levels
(ie, red dots) were associated with a lower probability of death (ie, the left side of the vertical dotted line), and older age (ie, red dots) was associated
with higher probability of death (ie, the right side of the vertical dotted line). BUN: blood urea nitrogen; charlson_score: charlson comorbidity index;
ct_value: cycle threshold value; diastolicBP: diastolic blood pressure; GBM: gradient boosting machine; LDH: lactate dehydrogenase; NLratio:
neutrophil-lymphocyte ratio; pro_bnp: pro-brain natriuretic peptide; pulseOx: pulse oximetry; rr: respiratory rate; SHAP: Shapley additive explanation;
systolicBP: systolic blood pressure; XGBoost: extreme gradient boosting.

PD plots show the marginal effect that one variable can have
on the predicted outcome of a machine learning model. PD plots
for the most influential variables are depicted in Multimedia
Appendix 2. Each line in a PD plot depicts the best performing
model in each machine learning algorithm family. For example,
in Figure 4, all models determined that percent mortality

increased with age (ie, starting at around 50 years of age).
Similarly, all models determined that percent mortality increased
with glucose level. However, this was only true for glucose
levels of <300 mg/dL (Figure 4).

The importance of each variable in every model is represented
on a heatmap in Figure 5.
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Figure 4. Partial dependence plots for age and glucose level. Partial dependence plots for the other variables are shown in Multimedia Appendix 2.
Each line represents a different machine learning algorithm. DRF: distributed random forest; GBM: gradient boosting machine; GLM: generalized
linear model; XGBoost, extreme gradient boosting; XRT: extremely randomized trees.
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Figure 5. A heatmap that represents the importance of each variable in every machine learning model. DRF: distributed random forest; GBM: gradient
boosting machine; GLM: generalized linear model; XGBoost: extreme gradient boosting; XRT: extremely randomized trees.

Selection of the Top 10 Variables: Dimensionality

Reduction

The SHAP plots for the GBM and XGBoost models (ie, the two
highest-performing models) showed that systolic and diastolic
blood pressure, age, LDH level, pulse oximetry level, respiratory
rate, BUN level, and troponin level were top 10 variables in
both models. BUN and troponin levels are indicators of renal

and cardiac function, respectively. With regard to our marker
for coagulation, we chose D-dimer level over fibrinogen level
because it ranked higher and had more data points. Furthermore,
we used Charlson comorbidity scores to represent comorbidities.
Glucose level was also a highly ranked variable. This was likely
due to the increased risk of mortality in patients with diabetes.
However, since the Charlson comorbidity score also accounts
for diabetes, we believed that the Charlson comorbidity score
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was a more comprehensive predictive variable than glucose
level. To confirm whether our choice to use Charlson
comorbidity score over glucose level was justified, we trained
an autoML model on Charlson comorbidity score data (ie,
without glucose level data). We then compared it to a model
that was trained on glucose level data (ie, without Charlson
comorbidity score data). The former model (AUPRC=0.79)
performed better than the latter model (AUPRC=0.78), thereby
validating our choice.

According to our variable selection process, the top predictive
variables were systolic and diastolic blood pressure, age, LDH
level, pulse oximetry level, respiratory rate, BUN level, troponin

level, D-dimer level, and Charlson comorbidity score. We
believed that these variables provided a good representation of
biological processes that are affected by SARS-CoV-2 infection.
In addition, these variables are easy to obtain in clinical settings.
They also reduce the incidence of missing values.

MODEL-10 Generation and Performance

We used the top 10 influential variables to generate 20 more
machine learning models and rank them in order of AUPRC
(Table 3). The best performing model was the stacked ensemble
of each machine learning algorithm family (AUPRC=0.791).
This was MODEL-10. The best performing independent model
was the XGBoost model, which had an AUPRC of 0.790.

Table 3. Output of the automated machine learning models that used 10 variables. Model ranks are ordered according to AUPRCsa.

Area under the curveAUPRCModel IDRank

0.9030.791StackedEnsemble_BestOfFamily_AutoML_20201219_1424061

0.8940.790XGBoost_grid__1_AutoML_20201219_142406_model_62

0.9030.790StackedEnsemble_AllModels_AutoML_20201219_1424063

0.8980.782GBM_3_AutoML_20201219_1424064

0.8970.782GBM_5_AutoML_20201219_1424065

0.8990.780DRF_1_AutoML_20201219_1424066

0.8930.777XGBoost_grid__1_AutoML_20201219_142406_model_57

0.9040.777GBM_2_AutoML_20201219_1424068

0.8960.777XGBoost_grid__1_AutoML_20201219_142406_model_19

0.9000.776XRT_1_AutoML_20201219_14240610

0.8990.775GBM_grid__1_AutoML_20201219_142406_model_111

0.8940.775XGBoost_grid__1_AutoML_20201219_142406_model_412

0.8910.772XGBoost_3_AutoML_20201219_14240613

0.8960.770GBM_grid__1_AutoML_20201219_142406_model_214

0.9000.770GBM_grid__1_AutoML_20201219_142406_model_315

0.8950.769GBM_1_AutoML_20201219_14240616

0.8900.766XGBoost_2_AutoML_20201219_14240617

0.8970.766GBM_4_AutoML_20201219_14240618

0.8860.762XGBoost_1_AutoML_20201219_14240619

0.8850.761XGBoost_grid__1_AutoML_20201219_142406_model_320

0.8890.754XGBoost_grid__1_AutoML_20201219_142406_model_221

0.8600.733GLM_1_AutoML_20201219_14240622

aAUPRC: area under the precision-recall curve.

Performance of MODEL-48 and MODEL-10 as Binary

Classifiers

The maximum F2 score of MODEL-48 was 0.793, and the
probability threshold was 0.110. The binary classifier for this
threshold had a sensitivity, specificity, PPV, and NPV of 0.919,

0.735, 0.513, and 0.968, respectively (Figure 6). The maximum
F2 score of MODEL-10 was 0.779, and the probability threshold
was 0.202. The binary classifier for this threshold had a
sensitivity, specificity, PPV, and NPV of 0.838, 0.836, 0.609,
and 0.944, respectively (Figure 7).
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Figure 6. Binary classifier of MODEL-48. The model had an optimized F2-score threshold. This classifier had a sensitivity of 0.92, a specificity of
0.74, a positive predictive value of 0.51, and a negative predictive value of 0.97.

Figure 7. Binary classifier of MODEL-10. The model had an optimized F2-score threshold. This classifier had a sensitivity of 0.84, a specificity of
0.84, a positive predictive value of 0.61, and a negative predictive value of 0.94.

Discussion

Principal Findings

We were able to use autoML and clinical values (ie, those that
were collected early during a patient’s admission to a hospital)
to successfully generate multiple machine learning models,
assess their performance, and select the highest-performing
models for predicting patients’ chances of surviving a
SARS-CoV-2 infection. In addition, our study demonstrates
that machine learning models that only use 10 clinical variables
can predict survival. These models also had high sensitivity
values, specificity values, and NPVs. Therefore, autoML is an
efficient, informative, and easily reproducible method. The
clinical implementation of autoML-based models may require
further investigation. However, we demonstrate that autoML
is a comprehensive approach for building machine
learning–based clinical decision support tools.

Our results show that the best models were GBM and XGBoost
models. They both had high performance, as determined by
their AUPRCs and AUCs. The RF model, DL model, and GLM
performed substantially worse compared to the GBM and
XGBoost models. The DL model may have performed better
if we had a larger data set, but our DL model required much
longer training times than the other models. Tree-based machine
learning algorithms (eg, GBM, XGBoost, and RF) are more
efficient, and possibly more effective, than neural network
algorithms in terms of analyzing tabular data. We used the
AUPRC as our metric of model utility because it accounts for
the two critical clinical performance metrics that were of specific
interest to us—the positive predictive value and sensitivity. We
wanted to identify patients who were likely to die so that we
could take action and treat as many patients as possible.
Alternatively, the AUC accounts for model sensitivity and
specificity and ignores the effects of mortality prevalence on
model performance. The prevalence of mortality sets the context

in which the model must perform; without this information, the
model is irrelevant.

Machine learning models can be used to enhance electronic
medical record systems and calculate the values of variables
that are collected from patients. Based on the performance of
MODEL-10, our dimensionality reduction process was
successful; 10 variables were enough to generate
high-performing models. This shows that not all parameters are
necessary for performing calculations and making predictions.
Clinicians and hospitals should begin the patient assessment
process by prioritizing the ordering of medical tests (ie, tests
for the 10 variables). Dimensionality reduction not only reduced
the number of variables we needed to consider, but also
minimized the number of missing values in the data set and
reduced the risk of imputation bias. This may be the reason why
the performance of MODEL-10 was similar to that of
MODEL-48. These 10 variables may also help researchers with
conducting studies on unique cohorts and reproducing our
results.

The purpose of autoML is not limited to predicting the survival
of patients with COVID-19. AutoML can be used to generate
models that are based on other types of clinical data and predict
other outcomes (eg, models for predicting which patients require
a ventilator). We hope that our study helps other researchers
with applying our autoML approach, accelerating the
implementation of artificial intelligence models into medical
systems, and delivering better medical care.

Clinical Insights From the Black Box

The trade-off between predictive power and interpretability is
a common issue when working with black-box models,
especially in medical environments where results have to be
explained to medical providers and patients. Interpretability is
crucial for questioning, understanding, and trusting artificial
intelligence and machine learning systems. According to our
variable importance heatmap (Figure 5), many models
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determined that age, pulse oximetry level, and systolic and
diastolic blood pressure were important variables for predicting
the outcome. Biomarkers such as BUN level, LDH level,
estimated glomerular filtration rate, and probrain natriuretic
peptide level were also influential variables. These findings
show that our model results are in line with the clinical findings
of other researchers [23-27].

Our SHAP and PD plots provided insight into the black box.
The SHAP plots allowed us to determine the importance of
variables and provided information on how the variables
influenced models’predictions. Alternatively, PD plots provide
numerical information on a variable’s effects. For example, the
SHAP plots for the GBM and XGBoost models showed that
high glucose levels were associated with an increased probability
of mortality (ie, high SHAP value). Additionally, the PD plots
showed that increases in glucose level were proportional to
increases in patients’ chances of death. However, this was only
true for glucose levels of <300 mg/dL. These results may support
the idea that people with diabetes are at an increased risk of
mortality. Therefore, SHAP and PD plots can be used to confirm
clinical findings and show clinical thresholds.

Other variables that were less influential are also worthy of
examination. For example, the SHAP plots (Figure 3) for the
GBM model showed that low albumin levels were weakly
associated with an increased chance of death. Such findings
may provide insight into the disease mechanism of COVID-19.
In addition, models that only use 10 variables can be
implemented by institutions that might not be able to collect all
48 variables that were tested in this study. If high-performing
models can be generated with only 10 variables, clinicians and
hospitals can focus on collecting these variables when
conducting patient assessments. Such models also minimize the
problem of data sparsity and the risk of imputing missing data
points. In addition, the use of such models will help clinicians
with manually entering values (eg, inputting values on a mobile
device).

Limitations and Future Work

We recognize that there were limitations to our study. Our cohort
was limited to patients with severe conditions that required them
to be admitted to a hospital. Therefore, our findings may not be
generalizable to all patients with COVID-19. For example, we
were surprised to learn that our machine learning models did
not identify race as an important predictor of death, given the
fact that at a population level, the relative risk of mortality
among Black patients is higher than that of White patients [28].
However, one population study analyzed the relative risk of
mortality among Black patients and White patients with
COVID-19 who were admitted to our institution (ie, Montefiore
Medical Center). This study found that there were no
considerable differences in mortality rates between the two
groups once patients were admitted to our hospital [28]. During
a pandemic, hospital beds are scarce. Therefore, only patients
who exhibit severe symptoms are allowed to be admitted to
emergency rooms. Fortunately, our colleagues from our
institution conducted a conventional logistic regression analysis,
which resulted in the same finding; hospitalized White and
Black patients with illnesses of equal severity and relevant

predictor’s for disease progression at admission had similar
mortality rates [28]. The results from our machine learning
models are in line with those of the logistic regression analysis.

In our study, systolic and diastolic blood pressure were the most
important variables. However, these variables may simply
indicate that patients with severe illnesses and hypotension are
at an imminent risk of death. Temporal features were not
considered in our analysis. For example, we did not determine
whether hypotension at admission was an important variable
for patients who survive during the first 24 hours of admission.
Further, we did not determine whether a variable’s importance
diminishes in populations that survive after the first 48 or 72
hours of admission. In a future study, we would like to test
whether our models are robust enough to predict death during
different times of admission. For example, we would test our
models’ performance for predicting the death of patients within
the first week of admission and the fourth week after admission.

The handling of missing values is a challenging problem in
machine learning model development. Fibrinogen, procalcitonin,
and cycle threshold values were missing for many people in our
cohort (Table S1 in Multimedia Appendix 1). We understand
that missing values are not indicative of a variable’s clinical
importance. For example, changes in practice patterns alter the
meaning of missing data. After the first few weeks of the
COVID-19 pandemic, our institution implemented a best
practice protocol that required clinicians to measure patients’
D-dimer levels upon admission and recommend anticoagulation
treatment to patients with elevated D-dimer levels. Clearly, the
presence of D-dimers during the early period of the pandemic
had a different meaning from that of the presence of D-dimers
during the later period of the pandemic. Similarly, missing
D-dimer level values were considered random events during
the later period of the pandemic and purposeful events during
the early period of the pandemic [29]. Therefore, missing data
from the early period of the pandemic have a different meaning
compared to that of missing data from the later period. However,
our imputation methods did not account for temporal changes
in the meaning of missing data. This is an important challenge
that must be considered in future machine learning software
development studies.

With regard to the generalization of our model, future studies
need to be conducted to assess whether our models are useful
at other institutions during the second wave of COVID-19. As
patient demographics can differ from institution to institution,
hospitals may need to customize their models in accordance
with their patient populations. Models should also be designed
to integrate new data and adjust to the ever-changing
environment. We are continually working on reinforcement
learning methods for updating our model in real time.

Conclusion

We used autoML to generate high-performing machine learning
models that predicted the mortality of patients with COVID-19.
We also identified important variables that were strongly
associated with patients’ survival. Our study provides proof of
concept that autoML is an efficient, effective, and informative
method for training machine learning models and gaining insight
into disease processes. AutoML models may help clinicians
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with triaging patients during the COVID-19 pandemic. Our
COVID-19 mortality calculator, which is based on this study,

is freely available online as a web-based computer application
[5].
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