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Abstract Phylogenetic trees group organisms by their
ancestral relationships. There are a number of distinct
algorithms used to reconstruct these trees from molecular
sequence data, but different methods sometimes give
conflicting results. Since there are few precisely known
phylogenies, simulations are typically used to test the quality
of reconstruction algorithms. These simulations randomly
evolve strings of symbols to produce a tree, and then the
algorithms are run with the tree leaves as inputs. Here we use
Avida to test two widely used reconstruction methods, which
gives us the chance to observe the effect of natural selection
on tree reconstruction. We find that if the organisms undergo
natural selection between branch points, the methods will be
successful even on very large time scales. However, these
algorithms often falter when selection is absent.

1 Introduction

The universality of the genetic code has led researchers to the conclusion that all known
living organisms share a common ancestor from about 3.5 billion years ago. However,
there is a lot more that we can say about ancestral relationships. For example, all
animals have a single ancestor thought to be about 600 million years old, and all mam-
mals have a more recent ancestor still (about 200 million years old). As Dobzhansky
stated “Nothing in biology makes sense except in the light of evolution.” Understand-
ing the evolutionary relationships between organisms is a critical key to understanding
biology. If we understand which organisms are similar to each other then we can,
for example, examine poorly understood traits through their less novel homologues in
other species. The field of phylogenetics [5] is aimed at revealing what the relationships
between species are, and its most fundamental problem is constructing the tree of life,
linking all species together. Moreover, research in phylogenetics has the potential to
improve research in other fields such as epidemiology, where organisms are evolving
rapidly enough to have large effects on society. As an example, it would be useful
to learn how, in different situations, viruses and bacteria develop resistance to drugs
and vaccines. Knowledge of phylogenetic trees also allows us to measure the statisti-
cal significance of evolutionary observations, specifically in cases when it is possible
that a specific trait developed more than once. An understanding of the evolutionary
relationships between the species is necessary for the advancement of biology.

Using mathematical algorithms, one can create phylogenetic trees from data sets
containing the genomes of extant organisms. Here, we will focus on two methods
that accomplish this: maximum parsimony and neighbor joining. Since we are using
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a non-DNA-based system, we are currently limiting ourselves to studying methods that
do not rely on nucleotides or proteins. Most notably absent is maximum likelihood, a
well-used algorithm that requires a point accepted mutation (PAM) matrix, which does
not currently exist for digital organisms. It is likely that such a PAM matrix will be
available in the near future, which should further energize research in this vein.

Maximum parsimony is a reconstruction method heralded by biologists for its ac-
curacy and its adherence to sensible scientific principles. Also known as minimum
evolution, maximum parsimony uses Occam’s razor,1 the idea that the simplest expla-
nation is the one most likely to be applicable, to reconstruct phylogenetic trees [3].
Maximum parsimony works by examining the space of all possible trees and produc-
ing the one that requires the fewest mutations. Although this is a reasonable method,
it suffers from problems due to the exponential computational complexity of gener-
ating all of the possible trees for a given set of organisms [12]. This has prompted
the creation of maximum parsimony methods that restrict the space of trees that are
searched to a subspace that is likely to contain the minimum mutation tree. It is also
important to note that maximum parsimony occasionally makes large scale topological
mistakes [2].

Neighbor joining is one of the most intuitive methods for reconstructing phylogenetic
trees. Neighbor joining relies on the creation of a distance matrix that contains the
genetic distance between each genotype within the data set [14]. This genetic distance
can be determined in a number of ways. One option that is widely used is the Hamming
distance, which is simply the number of sites at which two genotypes are different [2].
This distance matrix is then used to reconstruct the tree, by using an algorithm that
groups those genotypes into the clusters that are closest together in genetic distance,
while allowing for differences in mutation rate between branches. This process is
iterated to group clusters into superclusters based on their average distance to each
other, until the tree is complete. This method has some advantageous properties, the
most important being that its algorithmic complexity is O(n3) [12]. The other tree
reconstruction schemes are generally unable to reconstruct trees in polynomial time.
For many problems that involve sizable numbers of genotypes, neighbor joining is
the only computationally tractable method feasible for use. However, prior research
suggests that it is less accurate than maximum parsimony [2].

Because of the recent advancements in technology in the field of genetics, there
are a large number of genes and even full genomes that have been sequenced and
are available for analysis. In the absence of any analytical or a priori results (beyond
those mentioned above) that distinguish the different phylogeny reconstruction algo-
rithms, it is important to understand how accurate these methods are under different
sets of circumstances [8]. This is a substantial problem, since there do not exist many
phylogenies in nature that are known precisely, and fewer still on a fine scale within
a species. In order to alleviate this difficulty scientists have generated test data sets
representing phylogenetic trees where internal sequences are known but only the final
data points are fed into the algorithms. This has been done in primarily two different
ways: using actual organisms under the influence of a mutagen, or using a computer
to generate strings of data that are subject to random mutations [9]. Both methods rely
heavily on neutral mutations, that is, genetic changes that do not have any phenotypic
effect. However, using a computer to create strings that randomly mutate appears to
remove all of the complexity of biological macroevolution, which is due to adaptive
(i.e., beneficial) mutations. The same is also largely true of the studies on actual biolog-
ical organisms, since they involved populations that did not have to adapt to changing
environmental conditions [9]. These studies are not without utility, considering the fact

1 Pluralitas non est ponenda sine neccesitate, or “Plurality should not be posited without necessity.”
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that some interesting phylogenies, such as those for tracking fast-spreading diseases,
are governed mostly by neutral mutations.

In certain situations it seems reasonable to expect that these sequences of randomly
changing nucleotides could become saturated with mutations. Saturation has dire im-
plications for tree reconstruction. Any two saturated sequences will be separated by a
random Hamming distance centered about the ratio of the sequence length to the num-
ber of different types of bases constituting the genetic code. Thus, saturated sequences
are of no use to phylogenetic reconstruction algorithms. The reason that sequences
become saturated is that there is no selective pressure on those sequences. Obviously,
not all of the sequences of genes in the genome can become saturated; some of them
have become fixed by selection. When reconstructing phylogenetic trees over long
periods of time, the neutral sites in the genome will become saturated. This would
force the tree reconstruction methods to deal with sections of the genome that have
become fixed due to selective events. Using the model cases that researchers have
used to generate sample phylogenies could provide erroneous results, since they by
definition miss all of the complexity that selection could create.

In this article, we use Avida, a computer program that creates an environment in
which digital organisms can evolve. Digital organisms are self-replicating computer
programs that have genomes composed of strings of instructions (see [13] in this issue
for details). Experiments studying the evolution of digital organisms have addressed a
number of current issues in biological evolution (see [15] for a recent review). However,
unlike biological evolution, evolution in digital organisms happens rapidly due to a
short generation time, and the history of each run is known. Therefore, Avida is an ideal
system to quickly create known phylogenies. Here, we demonstrate that over long time
scales (i.e., once all neutral sites have reached saturation) tree reconstruction methods
can group organisms accurately only if natural selection shaped the formation of the
tree, since this will often cause genomic distinctions to be maintained. Specifically,
groups of organisms that should be paired together must have had an adaptive event
that distinguishes them from all other organisms in the population.

2 Materials and Methods

We performed all experiments using Avida version 2.0 (beta 3), freely available from
http://www.sourceforge.com/projects/avida. We generated sample phylogenetic trees
by starting with a single seed organism as the root. We caused speciation and di-
vergence through competitive isolation, by choosing the dominant (most abundant)
genotype at the end of a run and placing a single copy of it in two separate (isolated)
populations. The ancestral seed organism resulted from prior evolution and has a
genome with 100 instructions. The ancestor was evolved in the standard environment,
which rewarded six logical operations: NOT, NAND, AND, ORN, OR, and ANDN, as shown
in Table 1. In these experiments, we enforced a constant genome length by preventing
insertions, deletions, or implicit mutations that would shift the positions of genetic in-

Table 1. A listing of the tasks that were rewarded in each environment. The alternate environment rewards three
additional tasks beyond those in the standard environment.

Standard environment Alternate environment
NOT, NAND NOT, NAND
AND, ORN AND, OR
OR, ANDN OR, ANDN

NOR, XOR, EQU
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formation within the genome. This simplifies analysis substantially, because otherwise
the sequences of the organisms would need to be aligned in order for the phylogenetic
reconstruction techniques to be usable. The carrying capacity of each experiment was
set to 2,500 organisms (on a 50 by 50 grid) and continued for 20,000 updates (about
2,000 generations.)

To generate a test phylogeny, we placed the ancestral seed organism in a population
that we ran for 20,000 updates. The dominant genotype in this population was then
placed in two isolated Avida populations, which were each run for an additional 20,000
updates, during which time further adaptation was expected. From each of these two
populations an organism was selected from the dominant genotype to start two more
populations, for a total of four simultaneous populations in this final round. Again,
these populations were allowed to progress for 20,000 updates, and at the end four
organisms (one from the dominant genotype in each population) were chosen to be
used for the reconstruction. See Figure 1 for a diagram of this experimental method.
Since that branch of the tree is produced by an individual Avida run, it is easy to control
the environment along each branch, therefore allowing for the study of natural selection
on the tree reconstruction algorithms.

We generated a total of five sets of phylogenies under different environmental con-
ditions. Each phylogeny had exactly seven branches: one that formed the root (and

organism.defaultOrganism1−1

Organism1−2 Organism2−2

Organism2−1

Organism1−2 Organism2−2

Organism1−1 organism.default

          Type 1

organism.defaultOrganism1−1

Organism1−2 Organism2−2

Type 2

Organism2−1

Organism2−1

Type 3

environment 2

environment 1

Figure 1. Diagrams of the environments used to create the test phylogenies. Type 1 uses the standard environment
throughout; type 2 shifts to the alternate environment after the first branch point; type 3 shifts to the alternate
environment only after the second branch point. Solid lines represent the standard environment (environment 1),
and dashed lines the alternate environment (environment 2).
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therefore cannot be reconstructed), two that branch off it at the first level, and four that
branch off them at the second level. The ancestor was near a global fitness maximum
for the standard environment. Phylogenies generated in set I used the standard envi-
ronment all the way through (tree type 1), and thus had very little additional evolution.
Set II changed the environment to the alternate environment from right after the first
branch point (tree type 2), causing the organisms to be immediately subject to adaptive
change. Set III was subjected to the alternate environment after the final branching
(tree type 3), allowing new selective pressures only at that point. Set IV had conditions
identical to those of set I, only we sterilized all organisms with non-neutral mutations in
order to ensure artificially that no true selection occurred. We further enhanced the drift
in set V, by using the same procedure as in set IV, but allowing the final populations
to evolve for 100,000 updates (5 times the default).

Unless otherwise specified, all tree branches generated in Avida were allowed to
progress for 20,000 updates with a mutation rate of 0.0075 per site, which we expect is
more than enough time for all neutral sites to be randomized (that is, for the molecular
clock to run out). This duration is equivalent to approximately 2,000 generations, and by
the end of it, each site only has a (1−0.0075)2000 = 2.89×10−7 probability of not being
mutated. We followed this up by testing a control version of Avida wherein all organisms
were guaranteed to replicate every 10 updates no matter what their genome sequence.
In such a random system, if all the sites that are similar between two organisms that
are paired together by neighbor joining are different from the corresponding site in
their common ancestor, in a kind of homoplasy of neutral sites, then it is purely by
chance that they were paired together. Maximum parsimony is basically useless in
these situations, because of the absence of informative sites.

To reconstruct the phylogenetic trees produced by Avida we used Phylip, which is
a free software package of many different phylogeny programs distributed by Felsen-
stein [4]. We used the program neighbor to do the neighbor joining, and the program
dnapars to obtain maximum parsimony. Since the genome of the Avida organisms
contains 26 symbols, it was impossible to use dnapars in the form in which it was
distributed. We modified it so that it could be used with a genome comprising every
letter in the alphabet. To generate the distance matrices required for neighbor we
used a very simple Python script.

3 Discussion

Under the hypothesis of neutral evolution it is assumed that within the genetic codes of
organisms there are a number of sites that are not subject to selection. These neutral
sites can be thought of as “junk” DNA, which is present in the genomes of many
organisms. Mutations accumulate at these sites without the purging force of selection,
allowing them to act as the molecular clock that most reconstruction methods rely on
to determine how long ago the lineages of two species had diverged. However, given
sufficient time, neutral sites will become saturated with mutations and the molecular
clock runs out, indicating a maximal separation. Given additional time, new mutations
only occur at sites of older mutations and are therefore uninformative. The phylogenies
we are studying in this article were run for a sufficiently long period of time that we
expect this maximum separation. In the absence of selection or a molecular clock, we
expect reconstruction to be relatively unsuccessful.

When an environmental change occurs after a branch point, the organisms should
adapt to that change, creating fundamental differences in their genomes that will be
preserved in this new environment. All organisms that are born within one of these
branches should have a higher similarity due to this new genomic structure. Essentially,
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this creates two monophyletic groups, which by Hennig’s principle contain organisms
that share traits that were uniquely derived from their common ancestor [6].

It is rare for digital life forms [11], and probably biological ones as well [7], to reach
the same genotypic solution twice. Convergent evolution is phenotypic, not genotypic.
Thus all of the organisms that should be grouped together would have adapted in
the same environment, and almost by necessity in the same manner. Organisms in
the other branch, although adapting to the same environment, should have done so
differently from the first pair. If one of these branches progresses for a long time with
many subsequent branch points, there may be no similarity at the neutral sites, but the
phylogenetic tree reconstruction methods would have enough information to correctly
resolve this branch point on the tree.

4 Results

In set I we expected minimal additional selection, which would translate to a 1
3 success

rate in tree reconstruction. Maximum parsimony correctly reconstructed three out of five
phylogenetic trees. Neighbor joining was perfect in these runs. The distance matrix for
each run is an indication of how closely the actual tree matched the data that neighbor
joining saw. In every single run, we found at least one organism that failed to be paired
with its closest partner in terms of Hamming distance. Run 1 was an especially close
example, where, as is shown in Table 2, organism1-2 and organism2-1 are slightly closer
than any of the other pairs of organisms. This situation was ambiguous, and maximum
parsimony failed by pairing together organism1-2 and organism2-1. In the other run in
which parsimony failed, the distance data is more clear cut in favor of the correct tree,
although in all cases the differences in the distance matrices were slight.

In spite of our expectation that our ancestor was near a fitness optimum, set I dis-
played minor fitness changes, which we believe accounts for the better than random
performance of the reconstruction algorithms. Set IV was identical to set I, except that
beneficial and detrimental mutations were explicitly removed. Under this condition,
maximum parsimony again correctly reconstructed three out of five trees, while neigh-
bor joining did marginally worse than in set I, reconstructing only four out of five trees.
Set V expanded the duration of the random walk to 100,000 updates, making the drift
more significant. In this case, maximum parsimony correctly reconstructed two out of
five trees, and neighbor joining, three out of five.

Set II had the organisms subjected to a new environment after the first branch point.
In this set of runs all of the methods were successful in every instance. The distance
matrix data also tells this story compellingly, for the organisms that should have been
paired together are substantially closer in terms of actual distance than in the first
set of runs. Furthermore, the distance between two organisms that should not have
been paired together in the second run is comparable to the distance between two
organisms in the first run, while the distance between two that should have paired
together is definitely not. This is shown in Table 3.

Table 2. An example distance matrix (Hamming distance) taken from a run in set I in which there should have been
no additional natural selection after the first branch point. All values are very similar, making reconstruction difficult.

Organism Organism1-1 Organism1-2 Organism2-1 Organism2-2
Organism1-1 0 57 55 58
Organism1-2 57 0 56 59
Organism2-1 55 56 0 57
Organism2-2 58 59 57 0

162 Artificial Life Volume 10, Number 2



G. I. Hagstrom, D. H. Hang, C. Ofria, and E. Torng Phylogenetics with Avida

Table 3. An example distance matrix (Hamming distance) taken from a run in set II in which additional natural
selection occurred right from after the first branch point. The much larger range in values significantly improves the
probability of reconstruction.

Organism Organism1-1 Organism1-2 Organism2-1 Organism2-2
Organism1-1 0 52 66 70
Organism1-2 52 0 62 69
Organism2-1 55 56 0 57
Organism2-2 70 69 55 0

In set III, the environmental change occurred after all of the divergences had already
happened, and both methods succeeded three times and failed twice. In these runs,
the distances we observed in the distance matrix are more spread out. The same result
was also observed in the variation in which all beneficial and deleterious mutations
were banned from the runs (before the final branching, obviously). In the completely
random runs, neighbor joining was successful once and maximum parsimony could
not be used due to a complete lack of informative sites.

5 Conclusions

Trees in set II were reconstructed accurately as expected, which is encouraging for
phylogenetic tree reconstruction methods in general. It is important to note that in
these runs adaptation was not always completed when the organisms branched for the
final time. Thus, the fact that the organisms evolved together forced their genomes to
have a structure that was similar enough so that whatever adaptations they made in
the future would not pull them apart too far in terms of genetic distance. Most of their
traits were derived from traits in the common ancestor. This is analogous to situations
involving convergent evolution.

Since whenever selection separated the pair (organism1-1, organism1-2) from
(organism2-1, organism2-2) the phylogenetic tree reconstruction programs were per-
fect, it seems safe to say that these trees would have been safely reconstructed even
with extreme selection at the ends of each run. It has always been believed that using
genetic data would allow for the detection and elimination of taxonomic errors that
were based on convergent evolution, but this was often with the assumption that the
time between the divergences of the organisms was small enough to allow for large
statistical similarities between the parts of the genomes that had not been selected for.
This assumption certainly makes sense when working with animals and higher organ-
isms, but it seems that it could break down with organisms that reproduce and mutate
faster, such as viruses and bacteria.

In all sets of runs where there was little or no adaptation, the phylogenetic tree re-
construction methods were not always perfect. In set I, where evolution was not strictly
prevented, neighbor joining was able to reconstruct every tree. However, maximum
parsimony was not able to do so (possibly due to a lack of informative sites). Even
in the case of neighbor joining, the distance matrices did not clearly favor the correct
phylogeny. We believe that in a more complex evolutionary situation these effects
could fool neighbor joining.

In set III the environment was only changed after the final branching, and hence
there was no adaptive differentiation between the two halves of the tree. Consequently,
the methods had only limited success. Of course, one could have reasonably expected
that they would perform no better than random in this situation.

A possible explanation for the partial reconstruction success in sets I and III is that
epistatic interactions between mutations played a role in determining which neutral
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mutations were possible, and hence could have caused correlations between sites,
dramatically slowing down the molecular clock. There could have been enough neutral
drift of each half of the tree away from the other half to make the final adaptation of
the four organisms to their environments biased, that is, organism1-1 and organism1-2
would each find a solution more similar to the other’s solution than to the solutions
found by the organisms on the wrong half of the tree.

To explore the unexpected success of the methods in set III, we repeated the single
run that led to organism1-1 in run 4 ten times, and computed the average distance from
the resulting organism to organism1-2, organism2-1, and organism 2-2. For organism1-2
the average distance was 62.9 with a standard deviation of 3.24. The mean distance
from organism2-1 was 65.2 with a standard deviation of 3.55. Finally, the distance from
organism2-2 is 69.6 with a standard deviation of 1.91. However, it should be noted
that in eight of the ten cases organism1-2 was closer than organism2-1, as might be
expected. Furthermore, it is unclear how the statistics of this type of adaptive process
should be computed. The results do indicate that somehow just the fact that organism1-
1 starts closer to organism1-2 makes them diverge less in evolutionary distance, even
though a matching site may contain a different instruction than the one found in the
common ancestor. This strengthens the idea that epistatic effects limit the particular
neutral mutations possible and must be taken into account when calculating the time
needed for the molecular clock to run out.

Since it is possible to calculate the expected differences between two pieces of
genetic code that are neutrally evolving at a certain mutation rate, it should be pos-
sible to determine to an order of magnitude what sort of time scale is involved for
certain organisms. For a particular organism, let µ be the mutation rate, and N be
the dissimilarity (in percent) between two sequences. We can say that for DNA-based
life, the expected change in dissimilarity per generation is approximately (using the
Jukes-Cantor model [10])

dN

dg
= µ

(
1 − 4N

3

)
. (1)

Thus the number of generations that can elapse before we can expect the dissimilarity
to be N is

g = −3 ln(1 − 4N /3)

4µ
. (2)

At this point the question is one of determining a suitable N to produce problems for
the reconstruction methods. Since the number of generations is based on the natural log
of 1−4N /3, making N very close to its maximum value of 3

4 does not significantly affect
the amount of time that this approximate calculation will yield. Thus we allow N to be
3
4 − 1× 10−7. This allows us to create Table 4, which gives values of the randomization
time for familiar organisms. We can also provide this data for an Avidian, for which we
modify the calculation as

dN

dg
= µ

(
1 − 26N

25

)
. (3)

This leads to a result analogous to the previous one for DNA-based organisms:

g = −25 ln(1 − 26N /25)

26µ
. (4)
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Table 4. A selection of example mutation rates and saturation times calculated using Equation 2 for some natural
organisms [1], compared to the saturation time for Avidians, obtained with Equation 4.

Organism µ (site−1generation−1) [1] Genome (bp) Saturation (years)
E. coli ∼ 5 × 10−10 5 × 106 ∼ 6.5 × 107

HIV ∼ 2 × 10−5 10,000 ∼ 1,500
Influenza A ∼ 1 × 10−4 12,000 ∼ 300
H. sapiens ∼ 5 × 10−11 8 × 1010 ∼ 5 × 1012

Standard Avidian 0.0075 100 ∼ 900 (generations)

However, one great source of debate among those who study molecular clocks is
that for mammals it appears as though the rate of divergence is independent of the gen-
eration time of the organism. Of course this type of calculation has less applicability to
higher organisms. It is evident from Table 4 that concerns about the effects of selec-
tion on the tree reconstruction methods should be much more prevalent in the case of
organisms with high mutation rates and generation times than in more complex organ-
isms like humans, where the statistical similarities approach should be fairly accurate.
From a normative standpoint, care must be taken when working with organisms that
might violate the statistical assumptions that are sometimes made in these situations.

A final curiosity is the relative success of the neighbor joining method in reconstruct-
ing the phylogenetic trees. It is a widely held notion that maximum parsimony and
maximum likelihood are more accurate methods than neighbor joining. However, the
data used to demonstrate this difference between methods tends not to based on real
phylogenies, only on purely statistical ones. Although it is the case that the experiments
in this study were not specifically designed to cause problems for neighbor joining, it is
still worthwhile to point out that it appeared to be more effective than maximum parsi-
mony. One should be cautious however, because the large number of characters in an
Avidian genome in combination with the small number of organisms in a phylogenetic
tree restricted the number of informative sites available to parsimony. However, it is
encouraging that the two methods can be even comparable, since neighbor joining is
almost immeasurably faster for reconstructing phylogenetic trees, and in many cases is
the only practical method possible for use in real biological problems.
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