
Using Background Colors to Support Program
Comprehension in Software Product Lines

Janet Feigenspan∗, Michael Schulze∗, Maria Papendieck∗, Christian Kästner†, Raimund Dachselt∗,
Veit Köppen∗, Mathias Frisch∗

∗University of Magdeburg, Germany

{feigensp, mschulze, dachselt, koeppen, mfrisch}@ovgu.de, maria.papendieck@st.ovgu.de
†Philipps University Marburg, Germany

kaestner@informatik.uni-marburg.de

Abstract—Background: Software product line engineering pro-
vides an effective mechanism to implement variable software.
However, the usage of preprocessors, which is typical in industry,
is heavily criticized, because it often leads to obfuscated code.
Using background colors to support comprehensibility has shown
effective, however, scalability to large software product lines
(SPLs) is questionable. Aim: Our goal is to implement and
evaluate scalable usage of background colors for industrial-sized
SPLs. Method: We designed and implemented scalable concepts
in a tool called FeatureCommander. To evaluate its effectiveness,
we conducted a controlled experiment with a large real-world
SPL with over 160,000 lines of code and 340 features. We
used a within-subjects design with treatments colors and no
colors. We compared correctness and response time of tasks for
both treatments. Results: For certain kinds of tasks, background
colors improve program comprehension. Furthermore, subjects
generally favor background colors. Conclusion: We show that
background colors can improve program comprehension in large
SPLs. Based on these encouraging results, we will continue our
work improving program comprehension in large SPLs.

I. INTRODUCTION

Today, software product lines (SPLs) provide an efficient

mechanism to implement variable software. They allow deriving

several distinguished program variants – variants for short –

by selecting or deselecting features. A feature is a user-visible

characteristic of a software system (Clements & Northrop,

2001). Variable code implementing a feature is called feature
code and is only contained in a variant if the according feature

is selected. In contrast to feature code, base code implements

commonalities of an SPL and, thus, is part of every generated

variant. As example, consider a customer buying a specific car

model: She cannot choose the car body (base), but the type of

engine and color (features).

In industry, SPLs are usually implemented with preproces-

sors. In Fig. 1, we show a source code excerpt of Berkely

DB, in which the C preprocessor is used: #if(n)def and #endif

statements (e.g., Line 13 and 15) are used to mark the beginning

and end of variable code fragments.

Both benefits and drawbacks of preprocessors are discussed

controversially. Benefits are that preprocessors (a) are simple to

use (Favre, 1997; Muthig & Patzke, 2003), (b) are flexible and

expressive, (c) can be used uniformly for different languages,

and (d) are already integrated as part of many languages or en-

vironments (e.g., C, C++, Erlang, Fortran, Java Micro Edition).

In contrast, in literature, preprocessors are heavily criticized

and considered “harmful” (Spencer & Collyer, 1992) or even as

“#ifdef hell” (Lohmann et al., 2006). Numerous studies argue

that preprocessor usage leads to complex and obfuscated code

that is difficult to comprehend, thus leading to high maintenance

costs (Favre, 1997; Krone & Snelting, 1994; Lohmann et al.,

2006; Pohl et al., 2005; Spencer & Collyer, 1992).

Despite the controversial discussion of preprocessors, they

are still common in practice, although there are several

approaches for implementing SPLs in a modular way, such as

components (Heineman & Councill, 2001), aspects (Kiczales

et al., 1997), or mixin layers (Smaragdakis & Batory, 1998).

The problem is that introducing novel concepts in industry is

a time-consuming and difficult process, especially when large

amounts of legacy code are involved.

Hence, rather than arguing that new approaches should

be preferred instead of preprocessors, we target the question

how we can improve the usage of preprocessors. Specifically,

we aim at supporting program comprehension: On average,

a maintenance programmer spends 50 – 60 % of her time

with understanding source code (Standish, 1984). Furthermore,

maintaining software is the main cost factor in software devel-

opment (Boehm, 1981). Thus, by improving comprehensibility

of source code using preprocessor statements, we can decrease

the time and cost of software maintenance without enforcing

to change the typical industrial way to implement SPLs.

To this end, we introduced background colors in some code

editors to highlight feature code (Feigenspan et al., 2010;

Kästner et al., 2009). The benefit of colors compared to text-

based annotations as with preprocessors is twofold: First, the

annotations clearly differ from source code, which helps a

developer to distinguish feature code from base code. Second,

humans process color considerably faster than text (Goldstein,

2002). This allows a programmer to identify feature code at

first sight. Consequently, a programmer can get an overview

of a software system considerably faster. However, scalable

usage of background colors is questionable in large SPLs with

several hundred of features. In this paper, we introduce a tool

called FeatureCommander, in which we implement concepts

to scale the use of background colors to industrial-sized SPLs

with several hundreds of features. In a controlled experiment

with C programmers, we show the scalability of our approach.

Proceedings of EASE 201166



1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Fig. 1. Code excerpt of Berkeley DB, illustrating fine granularity, nesting,
and long annotations with preprocessors.

II. PROBLEM STATEMENT

To understand the problems that accompany preprocessor

usage, consider the source code excerpt in Fig. 1. One problem

is that very long code fragments can be annotated with an #ifdef

statement. For example, the comment in Line 16 states that there

are more than 100 lines of code. Hence, corresponding #ifdef

and #endif statement usually do not appear on the same screen.

Thus, without further support, it is difficult to keep track of the

according feature belonging to the annotated code fragment.

Furthermore, #ifdef statements can be nested (i.e., within

a code fragment that is annotated with one #ifdef, a different

#ifdef statement occurs). For example, in Fig. 1, the #ifdef in

Line 13 is stated within another #ifdef, which begins in Line 5.

It might be ok to deal with two nested #ifdefs (a nesting level of

two). However, typical industrial SPLs can have a nesting level

of up to 24, which are hard to keep track of (Liebig et al., 2010).

Additionally, #ifdef statements are textual and, thus, do

not differ that much from source code itself. They can be

overlooked easily, which makes them harder to track. These

problems illustrate the problems for comprehensibility of

preprocessor-based SPLs and the potential increase to software

development costs.

Preprocessors and Background Colors: Previous Results

To improve the understandability of preprocessor-based

software, we introduced and evaluated the use of background

colors to highlight code fragments that are annotated with

#ifdef statements (Kästner et al., 2009; Feigenspan, 2009;

Feigenspan et al., 2009). This way, we profit from the facts

that background colors clearly distinguish from source code

and that humans perceive background colors preattentively.1

In this approach, we used one-to-one mapping of background

colors to features, such that each feature has one background

color. In a previous experiment, we evaluated how background

colors influence program comprehension (Feigenspan, 2009;

Feigenspan et al., 2009). We used a medium-sized SPL with

1Preattentive perception describes the fast recognition of certain visual
properties (Goldstein, 2002).

about 5,000 lines of code, four features (Figueiredo et al.,

2008a), and a nesting level of two in three occurrences.2 To

determine the background color for the nested features, we

blended the colors of both participating features. The SPL

was implemented in Java Micro Edition (ME) with Antenna,

a preprocessor for Java ME.3 In our setting, we compared

two version of this SPL that only differed in one facet:

one had background colors, the other had no background

colors. As subjects, we recruited under-graduate students

from a programming course, in which advanced programming

paradigms, such as preprocessor-based SPLs, were taught.
The results are encouraging: We found that for certain kinds

of tasks, the version with background colors speeded up the

comprehension process of subjects. Furthermore, subjects rated

the idea of background colors very positive.
However, one limitation of our study is caused by the source

code we used, a medium-sized SPL with only four features, in

which a one-to-one mapping of colors to features was feasible

to support program comprehension. In such a small setting,

it may not sound surprising that colors speed up program

comprehension. However, the scalability of the results to

realistic, industrial-sized SPLs is questionable for two reasons:

First, human working memory capacity is limited, and, second,

human ability to distinguish colors is limited, as well. First, in

human working memory typically 7 ± 2 items can be stored,

where an item is a unit of information (Miller, 1956). Examples

of items are digits, such as in telephone numbers, or the features

a developer is working with. If working memory capacity is

exceeded, information units are forgotten if not stored in another

way, for example by writing it down. Second, human capability

to distinguish colors is limited. In direct comparison (i.e., when

colors are displayed next to each other), humans can tell about

two million colors apart (Goldstein, 2002). Without direct com-

parison, humans can only distinguish few colors (Rice, 1991).

Hence, the scalability of background color usage to SPLs with

several hundred of features is questionable. Clearly, a one-to-

one mapping of colors to features is not feasible in large SPLs.
Instead, we suggest an as-needed mapping of colors to

features, such that a developer can assign colors to features as

she thinks is appropriate for her current activity. This concept is

based on a number of observations of preprocessor-based soft-

ware. First, for most part of the source code, only three features

are present at one code fragment that fits on a screen (Kästner,

2010). Second, bugs can often be narrowed down to features or

feature combinations (Kästner, 2010). Hence, most of the time,

a developer needs to deal with only few features at a time, so

a customizable mapping of colors to features should support

program comprehension. Based on these observations and the

results of our previous experiment, we present our solution to

scale the use of background colors to large SPLs.

III. FEATURECOMMANDER

We developed a tool called FeatureCommander, in which

we implemented several concepts to make background colors

2Material and results of this study are available at http://fosd.de/exp cppcide.
3http://antenna.sourceforge.net/.

Proceedings of EASE 2011 67



feasible for realistic industrial SPLs. In Fig. 2, we show a

screenshot of FeatureCommander displaying Xenomai, a real-

time extension to Linux with several hundred of features. We

refer to the numbers in the Fig. 2 when explaining the according

concepts in the next paragraphs.

FeatureCommander is a prototype for preprocessor-based

SPL development. It offers multiple visualizations that support

program comprehension in large SPLs. The basic characteristic

of FeatureCommander is the consistent usage of colors through-

out all visualizations. Users can assign colors to features by

dragging a color from the color palette (1) and dropping it

on a feature in any of the visualizations. For efficiency, users

can also automatically assign a palette of colors to multiple

features (2). Furthermore, color assignments can be saved and

loaded (3), so that a developer can easily resume her work.

When no color is assigned to a feature, it is represented by a

shade of gray in all visualizations.

Using the color concept, we address both aforementioned

problems (i.e., the restricted human working memory capacity

and the restricted human ability to distinguish colors without

direct comparison): First, with the customizable color assign-

ment to features and the default setting (shades of gray), we

support the limited working memory capacity. A developer can

select the features that are relevant for her task at hand, which

is typically in the range of 7± 2 (cf. Section II). Hence, she

can immediately recognize that she is looking at a relevant

feature, because it is colored, while the non-relevant features

do not stand out, because they are gray. Second, the developer

only has to tell the same number of colors apart, which is well

within the human range to distinguish colors without direct

comparison. Furthermore, we support a developer in switching

between tasks with different color assignments to features,

because color assignments can be easily saved and loaded.

Similar to other IDEs, we provide different views: source
code view, explorer view, and feature model view. In the

source code view (4), the background color of source code

fragments indicates to which features fragments are related. To

compromise between code readability and feature recognition,

users can adjust the transparency of background colors (5).

With the adjustable transparency, we address the problem that

too intensive colors can be distracting (Feigenspan et al., 2009).

If nested features occur, we display the color of the innermost

feature (6). This way, we do not have to blend colors anymore,

which would lead to confusion in large SPLs with several

hundreds of features, because it is hard to decide for a user

whether a color is blended from several colors or whether it is

just a color of one feature. Instead, to visualize nested features,

we use sidebars on both sides of the source code view (7), (8).

For each feature, one vertical bar in either gray or an assigned

color is shown. Both sidebars provide tool tips that show the

according feature when hovering over a vertical bar. The sidebar

on the right (7) displays the occurrence of each feature and

according nesting hierarchies scaled to the complete file. To

support navigation, users can click on the vertical bars to get

to a desired position in the source code file (e.g., where four

features appear at the same time in one fragment). The sidebar

left of the source code view (8) shows the nesting hierarchy

of features in the currently visible source code fragment.

With our concept to deal with nested #ifdefs, we address

both problems: First, when a developer is working with a

set of features, she does not have to memorize additional

colors, which would occur if we blended the features. Second,

the limited capability to distinguish colors without direct

comparison is not exceeded, since the number of colors is

not larger than the number of currently relevant features. In

addition, the sidebars allow a developer to navigate to feature

code very efficiently.

In the explorer view (9), users can navigate the file structure

and open files. Files and folders are represented by their name

and horizontal boxes, in which we visualize whether a file/folder

contains feature code or not: If a file/folder does not contain

any feature code, we leave the horizontal box empty (10). If a

file/folder does contain feature code, we display vertical bars of

different colors: When a feature has no color assigned, we use

a shade of gray to indicate the occurrence of feature code (11).

To allow a developer to distinguish subsequent features without

an assigned color, we use alternating shades of gray. When

a feature has a color assigned, we show the according color

in the explorer view (12). Furthermore, the amount of feature

code in a file/folder is indicated by the length of each vertical

bar. For example, if half a file contains feature code, then the

horizontal box is filled half with vertical bars.

By using a visual representation to highlight files/folders, we

allow a developer to efficiently get an overview of a software

system. She immediately recognizes whether a file/folder

contains feature code and whether the feature code is relevant

for her current task. By using alternating shades of gray in the

default setting, we allow a developer to recognize the presence

of different features in a file/folder, including the amount of

feature code, without opening it.

To further support the developer in navigating in a large

SPL, we provide two tree representations of the project: One

ordered according to the file structure, as displayed in Fig. 2

(middle). The other representation is ordered by features (left

in Fig. 2). For each feature, the files and folder hierarchies

are displayed, including the horizontal boxes and vertical bars

indicating percentage of feature code in a file/folder. This way,

if a developer wants to get an overview of all files of a feature,

she just activates the feature representation of the explorer

view and can see the according files at one glance. In both

representations, tool tips show the features of a file/folder.

With the representation ordered by features, we support a

developer in getting an overview of an SPL. This way, she

immediately recognizes the files/folders in which a feature is

defined without having to open it.

Finally, in the feature model view (13), the feature model is

shown in a simple tree layout. Features that are currently not of

interest to a developer can be collapsed. Colors can be dragged

and dropped on features, as well as deleted. This helps a devel-

oper to quickly locate a feature relevant for her task and assign

a color. After color assignment, since the other views of Fea-

tureCommander use the assigned colors, the developer can effi-

Proceedings of EASE 201168



Fig. 2. Screenshot of FeatureCommander. The numbers designate concepts we explain in detail.

ciently locate feature code in files and folders of all other views.

To sum up, with FeatureCommander, we address both

aforementioned problems, i.e., the restricted human working

memory capacity and the restricted human ability to distinguish

colors without direct comparison. Both human limitations pose

problems to a scalable use of background colors to large SPLs.

A developer can assign colors to features as needed. Since she

typically works with few features at the same time, we do not

exceed her working memory capacity or ability to distinguish

colors. Furthermore, tool tips in the explorer view and source

code view as well as assigned colors in the feature model view

support a developer: When a developer has forgotten or cannot

tell to which feature a color belongs, she can easily look it up.

In addition to the human-related problem, we address the

problems of preprocessor statements: Long annotated code

fragments, nested statements, and similarity to non-preprocessor

code. First, since we frame code fragments with background

colors, #ifdef and according #endif statements can be easily

spotted. Furthermore, we display vertical bars left and right

of the source code editor, which visualize the features of

the currently displayed code fragment (left) or the features

scaled to the complete file. Hence, the beginning and ending

of each feature can be spotted easily. Second, we visualize

nested statements. We always show the color of the innermost

feature and the nesting hierarchy with the vertical bars, which

allow a user to easily identify the location of nested features

in a file. Third, since background colors clearly distinguish

from source code and colors are processed preattentively,

FeatureCommander helps to locate feature code at first sight.
In the remainder of this paper, we describe a controlled

experiment in which we evaluated whether the implemented

concepts indeed scale to large industrial SPLs. Since there is no

empirical work on any of the concepts we implemented and we

have strict resource constraints regarding time and subjects, we

restrict our comparison to one concept, i.e., scalable usage of

background colors. We decided for background colors, because

it is the basic concept of FeatureCommander and we can profit

from prior empirical work.

IV. EXPERIMENT PLANNING

In this section, we present our experimental setting. We

describe the setting in a great level of detail to enable the

reader to draw her own conclusion from our data and other

researchers to replicate our experiment. The material we present

here (e.g., questionnaires, tasks, tools, results of statistical tests)

are available online at the project’s website: http://fosd.de/fc.

A. Objective
Our goal is to evaluate whether the use of background colors

improves comprehensibility in large SPLs. Since usually only

few features are visible at the same time on a screen (cf.

Section II), we argue that their use does scale. Hence, our first

research hypothesis is:
RH1: Background colors improve program comprehension in

large SPLs.
Large means, that the source code consist of at least 40,000

lines of code (von Mayrhauser & Vans, 1995) and considerably

Proceedings of EASE 2011 69



more than 7± 2 features, such that humans cannot distinguish

colors without direct comparison, if we used a one-to-one

mapping of colors to features.
In addition to the performance of our subjects, we analyze

the opinion of subjects toward background colors. Since we

found in previous experiments that subjects like the usage of

background colors, we assume that this is the case for large soft-

ware projects, too. Hence, our second research hypothesis is:
RH2: Subjects rate background colors more positive compared

to no background colors in large SPLs.

B. Experimental Material
For our experiment we, used a large SPL – Xenomai a

real-time extension for Linux.4 Xenomai follows a dual-kernel

approach, which means that it acts as primary kernel, having

real-time capabilities; the Linux kernel is executed within

Xenomai’s idle task whenever nothing else has to be done

in real time. Xenomai runs on different platforms, supports

a variety of features including real-time communication and

scheduling. The whole source code consists of about 165,082

lines of code including 40,104 lines of feature code and 343

different features, which are responsible for selecting platform

specific code, special hardware drivers, or different timing

policies.5

To present the source code to our subjects, we generated two

tailored versions of FeatureCommander. This was necessary to

evaluate our research question, whether the use of background

colors scales to large SPLs. In a color version, we deleted the

explorer view ordered by features and the sidebars in the source

code view. Otherwise, subjects could use the functionality of

the sidebars to locate feature code and we would measure its

usage instead of the scalability of using background colors.

Furthermore, we defined different sets of colors for each task,

which subjects were instructed to load, depending on the

features that were relevant for each task. We selected colors,

such that they were consistent between tasks (e.g., if a feature

occurred in two tasks, it had the same or similar color in both

tasks) and such that humans can clearly distinguish all colors

without direct comparison (Rice, 1991). We decided to specify

the colors, so that subjects would not spend their time with

assigning colors to features, but work on tasks. In a colorless
version, we removed everything associated to colors.

For both versions, we implemented three search functionali-

ties: First, search in the complete project, second, search in an

opened file, and, third, search in the feature model view. This

is necessary because of the size of the project, so that we do

not measure how fast subjects can find a certain file in about

thousand files or a certain feature in about 350 features. Instead,

the search functions allow subjects to locate a certain code

fragment within a file or feature within a list of features in both

versions of our tool. Furthermore, this is a more realistic setting,

since typical IDEs provide similar search functionalities.
For both versions, we implemented a window, in which we

present the questions and text fields to record the answer of

4http://www.xenomai.org.
5Analyzed with cppstats, available at http://fosd.de/cppstats.

subjects. To prevent subjects from getting stuck on a task, every

15 minutes a pop up notified subjects about the time passed.

Furthermore, we gave subjects paper-based questionnaires,

on which they evaluated the difficulty of each task, the

motivation to solve the task, and their estimated performance,

if they had worked on the according task with the other version

of the tool. At the end of the experiment, we asked subjects

whether they preferred background colors over working without

colors, and whether they think background colors are more

suitable when working with preprocessor compared to no colors.

Additionally, we encouraged subjects to leave remarks, for

example, about the experimental setting or the tool.

C. Subjects

As subjects, we recruited 9 master and 5 PhD students from

the University of Magdeburg, Germany. Master students were

enrolled in the course Embedded Networks, in which extended

knowledge of operating systems and distributed networks was

taught. To complete the course, students were required to hand

in several assignments, in which they implemented code regard-

ing operating systems and networks, such as clock synchro-

nization of different computers. The PhD students’ expertise

was also in the operating and embedded systems’ domain.

Master students could participate in the experiment instead of

completing one assignment. The performance in the experiment

was not part of the master students’ grade for this course. To

recruit the PhD students, we sent a mail to those who worked

in the domain of operating and embedded systems as well as

real-time properties. Subjects were aware that they took part

in an experiment and could leave any time they wanted.

To measure programming experience, we administered a

questionnaire before the experiment, in which a low value (min:

5) indicates no experience, a high value (over 60 – the scale is

open-ended) high programming experience. All subjects were

familiar with C (median: 4, on a five-point Likert scale (Likert,

1932), 1 meaning very unexperienced, 5 very experienced). All

subjects were male; none was color blind.6 We created two

groups with comparable programming experience according to

the value of the programming experience questionnaire.

D. Tasks

To measure program comprehension, we designed tasks that

can only be solved if subjects understand according source code.

We used two kinds of tasks: maintenance and static tasks (Dun-

smore & Roper, 2000). In maintenance tasks, subjects are

instructed to locate/fix a bug, while in static tasks, subjects

should examine the structure of the source code. In a previous

experiment (Feigenspan, 2009), we found that colors speed up

program comprehension only for static tasks, but not in main-

tenance tasks. Hence, we focused on static tasks, but included

few maintenance tasks to control whether our results still hold.

All tasks are typical for a maintenance programmer, when she

is looking for bugs in certain features and/or files. Altogether,

6The chosen colors were not tested regarding their suitability for color
blindness. For future work, this is an important issue to evaluate. However,
for now our goal is to evaluate whether colors can help at all.

Proceedings of EASE 201170



we had 10 tasks: 2 warming up tasks, 6 static tasks, and 2

maintenance tasks. The warming up tasks were designed to let

subjects familiarize with the experimental setting and were not

analyzed. Regarding static tasks, we had three different types:

1: Identifying all files in which source code of a certain

feature was implemented.

2: Locating nested #ifdef statements.

3: Identifying all features that occur in a certain file.

For each type, we prepared two tasks. As example, we

present the first static task (S1):

S1: In which files does feature CONFIG_XENO_OPT_STATS
occur?

For maintenance tasks, we carefully introduced bugs into the

source code, which subjects were instructed to locate (name file

and method, why it occurs, and how it could be solved). Those

bugs and according bug descriptions we presented subjects were

typical in C programs implementing software in the domain

of operating systems, which we made sure by consulting an

expert in C and Xenomai. We present the bug description of

the first maintenance task to illustrate them:

M1: If the PEAK parallel port dongle driver (XENO_
DRIVERS_CAN_SJA1000_PEAK_DNG) should be un-

loaded, a segmentation fault is thrown.

The problem occurs, when features CONFIG_XENO_
DRIVERS_CAN and CONFIG_XENO_DRIVERS_CAN_
SJA1000 and CONFIG_XENO_DRIVERS_CAN_
SJA1000_PEAK_DNG are selected.

E. Design

We conducted the experiment in two phases. In the first

phase, group A worked with the color version and group B

with the colorless version. In the second phase, we switched the

groups: Group A now worked without colors, and group B with

colors. In each phase, we applied the same tasks to both groups.

Hence, for both groups, the sequence of tasks was: W1, S1, S2,

S3, M1, and, in the second phase, W2, S4, S5, S6, M2. The task

designator indicate the kind of task (W: warming up, S: static,

M: maintenance). The static tasks S1 and S4 were of the same

type, as were S2 and S5, as well as S3 and S6. We designed the

tasks of both phases to be comparable regarding difficulty and

effort (e.g., the same number of features had to be entered as

solution), such that we can compare the results within phases

(i.e., between groups) and between phases (i.e., within groups).

F. Conduction

The experiment took place in June 2010 instead of a regular

exercise session. We booked a room sufficiently equipped

with equivalent working stations. All computers had 17” TFT

displays. Before the experiment started, we gave an introduction

to our subjects, in which we explained the proceeding of the

experiment, including how to use the tool. After all questions

were answered, subjects started to work on the tasks on their

own. When a subject had finished a task, he immediately

switched to the next task, except when he finished the last

task of a phase. At the end of each phase, we gave subjects

a questionnaire to assess their opinion (difficulty, motivation,

Fig. 3. Correctness of answers.

performance with other version). After the second phase, we

additionally assessed which version subjects like better and

which they think is more suitable to work with preprocessor-

based implementations. Three experimenters checked that

subjects worked as planned. No deviations occurred.

Having provided a detailed description of the experimental

setting and conduction, we can present the analysis of our data.

V. ANALYSIS

In this section, we present the analysis of our data. We strictly

separate analyzing our data from interpreting the results, so that

we enable the reader to put her own interpretation to our data.

A. Descriptive Statistics

From our tasks, we can use two measures to assess how

subjects understood a program: correctness and response time

(i.e., how long subjects needed to solve a task). In Fig. 3, we

show how correct answers differ between both groups. We

omitted maintenance tasks in Fig. 3, because we could not rate

any of the solutions as correct, although subjects could often

narrow down the problem to the correct file and function. We

discuss this issue in Section VII. For static tasks, we can see

that the difference in correctness of answers is the largest for

the first static task (S1): Only three subjects solved it correctly

in group A (with colors), but six in group B (without colors).

In Fig. 4, we show the response time of our subjects.7 We

can see that for the first two static tasks (S1 and S2), group A

(color version) is faster than group B.

The estimation of subjects regarding difficulty, motivation,

and performance with the other version (color/colorless) are

shown in Fig. 5. We can see that for difficulty, in four

static tasks (S1: locating files of a feature; S2, S5: locating

nested #ifdefs; S3: locating all features in a file) and one

maintenance task, the median is the same. For the other tasks,

the median differs by 1. For motivation, the deviation within

a group is larger than for difficulty, meaning that subjects

rated their motivation more heterogeneously. Both groups

were motivated for all tasks at least to a mediocre level. For

7Fig. 4 uses a box plot to describe data (Anderson & Finn, 1996). It plots
the median as thick line and the quartiles as thin line, so that 50 % of all
measurements are inside the box. Values that strongly deviate from the median
are outliers and drawn as separate dots.

Proceedings of EASE 2011 71



� �

�

�

S6−B

S6−A

S5−B

S5−A

S4−B

S4−A

S3−B

S3−A

S2−B

S2−A

S1−B

S1−A

5 10 15

M2−B

M2−A

M1−B

M1−A

10 20 30 40 50

Fig. 4. Response time of subjects in minutes.

the first maintenance task (M1), the motivation for group A

(with colors) was very high, in contrast to group B with a

mediocre motivation. For estimation of performance with the

other version, we see that in both phases, subjects that worked

with the color version thought they perform worse with the

colorless version, and vice versa.

When asked what version they prefer, 12 subjects said they

like the color version better and 13 said the color version is

more suitable when working with preprocessor-based SPLs.

One subject did not answer any of both questions.

B. Hypotheses Testing

In this section, we evaluate whether our research hypotheses

hold. To this end, we conduct several statistical tests to check

whether the differences we observed are significant. We start

with correctness of answers. Since we compare frequencies, we

need to conduct a χ2 test (Anderson & Finn, 1996). To meet

its requirements, we summarize the correctness of answers for

the static tasks of each phase, such that we add the number

of correct and incorrect answers for each phase.8 Hence, we

compare the number of correct and incorrect answers of tasks

S1 + S2 + S3 and S4 + S5 + S6. The χ2 test indicates no

significant differences in the number of correct answers for

static tasks. Since for maintenance tasks, none of the subjects

provided a correct solution, we do not need to test for significant

differences in correctness of maintenance tasks.

For response time, we make several comparisons for our data:

Group A vs. group B, group A (first phase) vs. group A (second

phase), and group B (first phase) vs. group B (second phase).

Since we make multiple comparisons, we need to adjust the

significance level. To this end, we use a Bonferoni correction,

which leads in our case to a significance level of 0.017 to

observe a significant difference (Anderson & Finn, 1996).

8Expected frequencies are too small due to the small number of observations.

Opinion Task S1 S2 S3 M1 S4 S5 S6 M2

Difficulty U value 20.5 24.5 17.5 18 10.5 0 15.5 24
significant no no no no yes yes no no

Motivation U value 24 18.5 22 9.5 15.5 15 19.5 23
significant no no no yes no no no no

Other U value 6 2.5 0 13.5 2 3 2 4.5
version significant yes yes yes no yes yes yes yes

TABLE I
MANN-WHITNEY-U TEST FOR SUBJECTS’ OPINION.

First, we compare the results of both groups. We applied

t-tests for independent samples (Anderson & Finn, 1996),

since the response times are normally distributed (tested with a

Kolmogorov-Smirnov test (Massey, 1951)). We only observed

significant differences for tasks S1 (p value: 0.001) and S2 (p

value: 0.017). Hence, only for the first two tasks, subjects that

worked with the color version (group A) were faster. However,

when we switched the versions, such that group B worked

with the color version, we could not observe any differences.

Second, we make pairwise comparisons within our groups

of tasks of both phases, i.e., S1 vs. S4, S2 vs. S5, S3 vs. S6,

and M1 vs. M2. We only observed significant differences in

group B, such that the response times for S4 and S5 were

significantly faster than for S1 and S2, respectively. Hence,

when subjects switched from the colorless to the color version,

their performance for two tasks increased. Group A, on the

other hand, was not slower in the second phase, which we

expected since they worked without colors now. The results

regarding response time speak both in favor of and against our

research hypothesis. Hence, we can neither confirm nor reject

our research hypothesis.

Finally, we compare the opinion of subjects. Since they are

ordinally scaled, we use a Mann-Whitney-U test (Anderson &

Finn, 1996). In Table I, we summarize the results of this test.9

We can see that for difficulty, subjects of group B rated S4

and S5 significantly easier than subjects of group A. This is also

reflected in the performance, such that subjects of group B are

faster in these tasks (S4 vs. S1, S5 vs. S2). For motivation, we

observe a significant difference for the first maintenance tasks,

such that subjects of group A were more motivated to solve this

task compared to group B. For estimation of the performance

with the other version, we obtain significant differences for all

tasks (except M1), such that subjects that worked with the color

version expect that they had performed worse with the other

version. The results regarding the estimation of performance

and how subjects liked the color version and evaluated its

suitability speak in favor of our second research hypothesis

(i.e., that subjects rate background colors more positive).

9To meet the requirements of the Mann-Whitney-U test, we use the
probability function of the U distribution for critical values (Giventer, 2008)
to state whether the observed differences are significant. Some U values are 0,
yet the difference is significant, because of the extreme distribution of answers.

Proceedings of EASE 201172



�

�

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Difficulty

very difficult difficult medium easy very easy

��

�

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Motivation

very unmotiv. unmotiv. medium motivated very motiv.

��

�

�

��

�

M2−B
M2−A
S6−B
S6−A
S5−B
S5−A
S4−B
S4−A
M1−B
M1−A
S3−B
S3−A
S2−B
S2−A
S1−B
S1−A

Performance with other version

clearly worse worse the same better clearly better

Fig. 5. Box plots of subjects’ opinion.

VI. INTERPRETATION

We discuss the implication of our results for each hypothesis.

RH1: Background colors improve program comprehension in
large SPLs.

The data we observed do not allow us to clearly confirm or

reject this hypothesis. To evaluate this hypothesis, we measured

the correctness of answers of subjects and the response time.

There was no difference regarding correctness of static tasks.

For response time, we found that in the first phase, for two

static tasks, subjects that worked with background colors were

significantly faster. In the second phase, in which we switched

the versions, we did not observe any significant differences

in response time between both groups. However, we found

that within group B (i.e., subjects that started to work with the

colorless version and switched to the color version) were faster

in tasks S4 and S5, compared to S1 and S2, respectively, for

which we observed a significant difference in the first phase.

Hence, for two static tasks, background colors improve

program comprehension. One reason that for the third kind

of static tasks (i.e., locating all features in a file), background

colors showed no improvement, could be that we had 12

features and, thus, 12 different colors in this task. Although we

carefully chose colors, such that subjects could distinguish them

easily (Rice, 1991), 12 colors might be too much for subjects.

Furthermore, with 12 different colors, the working memory

capacity is clearly exceeded. In the other tasks, 9 colors at

most have to be kept in mind, which is in the top end of

7±2. However, we cannot be sure whether this result occurred

because of too many different colors or because of the kind of

task, since we only combined 12 features with this kind of task.

To sum up, when subjects start to work with the color version

and then switch to the colorless version, it has no effect on

their response time. When subjects work without colors and

then switch to background colors, their performance increases.

Thus, to familiarize with a large SPL, background colors can
help, especially to get an overview of the files in which code

of a certain feature occurs and to locate nested #ifdefs. This

result aligns with the results of our previous experiment, in

which we found that for the same types of static tasks in small

SPLs, background colors speed up program comprehension,

however have no effect on correctness.

RH2:Subjects rate background colors more positive compared
to no background colors in large SPLs.

Regarding difficulty, we found that subjects that worked

with the color version in the second phase rated static tasks

easier than subjects that worked without colors. Hence, when

we add background colors, tasks seem to become easier for

the according subjects. Regarding estimation of performance

with the other version, we found a strong effect in favor of

background colors (i.e., subjects that worked with the color

version estimate they would perform worse without colors).

Furthermore, all subjects who answered this question thought

that colors were more suitable to work with preprocessor-

based SPLs and all besides one subjects liked the color version

better. Hence, we can confirm our second research hypothesis.

Furthermore, our data regarding opinion of subjects also align

with the results of our first experiment.

VII. THREATS TO VALIDITY

Like in each empirical study, threats to validity occur.

Validity can be divided into internal (degree to which we

have controlled confounding variables for program compre-

hension, e.g., programming experience) and external validity

(generalizability of results to other experimental settings).

A. Internal Validity

Since there is no standardized assessment of programming

experience, we applied our own questionnaire to our subjects

and created homogeneous groups. However, we cannot be

sure how well we measured programming experience. To

reduce this threat, we developed the questionnaire based on

literature research and programming experts, who rated the

questionnaire regarding how well it measures programming

experience (Feigenspan, 2009).

Another problem is that none of the subjects solved any

of the maintenance tasks correctly. Most likely, since we

designed the maintenance tasks to be realistic, the tasks were

Proceedings of EASE 2011 73



too difficult, given the subjects’ expertise and time constraint

of the experiment. Experienced developers with more time

should find this bug eventually. Furthermore, maintenance tasks

were not our primary focus, since we found in an early study

that colors did not affect the comprehension process in these

tasks (Feigenspan, 2009; Feigenspan et al., 2009).

Our sample is rather small. However, we used several mecha-

nisms to deal with this issue: We used a within-subjects design

to apply both versions of our tool to all subjects. Furthermore,

we applied variants of standard significance tests that were

developed to deal with small sample sizes. However, we could

not deal with biased response time due to wrong answers.

B. External Validity

One threat is caused by our sample, which consisted mostly

of master students with relatively little programming experience.

We could reduce this threat by including PhD students in

our sample with several years of experience in the domain

of embedded and operating systems, so our results can be

carefully applied to experienced programmers.

Furthermore, we only tested one SPL in one programming

language of one domain, to which we can apply our results.

However, we used a typical industrial system (large C SPL in

embedded systems), instead of an artificial research software.

Hence, our results can be applied to real-world industrial

settings and, thus, are of interest for industry.

VIII. RELATED WORK

There is a lot of work dealing with visualization of prepro-

cessors, e.g., with control flow graphs (Hu et al., 2000; Krone

& Snelting, 1994; Pearse & Oman, 1997). For example, Hu et

al. (2000) propose the analysis of control flow graphs based

on preprocessor directives to get an overview of the inclusion

structure of a file. In contrast, our focus lies on supporting

preprocessor statements on the source code level and, thus,

keeping context information of preprocessor statements.

Another way to handle the complexity of preprocessors is to

provide views on source code (Atkins et al., 2002; Chu-Carroll

et al., 2003; Kästner, 2010; Singh et al., 2007). A view on a

variant or feature shows only relevant code for a feature and its

combination and hides all remaining code. In some tools, anno-

tations are hidden entirely and the developer works on a single

variant without even being aware of other variants or features.

In an empirical study on views in the Version Editor (Atkins

et al., 2002), Atkins et al. (2002) measured a 40 % increase in

developer productivity. Nevertheless, hiding feature code is not

always desirable; for example, when fixing a bug, a developer

may need the context of the entire SPL to fix the bug not only

in a single, but in all variants. Views on the source code and

colors are complementary and have strength for different tasks.

Regarding colors, there is a huge body of work on using

colors for various tasks, such as highlighting source code

according to semantic of statements or control structure (Ram-

bally, 1986), error reporting (Oberg & Notkin, 1992), or

merging (Yang, 1994). We focus only on work that addresses

program comprehension in SPLs or for scattered concerns. In

prior work, we used background colors to represent annotations

in our SPL tool CIDE, with which we explore improvements of

preprocessors (Feigenspan et al., 2010; Kästner, 2010; Kästner

et al., 2008); and we showed that for small SPLs, background

colors can improve program comprehension (Feigenspan, 2009;

Feigenspan et al., 2009). Closest to our representation with

background colors are the model editors fmp2rsm (Czarnecki

& Antkiewicz, 2005) and FeatureMapper (Heidenreich et al.,

2008), in which model elements can be annotated and removed

to generate different model variants. Both tools provide views

and additionally can represent some or all annotations with

colors. Furthermore, Spotlight (Coppit et al., 2007) addresses

scattered concerns (outside of the context of SPLs). Spotlight

uses vertical bars in the left margin of the editor to visualize

annotations, which we also have used in FeatureCommander

(cf. Fig. 2, (8)). Again, different colors represent different

concerns. Bars of different colors are placed next to each other.

Compared to background colors, lines are more subtle and can

represent nesting easily. In all cases, the impact of visualizing

annotations was not measured empirically so far.

There is a lot of empirical work regarding the evaluation

of SPL implementing techniques. Especially aspect-oriented

programming is at focus of several researcher groups, for

example, (Figueiredo et al., 2008a,b; Greenwood et al., 2007;

Hanenberg et al., 2009). For example, Figueiredo et al. and

Greenwood et al. evaluated several facets of aspect-oriented

programming, such as maintainability or design stability.

However, the assessment is conducted without human subjects,

but with software measures. In the work of Hanenberg et al., the

understandability of aspect-oriented programming is compared

to object-oriented programming. In an experiment, subjects had

to implement crosscutting code into a small target application,

one implemented in AspectJ, the other in Java. Depending on

the kind of code changes, AspectJ had positive or negative

influence on the development time of subjects.

IX. CONCLUSION AND FUTURE WORK

Software product lines are typically implemented with pre-

processors in industry. To overcome its obfuscation issues, we

use background colors to highlight annotated code fragments.

In this paper, we present a tool called FeatureCommander, in

which we implemented concepts to support program compre-

hension in large SPLs. We showed in a controlled experiment

that the core characteristic of FeatureCommander, the usage

of background colors, scales to a large SPL with over 160,000

lines of code and 340 features: Subjects that work with colors

are faster for certain tasks and rate background colors as

pleasant and suitable to work with preprocessor-based im-

plementations. Hence, the use of background colors to support

program comprehension in large SPLs is very promising.

In future work, we plan to evaluate open issues we discovered

in our experiment to confirm the positive effect of background

colors on program comprehension and broaden our understand-

ing of how background colors can be used to support program

comprehension. Additionally, we can evaluate how other imple-

mented concepts in FeatureCommander, such as the explorer

Proceedings of EASE 201174



view ordered by features, improve program comprehension.

ACKNOWLEDGMENT

Feigenspan’s, Köppen’s, and Frisch’s work is supported

by BMBF project 01IM08003C (ViERforES). Kästner’s work

is supported in part by ERC (#203099). Dachselt’s work is

funded by the ”Stifterverband für die Deutsche Wissenschaft”

from funds of the Claussen-Simon-Endowment. Thanks to Jana

Schumann for support during the conduction of the experiment

and Jörg Liebig for computing statistics of Xenomai.

REFERENCES

T. Anderson & J. Finn (1996). The New Statistical Analysis of Data.
Springer.

D. Atkins, et al. (2002). ‘Using Version Control Data to Evaluate the
Impact of Software Tools: A Case Study of the Version Editor’.
IEEE Trans. Softw. Eng. 28(7):625–637.

B. Boehm (1981). Software Engineering Economics. Prentice Hall.
M. Chu-Carroll, et al. (2003). ‘Visual Separation of Concerns through

Multidimensional Program Storage’. In Proc. Int’l Conf. Aspect-
Oriented Software Development (AOSD), pp. 188–197. ACM Press.

P. Clements & L. Northrop (2001). Software Product Lines: Practice
and Patterns. Addison Wesley.

D. Coppit, et al. (2007). ‘Spotlight: A Prototype Tool for Software
Plans’. In Proc. Int’l Conf. Software Engineering (ICSE), pp.
754–757. IEEE CS.

K. Czarnecki & M. Antkiewicz (2005). ‘Mapping Features to Models:
A Template Approach Based on Superimposed Variants’. In Proc.
Int’l Conf. Generative Programming and Component Engineering
(GPCE), pp. 422–437. Springer.

A. Dunsmore & M. Roper (2000). ‘A Comparative Evaluation of
Program Comprehension Measures’. Tech. Rep. EFoCS 35-2000,
Department of Computer Science, University of Strathclyde.

J. Favre (1997). ‘Understanding-In-The-Large’. In Proc. Int’l
Workshop Program Comprehension (IWPC), p. 29. IEEE CS.

J. Feigenspan (2009). ‘Empirical Comparison of FOSD Approaches
Regarding Program Comprehension – A Feasibility Study’. Master’s
thesis, University of Magdeburg.

J. Feigenspan, et al. (2009). ‘How to Compare Program Comprehen-
sion in FOSD Empirically - An Experience Report’. In Proc. Int’l
Workshop on Feature-Oriented Software Development, pp. 55–62.
ACM Press.

J. Feigenspan, et al. (2010). ‘Visual Support for Understanding Product
Lines’. In Proc. Int’l Conf. Program Comprehension (ICPC), pp.
34–35. IEEE CS.

E. Figueiredo, et al. (2008a). ‘Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability’. In Proc. Int’l
Conf. Software Engineering (ICSE), pp. 261–270. ACM Press.

E. Figueiredo, et al. (2008b). ‘On the Maintainability of Aspect-
Oriented Software: A Concern-Oriented Measurement Framework’.
In Proc. Europ. Conf. Software Maintenance and Reengineering
(CSMR), pp. 183–192. IEEE CS.

L. Giventer (2008). Statistical Analysis for Public Administration.
Jones and Bartlett Publishing, second edn.

B. Goldstein (2002). Sensation and Perception. Cengage Learning
Services, fifth edn.

P. Greenwood, et al. (2007). ‘On the Impact of Aspectual Decom-
positions on Design Stability: An Empirical Study’. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP), pp. 176–
200. Springer.

S. Hanenberg, et al. (2009). ‘Does Aspect-Oriented Programming
Increase the Development Speed for Crosscutting Code? An
Empirical Study’. In Proc. Int’l Symposium Empirical Software
Engineering and Measurement (ESEM), pp. 156–167. IEEE CS.

F. Heidenreich, et al. (2008). ‘FeatureMapper: Mapping Features to
Models’. In Comp. Int’l Conf. Software Engineering (ICSE), pp.
943–944. ACM Press.

G. Heineman & W. Councill (2001). Component-Based Software
Engineering: Putting the Pieces Together. Addison Wesley.

Y. Hu et al. (2000). ‘C/C++ Conditional Compilation Analysis using
Symbolic Execution’. In Proc. Int’l Conf. Software Maintenance
(ICSM), pp. 196–206. IEEE CS.

C. Kästner (2010). Virtual Separation of Concerns: Preprocessors
2.0. Ph.D. thesis, University of Magdeburg.

C. Kästner, et al. (2008). ‘Granularity in Software Product Lines’. In
Proc. Int’l Conf. Software Engineering (ICSE), pp. 311–320. ACM
Press.

C. Kästner, et al. (2009). ‘Guaranteeing Syntactic Correctness for
all Product Line Variants: A Language-Independent Approach’. In
Proc. Int’l Conf. Objects, Models, Components, Patterns (TOOLS
EUROPE), pp. 174–194. Springer.

G. Kiczales et al. (1997). ‘Aspect-Oriented Programming’. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP), pp. 220–
242. Springer.

M. Krone & G. Snelting (1994). ‘On the Inference of Configuration
Structures from Source Code’. In Proc. Int’l Conf. Software
Engineering (ICSE), pp. 49–57. IEEE CS.

J. Liebig, et al. (2010). ‘An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines’. In Proc. Int’l Conf.
Software Engineering (ICSE), pp. 105–114. ACM Press.

R. Likert (1932). ‘A Technique for the Measurement of Attitudes’.
Archives of Psychology 22(140):1–55.

D. Lohmann, et al. (2006). ‘A Quantitative Analysis of Aspects in the
eCos Kernel’. In Proc. Europ. Conf. Computer Systems (EuroSys),
pp. 191–204. ACM Press.

F. Massey (1951). ‘The Kolmogorov-Smirnov Test for Goodness of
Fit’. Journal of the American Statistical Association 46(253):68–78.

G. Miller (1956). ‘The Magical Number Seven, Plus or Minus
Two: Some Limits on our Capacity for Processing Information’.
Psychological Review 63(2):81–97.

D. Muthig & T. Patzke (2003). ‘Generic Implementation of Product
Line Components’. In Int’l Conf. NetObjectDays, pp. 313–329.
Springer.

B. Oberg & D. Notkin (1992). ‘Error Reporting with Graduated
Color’. IEEE Software 9(6):33–38.

T. Pearse & P. Oman (1997). ‘Experiences Developing and Maintaining
Software in a Multi-Platform Environment’. In Proc. Int’l Conf.
Software Maintenance (ICSM), pp. 270–277. IEEE CS.

K. Pohl, et al. (2005). Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer.

G. Rambally (1986). ‘The Influence of Color on Program Read-
ability and Comprehensibility’. In Proc. Technical Symposium on
Computer Science Education (SIGCSE), pp. 173–181. ACM Press.

J. Rice (1991). ‘Display Color Coding: 10 Rules of Thumb’. IEEE
Software 8(1):86–88.

N. Singh, et al. (2007). ‘C-CLR: A Tool for Navigating Highly
Configurable System Software’. In Proc. Workshop Aspects,
Components, and Patterns for Infrastr. Software. ACM Press.

Y. Smaragdakis & D. Batory (1998). ‘Implementing Layered Designs
with Mixin Layers’. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP), pp. 550–570. Springer.

H. Spencer & G. Collyer (1992). ‘#ifdef Considered Harmful or
Portability Experience With C News’. In Proc. USENIX Conf., pp.
185–198. USENIX Association.

T. Standish (1984). ‘An Essay on Software Reuse’. IEEE Trans.
Softw. Eng. SE–10(5):494–497.

A. von Mayrhauser & M. Vans (1995). ‘Program Comprehension
During Software Maintenance and Evolution’. Computer 28(8):44–
55.

W. Yang (1994). ‘How to Merge Program Texts’. Journal of Systems
and Software 27(2):129–135.

Proceedings of EASE 2011 75


