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Abstract—We present a framework for making computation approaches may work well in specific circumstances, a com-

offloading decisions in computational grid settings in which prehensive approach based on Bayesian risk evaluationi§l12]
schedulers determine when to move parts of a computation t0 consjstently the most successful.

more capable resources to improve performance. Such scheduer g cifically, the key observation we make is that the offlogdi
must predict when an offloaded computation will outperform decision is t . v based th dictions:
one that is local by forecasting the local cost (execution time ecision 1s typically based on three predictions.

for computing locally) and remote cost (execution time for » a prediction of the time required to execute the computation

computing remotely and transmission time for the input/output locally,
of the computation to/from the remote system). Typically, this  « a prediction of the time required to execute the computation
decision amounts to predicting the bandwidth between the local remotely (once the data is available at the remote site), and

and remote systems fo estimate these costs. Our framework 5 hrediction of the time required to move the input data from
unifies such decision models by formulating the problem as a

statistical decision problem that can either be treated “classically” the local site FO the remote site, and to gather the resuttis ba
or using a Bayesian approach. Using an implementation of this to the local site. o o o
framework, we evaluate the efficacy of a number of different Moreover, for many scientific applications and librariesg(e
decision strategies (several of which have been employed byLINPACK [7]) high-quality execution time predictions foramy
previous systems). Our results indicate that a Bayesian approach machines and architectures are readily available [5],. [Rf3dict-
employing automatic change-point detection when estimating the , the transfer time, however, typically requires a prédic of
prior distribution is the best-performing approach. . L ' .
network bandwidth which many systems make by analyzing on-
line network measurements (e.g. by predicting future baxditiw
|. INTRODUCTION from historically observed network performance) [11], [223].
In computational grid settings [2], [8], when a new compu: Typically, the decision .algorllthm first predicts thg bandﬂu. i
RN N S between the local execution site and the remote site. Usiag t
tation is initiated, the “scheduler” (either a human useraar

automatic system scheduler) must often decide whether rio rt&andwdth prediction, it then computes the predicted u

the computation locally, or to offload it to a more powerfuf'me associated with transferring the program data, eiegut

. - remotely, and gathering the results. This overall time isnth
remote resource. The advantage of executing locally is ttieat : . o
. S . . ; ..~ compared with the local time prediction (that does not ddpen
computation can be initiated immediately, with all of itsurt

data in place. Alternatively, to gain the performance at on available bandwidth) and whichever is lower indicates th

offered by a faster remote machine, the input and output da geision to be taken.

9 f making a “ " (i.e. local i
must be moved to and from the remote site respectively addi gn t_erm_s of making a yes/no” (i.e. loca or remote execufion
i . PR ﬁ cision, if the bandwidth data can be considered to be raddel
an additional overhead. Thus, the scheduling decision & t|n some way by a random process (as is typical), this prevalen
simple offloading scenario is based on whether the additiona y by P P ' P

performance offered by the remote system will be overshadowmethOdObgy can be considered a specific instance of a more ge

» eral Bayesian decision problem. In such a problem formuati
by the cost of the addltlopal d'?“a movement. .If. the cost tRe bandwidth is a phenomenon that is being modeled as amando
higher, then a local execution will be faster. If it is noteth

. . S riable, an h predictor provi ief or hint th mper
remote execution yields the faster execution time. Thigsi@t variable, a d eact p_edl_cto P owdebel_le orhint that te pers
. - . . . the conditional distribution on that variable (termeca@sterior
is particularly important for systems that implement vatsaof

Grid RPC such as GridSolve [1], [25], Ninf [19], OmniRPC [18]d|str|but.|0.n), w.hen computing the expected risk assodlmﬁh
and others [10] the decision either to offload or to keep the computationlloca

These systems, however, make this decision in Son\4\ée compare the usage of various predictoragsiocconditional
. g o ' . expectation generators to an implementation of the fullé3&n
implementation-specific way even though the decision mbl P g P

is essentially the same. In this paper, we present a me ol problem formulation. We also examine the value of automatic

. . : - >~ on-line, change-point identification in the bandwidth détae
for making computation offloading decisions that we believe . . . .
. . . series as a method of improving the accuracy of the offloading
general enough to unify the different approaches impleetent,” .. .
decision mechanism.

b)[/1 mostth extant g:"i. RPIC systems (at least for dth_et(;st?nces].he advantage of this more general approach is that it feymal
where the computationa’ resources are accessed in ”‘ V' admits the notion of “update” to the state of the predictipstem
We describe our methodology and then detall its effectigene

- “ ., as new data becomes available. On-line prediction tecksiqu
using performance measurement traces gathered from ‘éixe

: . o like those described in [11], [13], [23] usually incorpaatew
ecution settings. Our results show that while differentviittlial data (e.g. new bandwidth measurements) as soon as they éecom

This work was sponsored, in part, by grants from the Natigeience available. Every time a new measurement is incorporatexitiveg
Foundation numbered 0627183, 0444412, and 0331645 predictor’s state, a new prediction is possible. The wegtéen
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to each new prediction, however, modifies this new predictip
different ways. As a Bayesian decision, however, the coatjmurt

of the new prediction is a well-defined function of the prety
computed prediction. Thus the prediction made by each iichaial
predictor is incorporated into the decision-making precesa
uniform way. That is, the methodology we present, and the im-
plementation of it we explore, incorporates the existingdgrting
methods into a single, on-line prediction framework thatdources
offloading decisions in this setting.

Limited

High-Performance
Resources Resources
Network

I CPU I CPU
Transfer

Local Computation Time Time Remote Computation Time

Results

o . . Fig. 1. Components of a Typical Offloading System. A decisioocpss
In summary, the contributions that we make in this paper are:forecasts network bandwidth to decide whether it is berafiginot to offload

« a formulation of computation offloading as a statisticalidect® computation to the remote system.
sion problem th‘f"t prc_mdes a unified methoo_l for 'nco.rpora}axecutlon time is known by the scheduler. This assumption is
ing and comparing different network bandwidth predictors . o . : .

. ) . - often true in scientific computing settings, particulartyr talls
o a description of an implementation of this methodology . . . .
. . . 10 highly tuned numerical libraries such as LAPACK [5]. Wéere
that functions on-line and that can be parameterized wi

different individual prediction techniques, 0 task execution time (in seconds) on the local machin€;as

. ) . . We define the ratio of local and remote execution, excluding
- an evaluation of the approach using this mplementaﬂcme network transfer cost, to be. « is a unit-less metric that
using a pair of network bandwidth measurement traces, ' ’

. . - . reflects the fraction of local execution time that remotecexien
« a performance evaluation comparing various prediction

methods documented in the literature and a number tafkes if the task data is readily available at the remoteegyst

different decision strategies based on these predictions. 8or!sequently,1/a Is the speed-up (ie., hOV\.I fast the remote
device is), relative to the local device (excluding transfelay).

The remainder of the paper is organized as follows. We firgle 45sume that the total amount of data that has to be treexsfer
describe the offloading problem and its use in modem systerggyyeen client and server,(measured in bits), is also known. If
In addition, we articulate the generality of the statidtidecision o network bandwidth between the client and server duiteg t

approa_ch we take. Section Ill describes _the various _de‘:is'[?omputation offloading i, then, we can compute the expected
strategies we explore that are based on different techsiépre st of remote executio, () as:

making on-line predictions from bandwidth data. In Sectigh

we analyze a series of experiments that compare the penficena Cr(B) = Cra + s )
of these strategies. We then present our conclusions ino8e¢t B
A computation offloading is beneficial only wheérn > C.(3).
Il. COMPUTATION OFFLOADING Thus, a decision manager should offload if;

Computation offloading is a technique for improving the exe- Cy > Cra+ S )
cution efficiency of a distributed system by moving compotat B
from a less-capable system to one that is more capable. Thigich we can rewrite as:
capability can take the form of compute power, memory, system s
load, as well as battery lifetime. Offloading is also refdrre s> C, — aCy ©)

to in the literature as remote execution and is employed inN h f las 1 and 2 | o
computational grid systems to improve the performance of an ote_t at our cost formulas 1 an are on.yapprOX|ma.t|ons as
application typically through the use of Grid RPC [1], [1{18], in reallty other factors such as commumca.\tlon and .compmrtat

[19], to speed execution through parallelization and iniptb overlap impact the cost of remote execution. In this paper we

task execution performance. Offloading has also been shown'd"ore such factors since our primary goal is to comparesti#ti

be effective for mobile, resource constrained devices,xterel m?ll\(/:en%;Eﬁi%fiigﬂelgttrt;ter?;nlzs;etrt]zei:g(;lijjli?;jbove true
tt |if tati | it 11 17 . . .
FZaG]ery ife and computational capacity [6], [9], [11], [1$17], the critical network bandwidthand we denote it as the threshold

v%lueT. For a given local execution co€y, transfer sizes, and
0 S o -
speed ratiay, if the network bandwidth is larger than the critical
network bandwidthT’, the cost of execution is minimized by

Figure 1 shows the conceptual design of a simple computati
offloading system with one client (local computer) and ongese
remote computer). The scheduler must consider the exppeots . o .
( puter) P® offloading the task. Otherwise, it is minimized by local exigon

of both local and remote execution, requiring accurateiptiets .
g 9 P f the task. We use this fundamental cost model to explore

of the demand and supply of several parameters both at thé lo;é . . . . ;
and the remote device during the lifetime of the task. The fferent decision making strategies presented in the seshis

are three fundamental parameters that the decision maleer ﬁérrgggi?nzc:i?e ;eenf;’es:ﬁ? S;rg[rigeﬁergpirﬁiﬁgsmaoggfle;ihﬂt;gte
to predict: time needed to execute computation locally,etim 9 P

needed to execute computation remotely (excluding the @bstexpectedsxecutlon cost is minimized.
data transfer), and time needed to move input data and sesult
back and forth between the local and remote computers. Ill. COMPUTATION OFFLOADING AS A STATISTICAL

In this work, we investigate a framework for decision making DECISION PROBLEM
strategies that attempt to maximize expected offloadindoper In this section, we discuss several decision strategiesatiea
mance by using network bandwidth predictions the most #f&ec based on the cost model described in the previous sectioite Wh
way. In particular, we assume that the local and remote tasiany of these strategies have been implemented previonsly i



different settings [6], [9], [10], [17]-[19], [26], they arall in- Strictly speaking, because new data is incorporated in the
stances of either classical or Bayesian statistical dewisiaking histogram that we use to approximatés), the problem might
procedures [12]. As such, they can be represented and adalyzot be viewed as a “classical” statistical decision probkinte
using a common nomenclature, mathematical framework, atitkre is a data update phase in the procedure. Each timesiotteci
software tool base. Thus it is possible to unify the various made, however, the formulation simply uses its “besnestit”
approaches to minimizing execution time through compaoiati at that moment forf(3) to compute the expected cost. That is,
offloading. We begin by formulating the computation offloggli each decision is “classical” even though the series of dBts
process as a statistical decision problem. We then discads eis essentially based on a time series of conditional digfiobs.
strategy in detail. Since this methodology is often used in practice (i.e. theraye
bandwidth is commonly, and perhaps incorrectly, used in the
cost calculation) we feel it is important to classify. Inrer of
nomenclature it is truly a “best effort” attempt to implerhen
The simplest form of the decision problem requires that th@atistical decision procedure that is based on an estiofates
decision maker compute the expected local and remote cbstgjiatributional properties associated with a single randaniable.
corresponding to the lowest expected cost. Withknown, the «;|assical.” Perhaps to avoid such ambiguity, this appnoa
problem is to compute the expected valuel{3) as a function g|so often termed ®ata decision strategy since it uses the data
of the available network bandwidth as: directly to compute expectations of risk. We will hencefforefer
E[C)] = /C'r (8) + F(3)d3 ) to the classical strategy as tBata strategy to follow suit.

where f(3) is the probability distribution function (PDF) describ-
ing the available bandwidtis. SinceC; is constantE[C;] = C;.
Thus an offloading decision is indicated whefC,] < C;. Because approximating() can be so challenging, a number
Determining f(3), however, is difficult. A large body of Of previous approaches have employed prediction techsique
research has focused on determining good probabilistiefeddr ~ (often statistical) to forecast future bandwidth valuebeTcost
network bandwidth [3], [16], [21] with little agreement dmetbest functions are then computed from the forecasts in a decision
method, and some indication that purely analytical modey m&trategy. Again, because the dynamics of end-to-end nktwor
not be possible. Moreover, in an on-line execution settimgne bandwidth have yet to be fully understood, these forecgsénh-
where the decisions are being made “instantaneously” vihge niques are usually evaluated empirically and not analyyi¢é],
application is executing — new information becomes avilais [9], [11], [17], [23], [24]. As such, however practically stessful
time progresses. The strictly classical formulation of pheblem they may be, in a formal setting they can be viewed as heesisti
assumes that this new information does not indicate chamgethat temper or weight the perceived probability associatét
the underlying dynamics of the system. That is, new bandwidfuture bandwidth values. From this perspective, then, ctia
measurements are assumed to be samples from the dismibulex” predictors generate belief that weights the probtdsli
f(B) and that f(3) does not change over time. Additionally,described byf(5) leading to a Bayesian formulation of the
the bandwidth distribution that is required here is émd-to-end decision problem.
throughput which is subject to interactions with the opagat ~ The Predictor StrategyThe most straightforward approach is
system scheduling discipline on both ends, buffer avditgbi simply to accept the output of any predictor as having proiyab
interrupt scheduling, etc. 1.0 of being correct. That is, to “believe” that the predictor is
Practically, one approach to estimating the potentialigeti correct and to ignore the previously observed bandwidthesal
varying distributional properties of end-to-end bandWwidtto use We term this strategy the Predictor strategy.
a periodic series of measurements from which the distobuis The Predictor strategy uses the network forecast directly i
estimated empirically. Further, as new measurements #énergal, decision making. For a certain task, if the network banduwidt
the estimation is updated. In this paper, we will assume sufdrecast is larger than the critical network bandwidtht offloads
a methodology is in place. Namely, we assume that historidhle task to a remote device, otherwise, it chooses localuéixoec
measurement data (either gathered from a periodic probe Tdvat is, in Predictor strategy the decision algorithm iss‘yé
via the logging of previous activity) is available. Moreovas the predicted bandwidth is T and “no” otherwise.
time progresses and new data becomes available, that data M/hen using the Predictor strategy, the critical question-co
incorporated as soon as possible. cerns the degree to which a given predictor improves overall
Often, E[C(8)] (c.f. Equation 4) is computed aS,(E[g]). execution performance and whether there is a significant dif
That is, the expected cost is computed as the execution cfesence in efficacy from one predictor to another. A popular
derived from the expected value of the bandwidth. Howeveray of comparing network predictors is to use theost facto
because.(3) is linear in the inverse of the bandwidth value (andising a trace of network observations that are collected fro
not the bandwidth value itself) this substitution is notiddbr the real and/or simulated networks. Letbe the observed network
cost formulation we have chosen. Thus, we maintain a hiatogr bandwidthy be the corresponding prediction andbe the number
of previously observed bandwidths to compute an estimatkeof of observations. To compare network predictors, one carpogen
integral in Equation 4 usiny_[C'-(8;) P;]. Here,P; is the relative the mean square erroover the observed and predicted values.
frequency of the bandwidth observations that are in:baf the Mean square error (MSE) is the average of the square prewdlicti
histogram, and3; is the corresponding bandwidth (of that bin)error; i.e. MSE = (3,(z; — v;)*)/n. The squaring of the
We update the histogram as new bandwidth values are obseryaediction error,(x — y), allows MSE to be particularly sensitive

A. Offloading as A Classical Statistical Decision Problem

B. Offloading as a Bayesian Decision Problem



for large incorrect predictions. It is generally assumedl tthe We can compute (8|8, > T) and f(8|8p < T) using Bayes

lower the MSE, the better is the predictor. Theorem:
In computation offloading, however, MSE is not necessahity t FBIBy > T) = F(Bf(Bp > T|B) @
best metric to measure predictor performance. Referrirg ba p - f(3>T)
Equation 3, the goal is to estimate when the network bandmsdt F(B)F(Bp < T|B)
less than, or over the critical network bandwidih, A predictor fBIBp <T) = fB<T) ®

that has a larger MSE could be better than (for the purposeIﬂfthe equation abovef(3) is the PDF associated with network

offloading) another predictor that has a lower MSE, as lontpas . . . -
one with larger MSE estimates when network bandwidth is Ietsjsa ndwidth (as before);(5, > T) is the PDF associated with the

" : redictor predicting a value above thresh@ldand T
or more than the critical network bandwidth more accuratiely P pre g o d . F(Bp > T15)
. . L is the conditional PDF for a prediction abo¥egiven an observed
other words, for computation offloading, a less accuratdiptien . o .
L L bandwidth values. Thus, the conditional PDF for bandwidth
that none-the-less indicates a correct decision is prefie@er a

more accurate prediction that indicates an incorrect datisn kg)glse: d aor?rﬁ]dlcrtilgrﬂ FI:DIE ?Orf?)taer: dtvr\llijr:ﬁ E Bt)r;e &%Stfgr?(;iti?];
contrast, MSE is a symmetric metric that measures the dista @ '

between the predicted and the actual value quadraticatig, ;bDF on the predictor given a bandwidth valul(, > 715))

therefore, it cannot capture the impact of predictor pengoice and th_e absolute PDF.OU the predlctor itsef{{ > 7). The
. . . same is true for a predictiofi, being less thaf’ except that the
in an offloading setting.

) . . inequalities are reversed.

In the next subsection, we evaluate a wide range of predictor . . . . . .

in terms of their offloading efficacy and explore the diffazes In an implementation of this Bayesian formulation, we maiimt

between sophisticated an((‘j:J ada tiv)c/a redictgrs and sipate a histogram for theprior PDF f(f) as described previously. We
P P P PAEM- 510 implement an array of histograms (one per range of Iplessi

eterized predictors in a computation offloading setting. . -
) X ) . : bandwidth values) for the conditional PDF 3, > T|3) and
Bayesian Risk and Bayesian Strategi@$ie computation of- a single histogram for the absolute POF3, > 7). That is,

floading systems that rely solely on nework predictorsesufom . whenever a bandwidth valuygis observed, we determine what the

chma?rthir& pr;?ﬁ:lﬁ n;. ;Irglf Erzgd;;tlferssgati%llieci/?ss 3?; tr?;c:N:)ngdictor indicated just before the bandwidth value wanaed
. S y eving with respect tdl". The fraction of correct indications is maintained
predictor (i.e. it assumes a network predictor is corre€% ®f

time). A Bayesian approach allows us to compute the expect'é]ga bin indexed byj to implement the conditional PDF for

risk we take by believing the predictor, which we can then use ndw@th.. Sw_mlarly, asingle fr.actlo.n cap'.[urlr.lg the podon of
. - correct indications by the predictor is maintained as theohlte
to give our decisions.

psime thaiC (5 and C are ceined as i the prevousEor LY, 8 SIS e Bayestn o abes desime
section, andf(5|8, > T) is the probability of observing a q ' b P

network bandwidth valued, given the network forecass, is shown in Equations 7 and 8, and then compute expectationg usi

B . theseposterior PDFs as weighted sums.
larger thanl". The Bayesian risk is the expected cost as afunctlon.l.O better explain this, assume that we use a histogram tisat ha

of the posterior distribution associated with offloading: 10 bins and our maximum network bandwidth is 100Mb/s. In this
R, — /Cr(ﬁ)f(ﬁlﬁp > T)dg (5) case, the first bin of t_he histogram that is associated y_f/(th)
gives the prior probability of observing a network bandivithiat
Similarly, the risk that we take by locally executing the qum is less than 10Mb/s, the second bin gives the prior prokgbili
tation is: of observing a network bandwidth that is larger than 10Mhs b
R, = /sz(ﬁ\ﬁp < T)dB (6) less than 20Mb/s, and so forth. For computif(@, > T'|3), we
use one histogram with only two bins (one for conditigh< T
Note that, it may not be immediately apperant why we compuénd the other for conditior, > T) per each of the 10Mb/s
a risk factor R; for local execution. In computation offloading,range. As an example, assume thatis larger than 20 Mb/s.
the goal is to choose the execution site (local vs. remota) thf a network observation is between 10Mb/s and 20Mb/s, and
minimizes execution cost. If we choose remote execution, athe corresponding network prediction is less thanwe update
if the network bandwidth turns out to be smaller th@nlocal the bin that counts the conditiof, < 7' of the 2"¢ histogram.
execution becomes cheaper, and we pay a penalty for rem8imilarly, the histogram for th¢(3 > T) also has two bins, each
execution decision. In the same way, if we choose local di@tu of which giving the probability of observed value being Iéisan
and if the network bandwidth turns out to be larger tHEn or more than T. We update this histogram the same way after
remote execution becomes cheaper, and we pay a penalty gach observation.

local execution decision. Since both decisions includetergal Notice that the “machinery” necessary to compute expextati
penalty, we have to compute the risk for both before giving lsased on empirically determinggbsterior PDFs is somewhat
decision. involved. If the data is correlated (and it is, in this casa) alowly

Thus, while computingz,-, we need only consider the integralchanging, it might be reasonable to assume thatpbsterior
from 0 to T computationally, because, whehis larger than’, PDFs required for the next offloading decision are similar to
there is no penalty involved in offloading the computatiom.(i the ones observed after the fact for the previous decisitns.
remote execution is the lower cost decision). In the same wayvestigate this possibility, we also implement an ObsgBayes
while computing R;, we take the integral starting fror to strategy in which we simply record (again as empirical PDFs)
infinity, because, wher is smaller tharl’, there is no penalty f(3|8, > T) and f(8|5y < T). That is, rather than computing
involved in locally executing the computation. Also notitet in  the next posterior PDF based on current observations of the
this case,R; is not constant, even thougtj is. bandwidth and the predictor, we use the results of the pusvio



TABLE |
THE NETWORK PREDICTORS THAT WE EVALUATE

Name Description

outcomes to record previously observed conditional distions
of bandwidth based on predictor indication. If the “look atie
that the full posterior PDF computation is not important, the
Observed Bayes strategy should be as cost efficient (or noste ¢ Last Last value .
. . ) : Avg Running mean filter
efficient since fewer PDFs are being estimated) than the atedp | opy Exponential smoothing with gain 0.875
Bayes Strategy with a significantly less complex implemiéoa | FlipFlop | Adaptive filter combining two predictors [11]
Bayes Strategy Incorporating Change-point Detectidiotice | NWS Network weather service forecaster [22]
that in all strategies discussed so far except for the Puadic| NwsLite | Extension to NWS for resource-restricted devices |[9]
strategy, the estimation of the bandwidth PDJE3) is critical

since it is necessary to compute expected risk. Howevegtrtde TABLE Il

to-end bandwidth that is available between two machines may THE BANDWIDTH TRACES THAT WE CONSIDER
change over time in a way that is better described by a sefies o Trace Size| Avg Bw | Network Configuration
PDFs, each estimatingy3) over a given time period. In previous Tracel | 59101 480 100 Mb/s

work [4], [14] we describe a method for detecting change- | Trace2| 11316 553.9 1 Gb/s

points in highly autocorrelated, highly variable time seriThis
methodology is based on a non-parametric quantile estmati

tec_hnlql_Je that_ uses empirically computed Binomial distitns and use trace based simulation to compare their perforname
to identify unlikely sequences of values. When a sequenae ﬂf\/vo large network traces that we collected from real network

Woyld have a low probability. Of. occurring given t.he quantil%ur preliminary results show th&ayes+Change Poinstrategy
estimates occurs, the system indicates that the seriestssed (c.f. Subsection III-B) is significantly more powerful thits

a change p0|nt_. All data before the change p(_)lnt Is then diisca competitors, regardless of the specific predictor that ésus
and new data is used to generate future estimates.
In this work, we apply our previously developed methodola. Experimental Methodology
ogy to the problem of estimating(3) as a function of time.
Specifically, we compute quantile estimates for the cunudat fr
distribution function (CDF) on bandwidth using the I‘D’inomiapredictor it uses the last observation as a forecast fot nex
method with change-point detection enabled. We then naadéyi measure,ment. Last, thus, is very responsive to sudden esang
differentiate the CDF to generate an instantaneous appeiiin but very susceptiblé to n’oise in the measureme@y is an

of the_ PDF f(5). The res_ult s a PDF re_presgntatmn that onl%Xponential smoothing predictor. We employ a gain factor of
takgs Into accpunt bandwidth d_ata occurring since the ,W@e 0.875 which enables Ody to filter noise while responding quickly
point, and which has been estimated using the Binomial daantto the changes over tim&lipFlop is an extension of the Ody
estimator (which we have observed to be robust with reSpBCt;}redictor that consists of two exponential smoothing flteme
high levels of autocorrelation). We then use this time-g&es agile and one stable, and a statistical control componeoih B
£(B) to compute theposterior PDFs required to implement afu”filters run concurrentlly and the control component selebts t
Bayes strategy. . L best-performing filter for each predictioAvgis a running mean

A No-Data StrategyFinally, it is important to compare Stlrate'predictor. NWS [23] is the forecasting component of Network
gies (classical or Bayesian) that are based on risk expeusat Weather Service [24]. NWS prediction uses a mixture-ofegtg
derived from bandwidth observations, to a strategy that dus approach to prediction. It implements a large set of tinréese
rely on a direct probabilistic characterization of bandwidWe forecasters, each having its own parameterization. NWskee
terr_n su_ch a strategy fdo Datastrategy s?nce it do_es not rel_y MNpistories of, observed measurements of different windowd an
estimating a PDF on the “data” (which is bandwidth data irs thIruns all models simultaneously for each window size. A aantr

ca;e).h . f ffloading decisi | be th component selects the forecaster with the lowest error dche
. t the tl_me ot an offioading decision, GE[_ € the average prediction it makes. NWSLite [9] is a scaled down versionted t
risk associated witlalwaysmaking a local decision before eachNWS that trades off prediction overhead (execution time)dos

é)tredictor accuracy.

previously observed bandwidth measurement occurred|&lyi

let By _be the aveLage .”SI.( as_somal:ed hW'th choomgg a remol&ye evaluate each strategy and predictor using two real metwo

_T_);]ecﬁlog are eac p0|rr1]t n tlmle t Iat as _occu_:cre prewguséraces. These traces include network bandwidth measutemen
e No-Data _stra;;gy ¢ oosTehs qca_f(?‘xecuglonEﬂ < Ef, _anh that we collected using NWS sensor probes. Each probe is 512K

remote execution 1 > Ey. That 1S, I "on the average 't, as bytes in length and measures TCP/IP performance between two

been better to choose local execution over remote execm'oncomputers We show the basic characteristics of data traces

the past, choose local, otherwise, choose remote. To centpet Table II. The first trace is for a 100Mb/s network and includes

expected cost (_)f local and remote execution decision:.;,'tb}e 9101 network observations. The second trace if for a 1Gb/s
Data strategy simply keeps track of cost of wrong decisiams fnetwork and includes 11316 network observations.

both local and and remote execution decisions each time a nevy, our simulations. we emulate the transfer of a task’s in-
bandwidth value is observed. :

put/output data over the network. We assume all task pasxmet
except network bandwidth is known; we choose the task param-
IV. EVALUATION eters according to the followinge, the speed-up ratio is equal to
In this section, we evaluate the efficacy of computation afflo 0.25, i.e., the remote computer processes computation fourstime
ing strategies that we described in the previous sectiorcple faster than the local device?; is local execution cost 900
each strategy with a wide range of popular prediction atjors, seconds. We fix these parameters and vary task size to evaluat

Table | presents the predictors that we employ within our
amework as part of this evaluatiorLast is a Last Value
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Fig. 2. Network bandwidth observations for 100Mb/s trace ffcst 5000
observations.

Decision Cost
Oddyssey Predictor
Local: 100 sec., Alpha 0.25

the performance of offloading strategies. We use the firsD500 700000
network observations as a warm-up period for our stratefies  ggo000.

——Bayes
construct the histograms from which we compute the probbil /-1 +Ba§es+CF
density functions (PDFs), and use the remaining trace thaien = Predictor

. = 400000+ No Data
our predictors. 8 + Data
There are two implementation specific parameters in our evalg 3000001 - Ob. Bayes

uation. The first is the number of bins for the histogram to™ 200000
approximate each PDF; the second is the number of quantiles 100000

that our framework uses in the CDF for the change-pointegjsat 0 lx ‘ ‘ ‘ N
We empirically identified the value &f for both as the value at 0 1 2 3 4 5
which the improvement in accuracy levels off. Transfer Size (Gbits)

We compare the performance of predictors usingegret (b)Predictor = Ody

metric. Regret is the penalty that an offloading system pays fFi 3. Predictor performance (regret) for different taskesiand decision

a wrong decision. Total regret is the sum of the regret acrogg;iegies for the 100Mb/s trace for predictors NWS (a) ang @)
all decisions made by a decision strategy across a netwack.tr

Total regret is zero when there are only correct decisiorss an
greater than zero when there are one or more incorrect dasisi
We compute regret as the absolute value of the differenceceest
the cost of local and remote execution.

We observe that the task size has a significant impact on
offloading strategy efficacy. As the task size increases fidnGb
(i.e. gigabits) to 4 Gb, regret increases to a peak at appately
B. 100 Mb/s Network Experiments 3.5 Gb, then decreases. That is, the various strategiesrperf

We first present the performance characteristics of the 1ggm "¢latively worse for task sizes that range from 3 to 4 Gb. This
network trace. Figure 2 shows the first 5000 observationstwhi'> beC?‘USG' these_ task sizes correspond to a critical rietwor
are representative of the entire trace. The y-axis is ndxtwcpandw'dth values |n.the range of 45 to 55Mb/s.
bandwidth and the x-axis is time. Most of the observatiomgea N terms of relative performance, thBayes+CP strategy
from 50-60 Mb/s with occasional drops (i.e. one such drop {patches or excegds all other strategies in aII. cases. Fdfgsma
30 Mb/s is visible to the right of the figure). The bandwidtiransfer sizes (size< 3.5 Gb) Bayesand Predictor strategies
measurements are almost always higher than 10Mb/s, akhotgaich the performance dayes+CPstrategy. For larger sizes,
there are several observations that are much lower; i.secio they perform worse. Thélo Datastrategy performs worse than
1Mb/s range. Bayes+CPfor smaller tasks, and matches it for larger sizes. NWS

We next evaluate the performance of various decision gfiexte prediction strategies perform significantly better thanyOthe
using our regret metric. Figure 3 presents the regret for th&ata strategy is the worst strategy overall as its use resultsen t
different offloading strategies when we vary task size. The {nost regret for both predictors, for all task sizes.
axis is regret, in seconds, and the x-axis is task size. Foin ea We next zoom in on the critical bandwidth range to analyze
graph, we present the Bayes strategy alone, Bayes with ehari§je prediction-based strategies in greater detail. Inqudar, we
points (Bayes+CP), the predictor alone (Predictor), amdrb- consider a transfer size of 4 Gb which equates to the critical
data (No Data) and data (Data) decision strategies. We mreseandwidth 53.3Mb/s, in Figure 4. We present the regret fer th
two graphs, for two different predictors: NWS prediction(a) Strategies (Predictor, Bayes, Observed Bayes (Ob. Bayes),
and Odyssey (Ody) prediction in (b). We omit the graphs fddayes with change-points (Bayes+CP) using all of the diffier
the other predictors due to space constraints; howeveseth@redictors: NWS, NWSLite, Ody, FlipFlop, Last, and Avg. We
predictors are representative of the others. Note that thea DOmit Data and No Data strategies since they do not make use of
and No Data strategies do not use predictors; we include th&gfwork predictors for their decision.
here for comparison. We include all predictors in our evidue ~ The non-adaptive predictors, Last and Ody, perform signifi-
of the different Bayes strategies in the next section. cantly worse than adaptive predictors, NWS, NWSLite ang-Fli
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the critical bandwidth of 53Mb/s using the 100Mb/s network. ) . .
Fig. 5. Network bandwidth observations for 1Gb/s trace fostf5000

observations.

We next zoom in on a critical task size, in this case 40 Gb,
Figure 4. This task size equates to a bandwidth value of
3.3Mb/s. We again investigate strategies that emplogigtien

and include all predictors. The Predictor strategy alot®duces
the most regret over all strategies. The different Bayesriggies
perform similarly for most predictors. Bayes+CP performsllw
regardless of the predictor it integrates.

Flop, in Predictor and Ob. Bayes strategies. The Avg predict.
which is also a non-adaptive predictor, performs remal_;kabg]
well for all decision strategies. Predictor, Ob. Bayes, Bages 3
strategies introduce similar regret for all predictorscept for
Ody and Flip-Flop. For these two predictors, Bayes stratsgyy
forms significantly better than Predictor and Ob. Bayegegias.
Overall, the Bayes+CP strategy outperforms all others, iand

performs well regardless of the predictor that it employs. Result Summary.Our results show that there can be a significant
difference in computation offloading performance depegdin
C. 1 Gb/s Network Experiments the decision strategy that we use. The efficacy of a Predictor

strategy, which uses a network forecast to make a “yes/no”
We next present our experimental data and analysis for thgcision without considering the risk associated in doiog s
1Gb/s network trace. Figure 5 plots the first 5000 network strictly dependent on how well a predictor can forecast th
observations in this trace. The y-axis is network bandwathl fytyre network bandwidth. However, the relationship bemwe
the x-axis is time. predictor forecasting quality and offloading efficacy is anptex
There are important similarities and differences betwées t one. Consequently, even adaptive and sophisticated poesiic
trace and the 100Mb/s trace. In this trace, most obsenstiafay not perform well on certain datasets at certain points. A
are within 500-700Mb/s, whereas in the 100Mb/s trace, moggmputation offloading decision, thus, must to take intcoaot
measurements are within 50-60Mb/s. In this trace, there afe potential risks and benefits of a decision before taking a
two dominant performance modes at approximately 550Mbds agction. The Bayes strategies provide a mechanism to compute
650Mb/s. Moreover, this trace is quite noisy and there araymasych risks and benefits. Bayes strategies use network &iseas
observations between 100 and 500 Mb/s. The gap in the datagvay to compute the expected state of network bandwidth for
the left side of the plot shows that there is a certain per@d t the next offloading decision, which our results show, canicavo
no observations are collected, i.e., the network was ulelai  bad decisions when in a critical bandwidth range. Moreower,
Figure 6 presents the regret for the different offloadingtstr results indicate that it is important for Bayes strategieadcount
gies when we vary task size using the NWS and Ody predictdts change points in the data. By doing so, the predictors are
(note that the Data and No Data strategies do not use tsle to avoid considering history data that occur prior te@ent
predictors at all; we include them here for comparison). ¥he change in network behavior. By coupling predictors, chapgiet
axis is regret, in seconds, and the x-axis is task size. Wdogmpidentification, into a Bayes decision formulation, we aréeao
the same strategies as we do above in Figure 3. In simulatigigract the best computational offloading performanceanaigss
of Gigabit trace, we investigate task sizes that are an oofler of the prediction technology available.
magnitude larger than the tasks for the previous tracegdinis
network is significantly faster. V. CONCLUSION
As for the 100Mb/s experiments, total regret increases as weln this paper, we investigate how best to formulate decision
increase the task size. The regret peaks for tasks apprtetind® problems for computational offloading systems for com poutz
Gb in size, and then decreases. For this network, NWS predictgrid settings. We compare a classical approach to several va
shows no significant differences across strategies fostsiskller ations of a Bayes decision model and a “no data” approach.
than 35 Gb. For larger tasks, the Predictor strategy intteslu We also describe how all of these approaches (including some
the most regret. As in the prior set of experiments, there isused in previous systems) can be represented in a common
critical range of task sizes (between 30 and 50) that segmraihtellectual framework for which we have developed an difec
the strategies in term of performance (regret). Ody (a) awSN implementation.
(b) prediction perform similarly, however, the Predictbrategy We find that a Bayesian approach which incorporates change-
performs poorly for a much larger range of task sizes. point detection in its formulation of therior distribution is
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Fig. 6. Predictor performance (regret) for different taskesiand decision 3(4):362—385, August 2007.

strategies for the 1Gb/s trace for predictors NWS (a) and @ly (
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the most efficacious of those we investigated. In addition, b
comparing a widely disparate set of techniques using a esingig;
implementation of our framework, we demonstrate how the
heretofore separate approaches to making offloading desisan
be unified.
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