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With chip manufacturers such as Intel, IBM, and ARM offering native support for transactional memory

in their instruction set architectures, memory transactions are on the verge of being considered a genuine

application tool rather than just an interesting research topic. Despite this recent increase in popularity on

the hardware side of transactional memory (HTM), software support for transactional memory

(STM) is still scarce and the only compiler with transactional support currently available, the GNU Compiler

Collection (GCC), does not generate code that achieves desirable performance. For hybrid solutions of TM

(HyTM), which are frameworks that leverage the best aspects of HTM and STM, the subpar performance of

the software side, caused by inefficient compiler generated code, might forbid HyTM to offer optimal results.

This article extends previous work focused exclusively on STM implementations by presenting a detailed

analysis of transactional code generated by GCC in the context of HybridTM implementations. In particular,

it builds on previous research of transactional memory support in the Clang/LLVM compiler framework,

which is decoupled from any TM runtime, and presents the following novel contributions: (a) it shows that

STM’s performance overhead, due to an excessive amount of read and write barriers added by the compiler,

also impacts the performance of HyTM systems; and (b) it reveals the importance of the previously proposed

annotation mechanism to reduce the performance gap between HTM and STM in phased runtime systems.

Furthermore, it shows that, by correctly using the annotations on just a few lines of code, it is possible to
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reduce the total number of instrumented barriers by 95% and to achieve speed-ups of up to 7×when compared

to the original code generated by GCC and the Clang compiler.1

CCS Concepts: • Software and its engineering → Compilers; Runtime environments; • Computer

systems organization→Multicore architectures;
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1 INTRODUCTION

The rise of multi-core processors brought to light the precarious state of the tools available to
write and debug parallel code [27, 38]. This has led both industry and academia to devote a lot of
effort into creating new programming paradigms that better suit the development of concurrent
software. One result of such efforts is a mechanism known as Transactional Memory (TM) [14, 16].

Transactional Memory makes use of the concept of a transaction: a region of code that is exe-
cuted in an atomic and isolated manner. Therefore, programmers should only worry about defining
code excerpts that have shared memory accesses, while the transactional framework handles con-
currency control. The transactional framework can be realized in hardware (HTM), software

(STM), or a mix of both (HyTM), all with different compromises. While HTM allows for better
performance, it is generally limited to small transactions where the data workload should not ex-
ceed the limits of the hardware’s versioning capacity, which is generally limited to the first two
cache levels [26, 42]. Although STM does not have a limit regarding the size of transactions, it
needs to instrument each and every access to the memory to ensure atomicity and isolation.

Hybrid TM (HyTM) frameworks have been proposed [5, 8, 20, 30] to leverage on the advan-
tages of both HTM and STM, where a dynamic mechanism is used to assign a transaction to STM
or HTM according to different characteristics such as size and abort ratio. A similar approach,
called Phased Transactional Memory (PhTM*) [28], executes transactions in phases, with each
phase composed of only one execution mode (e.g., HTM or STM). As a result, there is no coordi-
nation between transactions running in different modes like in HyTM, making its implementation
simpler and more flexible. Recent studies with a modern PhTM-based system, called PhTM*, have

1Extension of Conference Paper: This paper extends our work published at the IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2020), titled “Improving Transactional Code Generation via Variable Annotation and Barrier

Elision” [11]. Previously, we claimed that transactional code generated by a compiler can significantly hinder the perfor-

mance of STMs, and we proposed a language annotation mechanism that can be used to effectively remove unnecessary

barriers and improve performance. This current paper extends that work by generalizing its claim, showing how over-

instrumentation also negatively affects the performance of Hybrid TMs (HyTM), and demonstrating that our proposed

language annotation benefits HyTM implementations as well. This extended work reports experiments with a state-of-the-

art phase-based TM runtime system (PhTM*).

In particular, we would like to highlight that both Section 2.2, discussing Phased Transactional Memory (PhTM*), and

Section 5.3 are completely new content not part of the prior work. Lastly, Section 5.2 not only adds performance numbers

for PhTM* but also presents an in-depth discussion of the implications of having TMFree (our language annotation) as a

memory barrier elision mechanism in the context of HyTMs.

In short, we believe that our new contribution further advances research on compiler support for transactional memory

and provides empirical evidence that supports the claim that the proposed approach for Clang/LLVM is independent of

any type of TM runtime system.
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shown that phased systems can offer better performance compared to state-of-the-art HyTM im-
plementations [10, 21].

Regarding support, HTM has seen a rise in popularity since 2013 with chip manufacturers such
as Intel [42], IBM [26], and ARM [37] offering native support for TM in their instruction set ar-
chitectures. It is important to note that this hardware support takes a best-effort approach, which
means there is no guarantee that a transaction will eventually be committed by the hardware.
Therefore, the programmer must provide a fallback execution path to guarantee progress. Despite
all the research on transactional memory conducted in the last 15 years, compiling support for
it is still rare, with the only mainstream compiler capable of generating transactional code being
the GNU Compiler Collection (GCC) [1]. This severely limits not only the development of new
applications but also the research potential of TM, particularly given that the de facto standard for
compiler research is the Clang/LLVM compiler infrastructure [24].

The transactional code generated by a compiler makes use of instrumented accesses to shared
memory (reads and writes), in the form of barriers, enabling the TM runtime to detect conflicts
among transactions and thus to perform concurrency control. As identified previously by Drago-
jevic et al. [12] and further explored in this article, much of the observed STM inefficiencies come
mainly from a phenomenon called over-instrumentation. Over-instrumentation occurs when a com-
piler cannot determine, at compile time, if a variable is shared or not. Since the compiler must be
conservative, it will insert barriers even if they are not required. As a result, the runtime perfor-
mance of STM tends to be subpar. Even hybrid or phased solutions, such as PhTM*, will not be
able to offer optimal results because of the STM phase. Due to these setbacks caused by over-
instrumentation, TM is still not commonly used in the development of commercial concurrent
software, which further highlights the relevance (and necessity) of additional research on com-
piler support for transactions.

In a previous work [11], we assessed the performance improvements delivered when transac-
tional barriers are removed from transaction-private variables, after annotating variables with
TMFree.2 However, in that work we considered only the case of STM implementations, and did
not evaluate the impact and feasibility of such approach in the context of HyTMs. This paper is an
extension of that work which seeks to fill in this gap. Here, we also use the transactional memory
support on Clang/LLVM compiler from [11], but we add an evaluation of the proposed approach
in the context of HyTM, more specifically PhTM* [21]. This article reports experimental results
in Section 5 that show speedups for both STM and PhTM runtimes, in contrast to the STM-only
approach that we proposed in [11].

1.1 Motivating Example

To illustrate the compiler over-instrumentation issue, consider the code snippet of Figure 1(a). It
shows a function that performs the comparison of two strings: s1 and s2. The annotation of line 1
(TM_SAFE3) declares that this function might be called by transactions (see Section 2.1.1 for details),
which makes the compiler generate two versions of the code: the original one with no instrumen-
tation; and an instrumented clone that will be called by transactions during execution. Since the
compiler cannot determine at compile time whether the two compared strings can be modified by
concurrent transactions, it takes a conservative approach and adds barriers to variables s1 and s2.

Notice, however, that in some situations the strings to be compared are read-only, in which case
the instrumentation only adds overhead. If a programmer had a way to tell the compiler that the

2This current TMFree keyword was renamed from TMElide in [11] as free is readily understood, in contrast to the notion

of elision, which requires programmers to comprehend the underlying compiler implementation.
3Macro for the transaction_safe function attribute used by GCC’s TM support [1].
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Fig. 1. (a) Non-annotated version of the compare function; (b) Its corresponding annotated version using
the proposed language support (highlighted in red); (c) Speedup comparison using the code generated by
GCC (GCCTM) and Clang/LLVM with (CLANGTMFree) and without (CLANGTM) the proposed annotation, phased
runtimes with (PhTMFree*) and without (PhTM*) the annotation, and finally, manually instrumented code
(MANUAL).

strings are read-only, the compiler would not add barriers to them. As a matter of fact, Genome
is an application that makes an intense usage of this function (≈2 billion calls during sequential
execution), and thus considerably suffers from over-instrumentation side-effects. Adding the pro-
posed TMFree annotation, as shown in lines 2–3 of Figure 1(b), forces the compiler to elide the
barriers associated to variables s1 and s2 (lines 7–8). Figure 1(c) shows the resulting speedup with
respect to Genome sequential execution, when barriers are elided for 18 threads using the follow-
ing code generation strategies: (i) GCCTM, automatically instrumented by the GCC compiler; (ii)
automatically instrumented by Clang/LLVM with (CLANGTMFree) and without (CLANGTM) the pro-
posed language support and STM runtime; (iii) similarly to the previous case, but using the PhTM*
runtime (PhTMFree* and PhTM*, accordingly); and (iv) MANUAL, manually instrumented code.

As Figure 1(c) makes evident, leaving the instrumentation exclusively to the compilers might
incur in high overheads, since their conservative approach to instrumentation leads to a slowdown
of 0.5×when compared to the sequential execution time. Meanwhile, correctly annotating the two
variables s1 and s2 using the TMFree language support with either the pure STM or PhTM* runtimes,
produces speedups of up to 4.4× for the Genome application, nearly matching the performance of
the manually instrumented code. Also notice that the PhTM* results show that, without the TMFree
support, the implementation alone is not able to achieve significant improvements over the pure
STM runtime results. As shown in Section 5.3, Genome stays predominantly in software mode for
PhTM*, but using the TMFree annotation (PhTMFree*) the application improves its performance, as
it can take advantage of the phased approach to stay more time in the (faster) HTM mode.

1.2 Contributions

This article extends our previous work in [11] and together make the following contributions4:

• It proposes the first transactional memory support for the Clang/LLVM compiler framework
that works as a drop-in replacement of GCC (see Section 3). The extensions added to Clang/
LLVM generate code following Intel/GCC’s common TM API;

4The last two contributions are only part of this extended version.
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• It proposes a novel language annotation mechanism (TMFree) that allows programmers to
instruct the compiler to elide barriers for certain memory regions (see Section 3.2);
• It presents a profiling tool that ranks the memory regions that were accessed the most at

run-time, thus unveiling barrier elision opportunities not easily detected by programmers
(see Section 4);
• It shows the performance gained by using barrier elision through variable annotation for

some STAMP benchmarks for both pure STM and Phased TM runtimes, achieving speedups
of up to 7× (see Section 5);
• It reveals that, although some applications can benefit from HTM in phased runtimes, other

applications do require STM due to their large storage capacity requirements, and therefore
can take advantage of the TMFree annotation to reduce the performance gap w.r.t. GCC’s
transactional code (Section 5.3).

The rest of this paper is organized as follows. Section 2 lists background material and previous
related work. Section 3 details the new transactional memory support added to the Clang/LLVM
compiler framework and the proposed annotation mechanism that implements transactional bar-
rier elision. Section 4 describes the proposed profiling tool and how it was used to identify barrier
elision opportunities. Section 5 details the experimental setup and analyzes the performance im-
provements achieved by the proposed approach, when compared to manual code and the GCC’s
strategy, as well as discusses the impact of such performance improvement on a Phased TM im-
plementation. Finally, Section 6 concludes the work.

2 BACKGROUND

Transactional Memory (TM) [14, 16] provides transparent concurrency control through the abstrac-
tion of transactional blocks. A transactional block groups instructions that must take effect atomi-
cally; this means that all speculative changes must be committed at once, in which case all variable
updates within the transaction are committed to memory, or discarded (i.e., aborted) entirely. Back
in 1993, Herlihy and Moss introduced the concept of transactional memory by devising a hardware
support which added new instructions and also extended the cache coherence protocol [15]. Since
then, the area has flourished alongside the wide adoption of multi-core processors. Despite initially
being introduced as a hardware mechanism (HTM) [15], most of the following research focuses
on software systems (STM), more specifically on library-based implementations [9, 13, 29]. STMs,
and library-based approaches are, in general, more prominently used due to their flexibility. In
addition, commodity processors with HTM support only reached the market in 2012. The release
of microprocessors providing hardware transactions by companies such as IBM [26] and Intel [42]
renewed interest in the area. Recently, HTM support for ARM processors was announced [37],
showing the possibility of bringing TM closer to the mobile and embedded world.

Other implementation strategies, such those presented by Dalessandro et al. [8], Lev et al. [28],
and Carvalho et al. [10], have focused on taking advantage of both hardware and software. In hy-
brid systems (HyTM), transactions can be executed concurrently using both hardware and software
support, whereas phased systems (PhTM) split the execution in phases. In a phase, all transactions
execute in the same mode (e.g., hardware or software), thus, simplifying the implementation when
compared to HyTM as noticed in [21]. Even with all the advances and improvements seen in the
last decade on TM research, works on programmability aspects are limited [2, 6]. This article aims
to start filling this gap by providing new opportunities for performance enhancement through bar-
rier elision in the Clang/LLVM compiler. Library support, although suitable for research, requires
programmers to manually use the transactional API to instrument accesses to shared memory, low-
ering the level of abstraction that TM aims to achieve. This requirement creates a steep learning
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curve for newcomers because extremely careful attention must be paid to when transactions are
manually instrumented in order to avoid incorrect or unnecessary instrumentation.

Support for TM in unmanaged languages only recently started to appear in the GNU Compiler
Collection (GCC) [1]. Although Intel offered compiler support from 2008 to 2012, it was never part
of its main compiler (ICC) and is now discontinued. Support for TM in the C language dates back
to 2014 in GCC (version 4.7) and, for C++, to 2016 (version 6.1). GCC’s runtime support is heavily
based on Intel®’s TM ABI [19], which is also used in the added support proposed in this work for
Clang/LLVM (see Section 3).

2.1 Transactional Memory Support in GCC

The transactional support provided by GCC [1] is composed of three parts: (i) language support to
annotate transactional blocks and functions (Section 2.1.1); (ii) transactional code generation that
inserts memory access barriers and other calls to the transactional runtime (Section 2.1.2), and (iii)
the runtime library itself shipped with the compiler (Section 2.1.3). Compilers that support TM
for other languages than C/C++ exist, but GCC, to the best of our knowledge, is the only C/C++
compiler that is still maintained which support TM. Intel offered a prototype C/C++ compiler that
supported STM but it was discontinued in 2010. As TMFree is a C/C++ extension, GCC is the only
available baseline used for comparison in Section 5.

2.1.1 Language Support. Transactional blocks only allow calls to TM_SAFE and TM_PURE5 func-
tions. Functions marked with TM_SAFE are cloned by the compiler, producing a copy of the original
function with all memory accesses instrumented with runtime calls. As for TM_PURE functions, the
compiler assumes that they do not have side-effects, thus, no instrumentation is performed. If a
function has neither the safe nor the pure attribute, it is considered unsafe. GCC also supports
unsafe function calls by means of relaxed transactions.

2.1.2 Transactional Code Generation. For each transactional block, GCC generates two copies
of the code within the block: one with the memory accesses instrumented with the runtime library,
and another without any instrumentation that can be used, for instance, with HTM, or other alter-
native synchronization mechanisms.

During code generation, the compiler might not be able to determine which barriers to elide due
to problems such as pointer aliasing [22]. This impossibility forces the compiler to conservatively
add unnecessary barriers, leading to the phenomenon known as over-instrumentation [12].

In order to see that the over-instrumentation problem can happen even with very simple code,
consider the example shown in Listing 1 from Honorio et al. [17]. In this example, foo is a function
that starts a transaction (line 2) which first creates a linked-list (line 3) and then calls initList,
passing the list as an argument (line 4). After some processing with L, the transaction publishes
some elements of L. Notice that the elements of L will only become visible to other transactions
when, and if, the publisher transaction commits. Therefore, all elements of L could be accessed in
initList without barriers. However, as initList is annotated with the attribute TM_SAFE, the
compiler will create an instrumented version of the function. The loop from line 13 through 16
walks through the linked-list, zeroing out each element (line 14). From the point of view of foo,
the linked-list L is only local but, since the compiler cannot deduce that, all read and write accesses
to the list in initList will be done via barriers.

Listing 2 shows the simplified assembly code generated by GCC for the example in Listing 1.
Lines from 1 to 11 refer to the procedure foo, while lines 12 to 32 refer to the procedure initList.

5Used via __transaction_safe and __transaction_pure function attributes introduced by the original TM ABI from

Intel [19].
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1 void foo() {

2 __transaction_atomic {

3 list_t *L = createList ();

4 initList(L);

5 // some processing with L

6 // publish elements of L

7 }

8 }

9

10 TM_SAFE

11 void initList(list_t *l) {

12 node_t * ptr = l->head;

13 while (ptr != NULL) {

14 ptr ->v = 0;

15 ptr = ptr ->next;

16 }

17

18 }

Listing 1. Example of over-instrumentation.

In this code fragment, the highlighted words indicate the calls to the transactional ABI to start a
transaction (line 2), allocate the linked-list (line 4) and commit the transaction (line 9). The read bar-
riers to access the head of L (line 14) and the next field (line 26), as well as the write barrier to reset
the field v (line 23) are also in boldface. This example shows that, in fact, the compiler instruments
all accesses to the linked-list L. The compiler is unable to infer that the list is private to the trans-
action and therefore inserts transactional barriers to every load and store inside initList. This
problem can be avoided by simply adding the TMFree type qualifier to the argument of initList,
as discussed in Section 3.

2.1.3 Transactional Runtime Library. GCC’s transactional runtime closely follows Intel’s TM
ABI [19]. It generates transactional code to start and commit transactions using the ABI functions
_ITM_beginTransaction, _ITM_commitTransaction, respectively. The runtime is implemented
as a dynamic shared-library, thus enabling the user to switch between different runtime implemen-
tations without recompiling the application’s code. In addition, the ABI also defines the load and
store barriers for each basic data-type in C and C++ that is supported by the target architecture.
For instance, function _ITM_RU8 reads a 64-bit value. In this work, a runtime following the same
TM ABI was implemented and is used by the code generated by both GCC and Clang/LLVM. By
using the same library, performance differences due to implementation details alone are avoided.

2.2 Phased Transactional Memory* (PhTM*)

A phased TM implementation (PhTM) has two or more transaction execution modes. The execu-
tion mode, as well as the transition between them, are determined by a controller or automaton.
The optimal execution mode is selected based on certain characteristics such as transaction size
and abort reason. In particular, the phased implementation has the main feature that, unlike other
hybrid implementations, it executes all concurrent transactions in a single-mode manner. PhTM
implementations were first explored by Lev et al. [28] and later improved by Carvalho et al. [10, 21],
who proposed PhTM*.

PhTM* has three modes of execution, namely hardware (HW), software (SW), and sequential
(GLOCK). In HW mode, all concurrent transactions are executed in HTM. If there is a persistent
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1 foo:

2 c a l l _ITM_beginTransaction

3 # ...

4 c a l l c r e a t e L i s t

5 # ...

6 c a l l i n i t L i s t

7 # some processing with L

8 # publish elements of L

9 c a l l _ITM_commitTransaction

10 # ...

11 # ...

12 i n i t L i s t :

13 # node_t* ptr = l->head

14 c a l l _ITM_RU8

15 # if ptr == NULL , goto RETURN

16 testq %rax , %rax

17 je .L9

18 movq %rax , %rbx

19 WHILE:

20 leaq %rbx , %rdi

21 # ptr ->v = 0;

22 xorl % esi , % e s i

23 c a l l _ITM_WU4

24 # ptr = ptr ->next;

25 movq %rbx , %rdi

26 c a l l _ITM_RU8

27 # if ptr != NULL , goto WHILE

28 testq %rax , %rax

29 movq %rax , %rbx

30 jne WHILE

31 RETURN:

32 retq

Listing 2. Assembly code generated for the example of Listing 1.

hardware capacity abort during execution, the automaton forces a transition to SW mode where
there is no capacity restriction. On the other hand, if there are repeated transaction aborts
due to conflicts, the automaton triggers a transition to a global lock mode (GLOCK mode),
where the atomic region will be executed sequentially. In the SW mode, an STM implementation
like NOrec [9] is in charge of the execution progress. The automaton decides to change from SW
to HW mode once the conditions related to capacity aborts are overcome. Finally, in GLOCK
mode, a global lock is acquired by one thread to sequentially execute a transaction that has been
aborted due to conflict with other transactions. The PhTM* automaton can make four types of
transitions as shown in figure 2: A The HW → SW transition occurs when a certain number of
capacity-related aborts is reached. B The SW → HW transition occurs if the aborted transactions
that caused the transition to SW have been committed, and the size of the transactions that are
being executed are below a threshold. C Transition HW → GLOCK happens when a transaction
persistently aborts due to conflict with other transactions after a number of execution attempts.
Finally, D transitionGLOCK → HW occurs once the conflicting transaction has been sequentially
executed and committed.

One major benefit of using the proposed annotation with phased TM systems is that it will
potentially reduce the amount of time spent by the transactions in SW mode, thus aiding the
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Fig. 2. PhTM* transition automaton.

PhTM* heuristics to switch more frequently to the fastest HW mode, and improving the overall
performance.

2.3 Related Work

The challenges of optimizing transactional code in unmanaged languages (C/C++) were first dis-
cussed by Wang et al. [40]. They focus on inlining STM’s hotspot routines, such as checkpointing
code, and describe optimizations to eliminate redundant barriers. Bronson et al. [4] identified op-
portunities to elide barriers in non-transactional code. These barriers are placed in order to ensure
strong isolation between transactional and non-transactional code. Guided by runtime informa-
tion, Bronson et al.’s approach is able to dynamically optimize isolation barriers. Our work targets
memory access barriers on transactional code and is thus orthogonal to Bronson et al.’s proposal.
Moreover, TMFree enables barrier elision at compile time instead of run time.

The over-instrumentation problem was first characterized by Yoo et al. in [43]. A new construct
was proposed to enable programmers to instruct the compiler to elide all barriers within the spec-
ified block of code (e.g., a function). Our work proposes an elision mechanism that is more flexible
than Yoo et al.’s by enabling elision in the granularity of individual variables. In addition, Yoo et al.
do not provide a profiling mechanism to identify opportunities for barrier elision, as in this work.
The work by Lev et al. [27] was among the first to recognize the scarceness of debugging tools for
TM. Wu et al. [41] discuss optimizations for both managed and unmanaged environments using
the IBM XL compiler and the Java virtual machine. The exploitation of platform specific charac-
teristics for better code generation was investigated by Ruan et al. [35]. Their work assessed the
interplay between compiler instrumentation and performance regarding which optimizations to
perform.

Dragojević et al. [12] extended the previous work of Yoo et al. [43] by also eliding barriers in cap-
tured memory accesses, i.e., memory allocated inside transactions which are only globally visible
after the allocated transaction’s commit. A capture analysis is developed for both the runtime and
the compiler, similar to the one implemented in the Clang/LLVM support presented in this work.
Carvalho and Cachopo later extended the capture analysis for a managed environment based on
a Java virtual machine [7].

The most recent work on memory transactions language support is from to Zardoshti et al. [44].
Different from this work, Zardoshti et al.’s do not implement transactional blocks as first-class
citizens of C/C++ languages. Instead, they rely on anonymous function attributes to specify the
scope of transactions. All the machinery for creating transactional clone functions and inserting
memory access barriers is performed via an LLVM plug-in. An extension to enable transactional
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constructions in C++ was also proposed by Zardoshti et al. [44]. The proposed extension relies on
C++ lambda functions and thus does not work with C programs. Moreover, Zardoshti et al.’s imple-
mentation inserts calls to a custom TM runtime API which – unlike the Clang/LLVM’s extensions
proposed in this work – is not compatible with GCC/Intel’s common TM API. In addition, exist-
ing TM runtimes that adhere to the common GCC/Intel API would need to be changed to follow
Zardoshti et al.’s non-standard API. On the other hand, our work makes transactional blocks part
of the C/C++ language in the Clang compiler. In addition, it provides a barrier elision mechanism
to avoid over-instrumentation through an LLVM pass. Moreover, Zardoshti et al.’s transactional
runtime does not follow Intel’s TM ABI [19], thus requiring that existing transactional libraries
be adapted prior to their use. Honorio et al. [17] propose a pragma-based elision mechanism that
requires programmers to insert pragmas at each usage scope of a transactional local value. Our
approach using TMFree enforces the correct interplay between local and non-local transactional
variables, thus allowing the same flexibility of elidebar [17], but with the additional type enforce-
ment guarantees.

Titos-Gil et al.’s work propose hardware and software extensions to relax the kinds of conflicts
that are detected in HTM [39]. The annotations proposed by Titos-Gil et al. is orthogonal to TMFree
as it is designed to optimize barriers that cannot be elided and TMFree is used to elide unnecessary
barriers. Both TMFree and Titos-Gil’ extensions can be used together, however, because Titos-Gil’
results were collected in a simulation environment, combining the two extensions was not con-
sidered for the presented work. The results in Section 5 reflect the performance on real hardware
and the use of production ready compilers. Unlike TMFree, Titos-Gil et al. do not offer a tool to
help programmers identifying optimization opportunities and programmers are left unguided on
the more complex task of identifying data dependencies.

The solution proposed in this work relies on programmers to inform the compiler, by means
of the TMFree annotation, which shared memory locations should not be instrumented. Although
at first sight this could be viewed as an extra burden for programmers, the results obtained with
the guidance of a novel profiling tool shows that just a couple of annotations enables significant
overhead elimination (see Section 5).

3 TRANSACTIONAL MEMORY SUPPORT IN CLANG/LLVM

This section presents the transactional memory support added to the Clang/LLVM6 compiler
framework [24], the de facto standard in compiler research and optimization. First, the foundation
for transactional memory code generation is discussed (Section 3.1), then the variable annotation
mechanism that enables barrier elision is presented (Section 3.2).

3.1 Transactional Code Generation

The foundation for transactional code generation added to Clang/LLVM follows Intel®’s ABI [19]
and is entirely compatible with the transactional runtime system shipped with GCC. The parser
was extended in Clang to produce a new statement node in the AST7 (TransactionAtomicStmt)
whenever a transactional block is found. The other extension aims to recognize the TM_SAFE and
TM_PURE function attributes and add them to the generated intermediate representation (IR).
Contrary to GCC, in Clang the instrumented and uninstrumented code paths are created in the
AST. In GCC this is done after GENERIC, GCC’s AST-like tree-based representation, is lowered
to GIMPLE, an IR-like three-address representation. The decision of performing this dual-path

6Full source code available at https://github.com/jaopaulolc/TMFree.
7Abstract Syntax Tree.
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code creation in Clang’s AST was made to allow static analysis and provide early feedback to the
programmer through error/warning messages (e.g., unsafe calls inside TM_SAFE functions).

After the LLVM IR is generated, and if the flag -fgnu-tm8 is provided, the LLVM pass manager
schedules the passes in the implemented transformation library. The library implements the fol-
lowing passes:

• DualPathInfoCollector – collects transactional boundary and dominance information
from all transactional basic-blocks in a function. This is the analysis pass used in all the
following transformation passes;
• TransactionSafeCreation – a pass that creates a transaction-safe clone of functions called

inside transactional blocks or other transaction-safe functions. This pass also creates a global
map that associates transaction-safe to their non-safe counterparts. The map is used to han-
dle indirect function calls;
• ReplaceCallInsideTransaction – as the name indicates, this pass replaces all calls inside

transactions or transaction-safe functions with calls to their transaction-safe counterparts.
This includes some non-user functions, such as memcpy, memmove and malloc/free9;
• LoadStoreBarrierInsertion – replaces load/store instructions with calls to TM runtime

barriers. This pass can elide unnecessary barriers for variables annotated with the TMFree
qualifier (see Section 3.2);
• Cleanup – used to remove any unnecessary code inserted only with the purpose of facilitat-

ing code analysis and transformations.

The boundary and dominance analyses allow the barrier insertion pass to elide barriers on cap-
tured memory accesses whenever it is possible to prove it at compile-time. The elision of captured
memory accesses is responsible for the performance obtained in one of the evaluated applications
(see Section 5). In addition, by following the same mechanism used by GCC to store the transac-
tional clones’ map, the code generated with the modified Clang/LLVM can be used out-of-the-box
with the dynamic-linker from GNU’s libraries. In the next section, the barrier elision mechanism
syntax and implementation are detailed.

3.2 Barrier Elision Mechanism

LLVM’s intermediate representation language is a three-address SSA (Static Single Assignment)

language that was designed with the purpose of facilitating the writing and reusability of compiler
analyses in mind. Nevertheless, since the LLVM IR must be generic enough to allow the represen-
tation of programs translated from a plethora of languages, information from certain languages or
specific application domains might be lost in the process. Most language communities, such as Rust
and Julia, realized the semantic gap between the AST and LLVM IR [25] and dealt with it by em-
ploying an extended version of the LLVM IR. This work narrows the semantic gap between Clang’s
AST and LLVM IR by using LLVM IR metadata to pass language-level information to the transfor-
mation and analysis passes. Although the metadata is sufficient to implement the proposed elision
mechanism, it is not hard to see that a TM-specific IR could allow elimination of other bottlenecks,
such as the cost associated with the lookup of safe cloned function addresses at each indirect func-
tion call [43]. In this work, we changed the runtime to save the last function indirectly called, both
for GCC and Clang in order to avoid execution time variance due to transactional clone lookups.

The proposed mechanism that enables programmers to elide unnecessary barriers is based on
variable annotation, more specifically through a new type qualifier called TMFree for the C/C++

8The same flag used by GCC was adopted for compatibility reasons.
9These functions are implemented as part of the transactional runtime.
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1 i n t foo( i n t * addr) {

2 TMFree < int >* counter = addr;

3 __transaction_atomic {

4 // ...

5 (* counter)++;

6 // ...

7 }

8 }

Listing 3. Annotating a TMFree variable in C++.

language. TMFree follows the design of the C11/C++11 Atomic qualifier, which specifies variables
that must be accessed atomically. Variables qualified with TMFree are considered local to the sur-
rounding transaction and do not require load/stores barriers to be accessed. Listing 3 shows how a
variable can be qualified with TMFree. In the example of Listing 3, let us assume that the memory
pointed by addr is private to the thread. Such information is only known by the programmer; the
compiler would have to assume that counter (addr) can point to any variable in the program.
Therefore, the compiler would not be able to elide the barriers for the accesses to counter. How-
ever, by annotating it with TMFree, the information is propagated through the type system. Notice,
however, that without the metadata added to the load in the IR instruction, the information about
counter being transaction local would be lost.

The proposed annotation mechanism has the benefit of allowing individual variables to have
their barriers elided. It does not impose that barriers for all variables in a code block are elided, as
in Yoo et al.’s [43] proposed construct. In addition, it enforces that all uses of the transactional local
variables are elided by employing a strongly-typed system approach. For instance, in Listing 3, even
if the value of counter is passed as an argument to a safe function inside the transactional block,
the compiler would require the argument to be TMFree qualified. This enforcement done by the
compiler is more robust than Honorio et al.’s [17] approach, which would require the programmer
to insert pragmas at each usage scope of a transaction local value. If a previously declared TMFree
variable must be accessed transactionally in a given transactional block, but not in another, the
programmer can simply add a cast operation to the variable, removing the qualifier. This allows
the same flexibility of elidebar [17], but with the additional type enforcement guarantees.

Programmers can make mistakes when using TMFree to elide transactional barriers. TMFree was
designed and must be used under the same terms-of-use contract of restrict, a standard C/C++ at-
tribute which indicates that a pointer does not alias with others in its declaration scope. Modern
compilers do not check if restrict was incorrectly used by programmers, as such checks require
prohibitively expensive static or run-time analysis [33]. In fact, both flow-sensitive and insensi-
tive static alias analysis are proven NP-Hard problems [18, 23]. Therefore, in the proof-of-concept
extensions presented in this work no checking mechanism was added to LLVM to detect incorrect
usage of TMFree.
TMFree, while similar in some aspects to the aforementioned restrict and other standard C/C++

attributes such as const, aims to solve the problem of over-instrumentation in a general use case,
whereas the existing attributes are not fit to solve the over-instrumentation problem, or would do
so in very specific cases. For example, if a variable is annotated with const, any writes to it are a
compiler-time error. Thus, it could only be used instead of TMFree if all uses of that variable are
read operations. However, for any two non-simultaneous transactions, if the variable is read-only
in one transaction but read/write in another, then annotating it with cost would be a compile-time
error. This scenario exists in the Genome application. Therefore the const qualifier cannot be used
in all cases where TMFree would be applicable.
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Fig. 3. Classification of memory accesses for STAMP (reads and writes).

On the other hand, if a pointer is annotated with restrict, the compiler is safe to assume that
the addresses accessed through the pointer do not overlap with any other variable. Thus, if two
pointers are annotated with restrict, the compiler can assume that access through both pointers
will not conflict with each other. However, any two simultaneous transactions might still access
the same memory address via the same pointer, causing the compiler to still need to conservatively
add the barrier regardless of the restrict attribute presence. If the pointer is only used by simultane-
ous transactions to access non-overlapping memory, then the barriers can be elided with TMFree.
Therefore the restrict attribute is also not a viable replacement for TMFree.

4 IDENTIFYING BARRIER ELISION OPPORTUNITIES

Transactional Memory aims to provide transparent concurrency control by removing the burden
of synchronization from the programmer. An ideal TM implementation should therefore require
only the specification of what needs to be synchronized and not how to implement it. It is then clear
that compiler support for TM is highly desirable, because otherwise the programmer would have to
explicitly identify every variable that needs to be consistently accessed. Nevertheless, as the results
in the previous section showed, transactional code generated by compilers can be significantly
slower than manually instrumented transactions. In the absence of information, compilers need to
make conservative decisions that produce over-instrumented code. The required information that
would enable compilers to not over-instrument code, e.g., aliasing information or how and where
variables were allocated, is easily accessible and known by the application’s programmer. In this
direction, this work proposes a profiling tool that aims to couple runtime collected information
with the programmer’s knowledge of the code to enable simple but effective barrier elision.

Previous works [12, 17] focused only on quantitative barrier analysis in transactional code.
Figure 3 shows a similar classification of the memory accesses that can be found in the literature
for the evaluated STAMP applications. For each application two stacked bars are shown. The
stack on the left divides the total number of memory accesses into two types: those that require
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Fig. 4. Illustration of how the profiler report is obtained and TMFree is used to elide unnecessary barriers.

============== STACK READS ===============

PC: 405755 Count: 41919668

Source file: genome/sequencer.c

Function: _ZGTt14compareSegment

Source line: 184

============== STACK WRITES ==============

PC: 406 b0c Count: 16777216

Source file: genome /../ lib/hashtable.c

Function: _ZGTt18TMhashtable_insert

Source line: 754

=========== HEAP READS ============

PC: 40578e Count: 2190204004

Source file: genome/sequencer.c

Function: compare

Source line: 167

Listing 4. Output of proposed profiling tool for Genome.

a transactional barrier (Required) and those that were unnecessarily accessed through barriers
(Non-Required). All manually annotated accesses were assumed as required, following the same
methodology of previous works [12, 17]. In addition, the profiling was performed only on the
single-threaded execution for each application. As first noted by Dragojević et al. [12], this
assumption might overestimate the number of barriers, however, for the purpose of the discussion
in this section, they are reasonable enough. The second stack of bars (right) divides the accesses
into Heap and Stack, respectively.

Figure 4 illustrates how simple it is to use the proposed profiling mechanism, integrated into
the TM library runtime (libitm), to elide unnecessary barriers using TMFree. Green boxes represent
input files or output generated by a tool/process. Blue boxes represent the execution of a tool/pro-
cess. Dashed arrows indicate the consumption of a file or an output of a tool/process. Solid ar-
rows represent the execution of a tool/process. First, a C/C++ application is compiled 1 using the
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modified Clang/Clang++ tool to produce a binary.10 Then, the generated binary is linked 2 against
GNU’s TM runtime augmented with the profiling mechanism proposed in this work. Finally, the
profiler’s report is generated once the binary is executed 3 . Guided by the straightforward report
(See Listing 4), the programmer annotates the identified variables with TMFree (See Figure 1(b)) 4 .
Then, the annotated code is compiled 5 with the modified Clang/Clang++ tool to produce a binary
without transactional barriers for the annotated variables. The produced binary, once linked 5
against GNU’s TM runtime, now with the profiling mechanism disabled, will contain direct load-
/store operations for access to annotated variables. If the programmer identified key unnecessary
barriers as in Figure 1(b), then the produced binary should execute faster as Figure 1(c) indicates.

Figure 3 data was collected with the proposed tool and a debug-enabled version of GNU’s TM
library (libitm). This debug version has the same API as the non-debug runtime. But instead of
implementing the TM algorithm for concurrency control and conflict resolution, each function
that access application data and allocates memory was instrumented. The instrumentation code
collects the range of the transactions stack memory addresses by calling the compiler built in
function __builtin_dwarf_cfa,11 before starting and at the moment each read/write barrier is
called. This simple mechanism allows the identification of a memory access to the transaction’s
local stack. Captured memory analysis [12] is implemented by recording the dynamically allocated
memory performed inside of the transaction at runtime. Memory accesses that reference captured
memory are thus classified as heap accesses.

Figure 3 clearly shows the over-instrumentation problem, however, it does not give any informa-
tion to programmers on where exactly the unnecessary barriers are in the code. In order to guide
programmers on which barriers to elide and where in the code to insert the TMFree annotation,
we also developed a profiling tool. The tool is designed to be used as a Profile-Guided Optimiza-
tion tool to collect the application’s runtime information. The tool consists of just a single shared
library that implements the same API of GNU’s TM library, extending its basic functionality to
track barrier execution frequency at run time. For each barrier, the tool records its precise source
location: file name, function that it belongs to and line number in the source code. The precise
source location is already encoded in the binary by most production ready compilers (e.g., GCC
and Clang) when the flag -g is used, thus it does not required additional metadata nor any changes
to the debugging capabilities of the compilers. The location information is stored in the debug in-
formation section of the binary, together with the TMFree metadata (see Section 3.2). By design,
the tool can be transparently used with precompiled transactional code. It can also be employed
incrementally, meaning that the programmer can execute the application code using the tool, elide
some barriers using the proposed annotation mechanism (see Section 3.2) and the tool’s report, to
then re-execute the application with the elided barriers for further barrier elision.

Listing 4 shows part of the tool’s output for Genome. Besides classifying each barrier according to
its access type (read or write) and location (stack or heap), the tool outputs the barriers in execution
frequency order, from the most to the least executed. The tool obtains the debug information using
the BFD (Binary File Descriptor) library from the GNU project, as done by other tools such
as GDB (GNU Debugger). Therefore, the profiling tool works out-of-the-box with applications
compiled for Linux and does not require any changes to the binary format or any special support.
The BFD library works with a plethora of binary formats and the debug information used by
the tool is format agnostic. All experimental results with ClangTM+TMFree and PhTM* +TMFree
presented in Section 5 were obtained after collecting reports like those shown in Listing 4 and
annotating the respective variables with TMFree.

10Linking against a precompiled binary is supported and will also generate the profiler report.
11Returns the Canonical Frame Address of the callee (a.k.a. call frame address).
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Dragojević et al. [12] proposed a mechanism to elide barriers to both stack and heap captured
memory at run time. Nevertheless, based on the overhead added to the application12 when the
debug-enabled version of the transaction was used for profiling, it is hard to see how the overall
performance would not suffer, as claimed in their work [12]. In addition, the results in the fol-
lowing section show that by just annotating a few lines of code, following a very straightforward
methodology using the proposed tool, it is possible to achieve significant performance improve-
ment without adding any run time overhead. The feedback provided by the proposed tool coupled
with the programmer’s knowledge of the application can enable barrier elision, even in situations
where the compiler would not be able to do so alone, due to insufficient, or unavailable, informa-
tion (e.g., aliasing). In this sense, the TMFree mechanism guided by the above described profiling
tool can be more effective than most runtime-based or purely compiler-based solutions.

5 EXPERIMENTAL RESULTS

This section shows the experimental results for STAMP using our variable annotation mechanism
(Section 5.2). We also show the performance improvements when coupling TMFree to a pure STM
implementation, as well as the PhTM* implementation, where both HTM and STM are leveraged.
First, we start with a description of the experimental setup.

5.1 Experimental Setup

The experimental results presented next contrast our novel TM support added to Clang with
GCC’s support [1]. As discussed previously (Section 3.1), both compilers generate transactional
code following Intel®’s TM ABI [19]. In order to avoid performance differences due to different
library implementations, the same runtime library was used for the code generated by both com-
pilers. The runtime library employs NOrec as the STM system [9]. NOrec’s code was developed
by the Rochester Synchronization Group and released as part of the RSTM package [29]. NOrec
employs a global sequence lock, performs deferred versioning and eager conflict detection by
means of value-based validation. We refer to the performance of the code generated with Clang
and GCC as CLANGTM and GCCTM, respectively. Moreover, performance issues induced by the
memory allocator [3] were avoided by using the TCMalloc allocator with the changes suggested
by Nakaike et al. [32].

The results reported in this section represent the mean of 20 executions.13 All applications
and TM implementations were compiled with GCC (GNU C/C++ Compiler) 7.3 and Clang 6.1,
whenever our novel Clang TM support was used. We observed a performance degradation on
transactional code generated by GCC when vectorization was enabled. Therefore, all applications
were compiled with optimization level three (-O3) and vectorization disabled.14 In this section, we
present experiments conducted on a machine powered by a Intel® Xeon™ 5220 2.2GHz processor
and 188GB of RAM. The processor has 18 physical cores and 2 hardware threads per core (total of
36 SMT threads). The machine runs CentOS 7 and Linux kernel 3.10. We present results using the
STAMP [31] benchmark suite. STAMP consists of scientific applications from a diversity of fields
such as bioinformatics (Genome), security (Intruder) and machine learning (Kmeans). Our analysis
makes use of the STAMP applications written in the C language, used as-is and without any mod-
ifications. Every application was executed with the real-world input-sizes as recommended by the
authors [31]. All binaries were compiled from the exact same source code for all three evaluated
compiler-based solutions.

12Between 20% and 45%, on average, for the evaluated applications.
13Average variance across measurements was lower than 0.5% of the mean.
14Vectorization was disabled with the -fno-tree-vectorize, -fno-slp-vectorize and -fno-vectorize flags.
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Fig. 5. Speedup results for the STAMP benchmark.

Three15 applications from STAMP were not used, namely Kmeans, SSCA2 and Yada. The first two
because they do not achieve significant speedup with software TM [10], and our goal is to show
improvements via barrier elision on the software path. Yada was the only STAMP application that
fails to run with both GCCTM and CLANGTM. Nonetheless, the four applications in Figure 5 showcase
the performance gains obtained by eliding unnecessary barriers.

5.2 Performance Gains Through Barrier Elision

Figure 5 contrasts the performance improvements enabled by our novel annotation mechanism
(CLANGTMFree) with the manually instrumented code (MANUAL) and the transactional code gener-
ated by GCC (GCCTM). We also show the performance of the phased TM runtime PhTM* with the
TMFree annotation mechanism (PhTMFree*), and without it (PhTM*). Finally, we present the per-
formance of our transactional support implemented on Clang without the elision pass (CLANGTM).
Figure 5 shows the speedup (y-axis), relative to the sequential version, achieved in four STAMP
applications when executed with 2 to 18 threads (x-axis). Table 1 shows the total number of
barriers inserted by each compiler, the percentage reduction (due to the TMFree annotation) in
CLANGTM and CLANGTMFree when compared with GCCTM, and the number of program lines anno-
tated with TMFree for the single-threaded run. These values were measured using the proposed
profiling tool and methodology discussed in Section 4. As Figure 5 shows, our proposed annotation
(CLANGTMFree) mechanism enables CLANGTM to scale like NOrec does for the manually annotated
code (MANUAL).

15Bayes is no longer used by the research community due to its high execution time variance.
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Table 1. Total Number of Inserted Barriers, Percentage Reduction and Code Lines Changed in
STAMP Applications

GCCTM CLANGTM CLANGTMFree

Application Total barriers Total barriers % reduction Total Barriers % reduction # lines changed

Genome 5,909,305,159 5,856,815,828 0.80 285,250,788 95.17 4

Labyrinth 1,909,024,753 1,901,348,025 0.40 6,164,289 99.70 9

Intruder 1,210,415,493 1,185,013,401 2.10 729,883,773 39.70 13

Vacation 1,885,753,418 1,809,386,196 4.00 1,720,921,973 8.70 11

Genome reconstructs a nucleotide sequence from possibly duplicated segments. The reconstruc-
tion is divided into three steps. The first and most time consuming step, takes over 90% of the
whole execution time [10]. In this step, the only data-structure that is modified is a hash-table
used to filter out duplicated short segments. However, the data items themselves are read-only in
this step and do not require transactional barriers to be read. These barriers can be easily elided by
adding the TMFree annotation to Genome’s source code, a change of only four lines of code elides
over 95% of the unnecessary barriers.

Similarly, CLANGTMFree elided over 39% of the unnecessary barriers in Intruder, which resulted
in a performance improvement of over 23% when compared with GCCTM running with six threads.
For Intruder, the performance difference between CLANGTMFree and MANUAL is less than 5% in
the 4-thread runs. In order to achieve this performance, only 13 lines of Intruder’s code had to be
annotated with the TMFree qualifier. Most annotations were made to the data structures used by
Intruder to decode packages in its intrusion detection algorithm. The best performance for this
application is achieved with PhTMFree* and eight threads of execution, improving performance
with respect to the manually annotated code MANUAL by 37%. For both Genome and Intruder, GCC
has to add extra barriers since it cannot prove the values are either read-only or transaction local
due to this information only being available and known by the programmer.
Labyrinth is an application that finds the shortest-distance path between two points in a maze.

The maze is represented as an N-dimensional grid and in Labyrinth is stored as a 3-D array.
The routing process can be divided into three steps: expansion, traceback and consolidate. The
expansion recursively considers each of the six neighbors of a given source point, taking into
account the cost of adding a neighbor to the path. The expansion stops once the destination point
is reached. The shortest-distance path is created in the traceback step by traversing the minimum
cost path in reverse order, from destination to source. It is important to note that the grid used
during both the expansion and traceback steps is a private snapshot of the global grid, taken just
before expansion starts. Finally, the consolidate step checks if the path produced during traceback
is still available in the global grid. If so, the path is committed, otherwise the path is discarded
and the whole process restarts from expansion with an up-to-date snapshot of the global grid. The
only grid accesses that need to be transactional are those performed during the consolidate step.
Therefore, by annotating only nine lines of code, CLANGTMFree is able to outperform GCCTM by over
3.6× and be within 4% of MANUAL NOrec when 18 threads are used , showing a similar performance
to PhTMFree* that presents a speedup of 6.5×.
Vacation was the only application for which CLANGTM was able to elide the barriers without

the TMFree annotation. The elided barriers were accesses to captured memory [12], which are
dynamically allocated in the heap and are private to the transaction while it is not committed. A
profiling analysis using the tool and methodology proposed in Section 4 revealed that less than
10% of the barriers inserted by GCC in Vacation can be elided. Even with such small improve-
ment space, CLANGTM is able to achieve over 20% speedup when compared to GCCTM by eliding
barriers to captured memory accesses. Despite annotating 11 lines of code and eliding over 111K
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Table 2. Total Number of Commits and Aborts for PhTMFree* and PhTM* with 18 Threads

PhTM* PhTMFree*

SW HW SW HW

Application Commits Aborts Commits Aborts Commits Aborts Commits Aborts

Genome 61,142.43 964.42 274,116.33 141,854.77 19,417.00 951.04 1,761,236.77 346,213.66

Labyrinth 28.95 0.18 11.80 129.10 28.80 12.01 15.30 117.10

Intruder 329,965.38 157,980.13 10,700,701.50 20,963,293.00 258,708.84 200,343.81 13,022,907.16 26,444,925.33

Vacation 116,030.16 20.60 3,351.40 151,973.90 116,185.46 20.01 1,608.00 111,049.10

barriers, CLANGTMFree only improves CLANGTM’s performance by less than 1%. This behavior is
also observed with PhTM* and PhTMFree* with maximum speedups of 3.0x and 3.2x, respectively,
also improving performance over GCCTM. Honorio et al. [17] achieved similar speedups to CLANGTM
using their pragma mechanism. However, due to the limitations discussed in Section 3.2, they
could only do so by changing the red-black tree lookup algorithm used by Vacation. The im-
provements obtained with CLANGTM do not require any source code modification. These results
show that identifying the right barriers to elide is central to eliminating overhead and achieving
higher performance.

Some of the results presented in this section, specifically those for Genome, could be also achieved
by declaring some functions as transactional pure. However, this is not the case of the other three
applications; memory allocation would not be performed by the transactional runtime resulting
in a memory leak. In addition, purifying16 functions can be harmful [34], as none of the accesses
inside of them are instrumented and thus could violate the semantics of transactional code if used
wrongly. The pure attribute– introduced in Section 2.1.1 – is also currently not considered for the
C++ TMTS [36]. Nevertheless, we are uncertain if the C++ TM standard should really omit the
transactional pure attribute, since if used correctly it could eliminate very significant overhead
from the application as this section’s results show. In addition, not providing useful features only
to prevent programming mistakes is shortsighted. Instead, compilers and runtimes should provide
mechanisms to help programmers from making such mistakes and guide barrier elision.

5.3 Mode usage in PhTM*

In this section we show the impact the proposed annotation may have in the performance of phase-
based transactional memory systems. For that, we measured the percentage of time spent in each
of the execution modes (HW, SW and GCLOCK) for the four STAMP applications considered in
the previous section, while also increasing the number of threads from 2 to 18 as shown in Figure 6.
For each thread configuration, the left bar corresponds to PhTM* and right one to PhTMFree*. In the
per-application description presented next, we also make use of the quantitative data provided by
Table 2 for commits and aborts in both systems.

In Genome as the number of threads increases, the percentage of SW mode usage increases for
PhTMFree* and PhTM*. However, for PhTM*, this increase is significantly higher, reaching up to 80%
of the time in SW which, as shown in the Table 2, executes approximately three times more trans-
actions in SW mode than it does in PhTMFree*. This difference in behavior is due to the fact that
the automaton generates a faster return to HW mode (Figure 2, transition (b)), due to the decrease
in the transaction duration in SW mode caused by the barriers elision resulting from TMFree. In
this case, with PhTMFree*, Genome has a speedup between 1.5× and 4× for increased number of
threads, versus a speedup of 4.4× with 18 threads for the same application with CLANGTMFree,
whose difference is due to the overhead generated by the PhTM* runtime.

16Making functions TM_PURE to elide all barriers in their memory accesses.
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Fig. 6. Mode usage for STAMP benchmark with PhTM* (left-side bar), and PhTMFree* (right-side bar).

Labyrinth executes over 90% in SW mode, which is the reason why the performance gain is
similar to the execution with pure STM. The difference in the use of SW mode with PhTMFree* and
PhTM* is minimal, as is the number of commits in each mode and, therefore, we can state that the
improvement in the performance of this application is due specifically to the decrease in barriers
obtained with the TMFree annotation.

For Intruder with PhTMFree*, the usage percentage and the number of transactions executed in
SW mode decreases 17% with respect to PhTM*, showing a performance improvement that increases
from 1.7× with PhTM* to 2.0× with PhTMFree*, with 18 threads. This application scales up to 8
threads, reaching a maximum speedup of 3.5× with PhTMFree*. Intruder increases SW mode
usage from 18% with 2 threads, up to 65% with 18 threads; speedup increases up to 1.20X over
PhTM* with no annotation. Notice that this program performs better with PhTMFree* than with
MANUAL because of the additional gain provided by the portion of execution in HTM mode.

Vacation has a minimally superior behavior with PhTMFree* compared to PhTM* since the de-
crease in the number of barriers is only 8.7% (Table 1). Additionally, the number of aborts in HW
mode increases 1.36× and the number of commits increases 2.08× with PhTM*.

Overall, we can notice that the time spent in SW mode increases with higher levels of concur-
rency, but this increase tends to be smaller for the version that uses the annotation (PhTMFree*),
showing its importance for PhTM systems as it allows the fastest (HW) mode to be chosen more
often.

6 CONCLUSION

By extending the results in [11], this paper presents the first transactional memory support for
Clang/LLVM, which can be used as a drop-in replacement of GCC. It also shows how the over-
instrumentation problem manifests, as well as its impact on performance when using runtimes
that execute fully or partially with STM. More specifically, results with the STAMP suite reveal
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that compiler-generated transactional code can be over 7× slower than manually instrumented
transactions. To bridge this performance gap, a type qualifier (TMFree) was added to the TM lan-
guage support in Clang/LLVM to enable barrier elision of variables that do not require instrumen-
tation. By using TMFree on key points in the application’s code, it was possible to achieve scalable
performance – both with a STM and a PhasedTM runtime – close to the manual instrumentation,
falling behind by only 8% in the worst case. The code annotation was guided by the barrier infor-
mation provided by a novel memory profiling tool also presented in this article. Together with the
profiling tool, TMFree demonstrated to be effective in reducing the over-instrumentation problem,
and a significant step towards making TM more widely adopted, even for the phased TM run-
times that execute a portion of the transactions in STM. Experimental results with PhTM* showed
how programs that execute in SW mode can benefit from the TMFree annotation and reduce the
performance gap between STM and HTM. Moreover, the addition of TM support to the Clang/L-
LVM compiler framework, the de facto standard in compiler and optimization research, aims to
encourage further research to resolve other issues on language support for memory transactions.
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