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Abstract—Decarbonization of electricity systems drives signif-
icant and continued investments in distributed energy sources
to support the cost-effective transition to low-carbon energy sys-
tems. However, the rapid integration of distributed photovoltaic
(PV) generation presents great challenges in obtaining reliable
and secure grid operations because of its limited visibility and
intermittent nature. Under this reality, net load forecasting is
facing unprecedented difficulty in answering the following ques-
tion: how can we accurately predict the net load while capturing the
massive uncertainties arising from distributed PV generation and
load, especially in the context of high PV penetration? This paper
proposes a novel probabilistic day-ahead net load forecasting
method to capture both epistemic uncertainty and aleatoric
uncertainty using Bayesian deep learning, which is a new field
that combines Bayesian probability theory and deep learning.
The proposed methodological framework employs clustering in
subprofiles and considers residential rooftop PV outputs as input
features to enhance the performance of aggregated net load
forecasting. Numerical experiments have been carried out based
on fine-grained smart meter data from the Australian grid with
separately recorded measurements of rooftop PV generation
and loads. The results demonstrate the superior performance
of the proposed scheme compared with a series of state-of-the-
art methods and indicate the importance and effectiveness of
subprofile clustering and high PV visibility.

Index Terms—Probabilistic net load forecasting, distributed PV
generation, Bayesian deep learning, clustering, long short-term
memory.

I. INTRODUCTION

G
LOBAL decarbonization is expected to be achieved by
increasing the penetration of renewable energy sources

(RES) and by the electrification of the heating and transport
sectors. Although uncertainty at the higher system level is
more likely to be traded off, in future power systems, the
predictability of aggregate loads still tends to be limited by the
significant uncertainties arising from climate variability, elec-
tric vehicles, distributed renewable energy generation, energy
efficiency, and demand response [1]. Accurate probabilistic
net load forecasting is thus of great importance to capture
these massive uncertainties, contributing to the operation and
planning of future smart, low-carbon energy systems.
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In the literature, conventional forecasting approaches focus
on point/deterministic forecasting (e.g., [2]–[5]). In particular,
the pioneering work of deterministic short-term load fore-
casting in [4] and [5] effectively addresses the challenges of
peak load estimation at system level and bus load prediction,
respectively. However, in view of capturing uncertainties in-
jected from different resources, point forecasting is becoming
obsolete because it can provide only a single output per time
step for the decision-making process that heavily depends
on expected values. In other words, the ideal forecasting
models should be capable of representing uncertainty via
quantiles, intervals or probability density functions for nu-
merous applications such as probabilistic load flow analysis,
reliability planning, and optimal bidding in electricity markets.
In general, according to reference [1], the probabilistic fore-
casts can be obtained via (i) feeding multiple scenarios to a
deterministic model [6]–[9]; (ii) developing novel probabilistic
forecasting models [10]–[14]; (iii) post-processing the point
forecasts [8], [15]; or their combinations [16]. In particular,
the novel hybrid probabilistic load forecasting model proposed
in [16] was developed based on an improved wavelet neural
network trained by a generalized extreme learning machine
to provide the load forecast with a probabilistic interval while
capturing the forecasting model and data noise uncertainties. A
comprehensive review on probabilistic electric load forecasting
challenges and modern probabilistic forecasting models is
presented in [1].

Despite the rich literature focusing on electric load forecast-
ing, very few studies aim to predict the net load (i.e., the load
traded between the microgrid and the utility grid), which is
important for smart grid management and operations as well
as resource allocation and electricity market participation with
respect to common coupling between interconnected grids
[17]. Different from traditional load forecasting, net load refers
to the total energy consumption partially supported by the
distributed renewable energy, such as local PV generation, thus
injecting additional uncertainty, especially when the PV gen-
eration is partially visible or completely invisible. Therefore,
the researchers in [18] designed a novel method to address
the invisible high PV penetration, where the net load profile
is decomposed into PV output, actual load and residual, which
are predicted in turn. Additionally, additive and integrated net
load forecast models are compared in [17], and the results
demonstrate that the forecasting errors of net load and solar
are cointegrated with a common stochastic drift. Other works,
such as [19], propose very short-term forecasting using a
complex-valued neural network. A neural network (NN) with
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a Levenberg-Marquardt training algorithm is used in [20] to
generate the feeder net load forecast.

Beyond the aforementioned studies, which are mostly based
on classical statistical or ANN methods, in recent years,
deep learning, as one of the cutting-edge technologies, has
received widespread attention in a range of research fields
[21], [22]. Regarding energy-related time-series forecasting,
researchers [23] have used deep learning methods to achieve
a load forecasting task and compared the performance between
a conditional restricted Boltzmann machine and a factored
conditional restricted Boltzmann machine. Additionally, the
authors of [24] propose a novel forecasting model for short-
term power load and probability density forecasting based on
deep learning, quantile regression and kernel density estima-
tion. Furthermore, another type of network structure designed
for handling sequence dependence (i.e., time-series data in
this case) is recurrent neural networks. The long short-term
memory (LSTM) network is one powerful type of RNN struc-
ture that includes a memory cell that can retain information
for long periods of time and deal with the the problem of
long-term dependencies [25]. As an example, the authors of
[26] and [27] have used deep LSTM networks to tackle the
challenges of high volatility and uncertainty in household-level
loads, showing a verified superior performance. More recent
works such as [28] proposed an improved quantile regression
neural network by introducing Gaussian noise into the training
process. In [29], a deep residual network is proposed based
on Monte Carlo dropout to achieve probabilistic forecasting.
Additionally, LSTM also has some other variations, such
as dilated LSTM [30] and bidirectional LSTM [31]. When
dealing with the challenges of insufficient data, the authors in
[32] designed a transfer training model with shared layers to
perform wind farm forecasting.

Although the existing research has successfully demon-
strated the superior performance of deep learning on forecast-
ing tasks, inherently, most of the studies are actually based
on deterministic models, which lack the ability to capture
uncertainty. As a new probabilistic deep learning model, the
concept of Bayesian deep learning (BDL), which enables a
deep learning framework to model uncertainty, is becoming
increasingly prevalent in computer vision, natural language
processing, medical diagnostics, and autonomous driving [33].
BDL exhibits the benefits of uncertainty representation, un-
derstanding generalization, and reliable prediction, leading to
a more interpretable deep neural network through the lens of
probability theory. In this paper, a novel probabilistic net load
forecasting framework is proposed based on BDL, aimed at
capturing both epistemic uncertainty and aleatoric uncertainty.
Note that this work will focus on the net load prediction at
the aggregated level, and the proposed framework implements
a clustering technique to group the residential customers and
employs PV outputs as parts of input features for network
training. We design case studies based on real PV generation
and load data from the Australian grid. Compared with other
state-of-the-art methods, the proposed approach outperforms
conventional approaches, and the results show the importance
of clustering and high PV visibility. To summarize, this study
makes the following original contributions:

(1) A clustering-forecasting-aggregation probabilistic day-
ahead net load forecasting strategy is proposed to make full
use of smart meter data and partially visible PV output data.

(2) Bayesian theory and deep LSTM networks are combined
to generate aggregated level probabilistic net load forecasts
with the target of capturing both epistemic uncertainty and
aleatoric uncertainty. To the best of the authors’ knowledge,
this is the first paper to exploit Bayesian deep learning for net
load prediction.

(3) A comprehensive comparison with a series of state-
of-the-art methods is conducted. The superior performance
of the proposed scheme is demonstrated with respect to
both the deterministic and probabilistic forecasting results.
Additionally, it is shown that the forecasting performance can
be effectively enhanced in the context of high PV visibility.

The rest of this paper is organized as follows. Section
II identifies the primary challenges in probabilistic net load
forecasting. Section III introduces the Bayesian deep LSTM
network. Section IV illustrates the proposed probabilistic
short-term net load forecasting framework. Section V conducts
comprehensive numerical experiments to demonstrate the su-
perior performance of the proposed method. Section VI draws
the conclusions.

II. PRIMARY CHALLENGES

The widespread deployment of distributed PV generation
and its intermittent nature significantly diminish the pre-
dictability of the residential net load. This effect may be further
intensified by the stochasticity in onsite renewable generation
injected from the macrogrid [17]. Under this circumstance, the
primary challenges addressed in this work are summarized as
follows:

1) PV Visibility: In general, distributed PV is invisible
to the distribution system operators and retailers as a result
of its behind-the-meter installation, which injects additional
uncertainty into the net load and renders it harder to accurately
predict, especially in the context of high PV penetration. How-
ever, with the development of advanced metering technologies,
some residential customers have installed meters that can
separately measure electricity consumption and rooftop PV
output to make the distributed PV generation partially visible
to stakeholders with fine-grained data. To this end, developing
methods to fully exploit the partially visible or entirely visible
PV to enhance the net load forecasting performance at the
aggregated level will be one of the fundamental challenges
that is investigated in this study.

2) Massive Stochastic Uncertainty: For the net load at
the aggregated level, uncertainty is composed of the load
uncertainty and the distributed PV uncertainty, which is a more
challenging task than either load forecasting or PV forecasting
alone. In this case, we use the term stochastic uncertainty

(aleatoric uncertainty) to represent the uncertainty within
the net load injected from different sources such as climate
variability, intermittent power generation, and aperiodic human
activities. In recent years, although a number of probabilistic
forecasting methods have been proposed to capture these
massive amounts of uncertainties, in the load or the net load,
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most of the existing methods can only provide the prediction
interval (i.e., the upper and lower bounds), which does not
give detailed information about the distribution of the forecast
at each individual time step. In addition, most probabilistic
forecasting models are inherently deterministic models with
limited performance in explicitly capturing stochastic uncer-
tainty. These models usually either produce a density forecast
by employing the probability density function (pdf) of the
residuals to the point forecast or perform post-processing to
several point forecasts to generate quantiles. On the other
hand, deep learning has demonstrated a fair performance in
load forecasting; however, most of the existing models are not
able to represent uncertainty. Consequently, it is crucial and
imperative to investigate and develop a pure probabilistic deep
learning model to handle the massive stochastic uncertainty

in the net load and to provide confidence bounds for decision
making.

3) Uncertainty in the Model: Model uncertainty (epistemic

uncertainty) refers to the uncertainty in the model parameters
and the model structure. Beyond the aleatoric uncertainty,
model uncertainty is also a critical part of uncertainty in the
task of probabilistic net load forecasting to indicate how much
uncertainty the model has about its outputs. Among a vast
number of potential model structures and parameters, it is
important to understand how much the selected combinations
might be able to accurately predict the net load under differ-
ent conditions (e.g., seasons, weekends/weekdays and social
factors). In the remainder of this paper, we will illustrate in
detail how the proposed Bayesian deep learning-based method
can effectively handle the aforementioned challenge.

III. BAYESIAN DEEP LEARNING

A. Why Bayesian Deep Learning?

Deep learning has demonstrated state-of-the-art perfor-
mance in a vast number of tasks; however, as illustrated in
[34], it still suffers from a series of limitations that need
to be investigated and resolved, including “i) uninterpretable

black boxes; ii) being weak in its uncertainty representation;

iii) being data hungry; iv) being computationally intensive;

v) being finicky to optimize; and vi) being easily misled by

adversarial examples”. To address the first three challenges,
in this part, we will qualitatively explain the benefits and
rationale of employing BDL to conduct net load forecasting.

1) Inherently probabilistic model: BDL is inherently a
probabilistic model that allows a deep learning model to rep-
resent uncertainty. Unlike traditional neural networks, which
have fixed parameters once trained, Bayesian network param-
eters (i.e., the weights and bias) are expressed as conditional
probabilities. As a result, the Bayesian model generates its
result by directly sampling from its parameters rather than
adding noise to the output or setting up multiple input sce-
narios. In other words, the Bayesian model is fundamentally
probabilistic rather than deterministic in nature.

2) Captures both model uncertainty and stochastic un-

certainty: In the literature, most of the existing Bayesian
deep learning approaches can merely capture either the model
uncertainty or the stochastic uncertainty alone [33]. However,

in this case, the proposed Bayesian deep LSTM network
(BDLSTM) can simultaneously capture the model uncertainty

and the stochastic uncertainty. More specifically, the model
uncertainty is captured by placing a prior distribution over the
model’s weights; then, the posterior can be approximated via
an inference algorithm. Hence, the model uncertainty is repre-
sented by the shape of the distribution of the weights. In other
words, the BDLSTM attempts to capture how much those
weights change based on the input data. For safety-critical
applications, it is of significant importance to capture the
epistemic uncertainty to understand examples that are different
from the training data. Furthermore, stochastic uncertainty is
captured by placing a distribution with small variance (usually
Gaussian random noise) over the output and, therefore, the
model learns the variance in the noise as a function of different
inputs [35].

3) Explainable under probability theory: Traditional deep
neural networks use their neurons to memorize the information
inside the training data, which implies that the parameters in
traditional neural networks have no physical meaning, and
thus, their values can be arbitrary. Nonetheless, Bayesian
networks calculate their outputs with Bayesian theory to render
the parameters explainable so that the network has the ability
to ‘feel’ certain or uncertain about its result. In particular,
BDL can calibrate the model and the prediction uncertainty
to obtain smart systems that know exactly what they do
not know. For example, in net load forecasting, when the
predictor encounters input features with extremely different
or unreasonable values than it has encountered before (i.e.,
out-of-distribution test data), the predictor can give an answer
(e.g., the quantified model uncertainty) indicating that it does
not know how to handle this new dataset, rather than giving a
wrong forecast like the current deep learning models. This
property can help the user determine whether the current
model needs to be updated or re-trained with the latest data
or can inform the user that the input data may include outliers
or bad data. Additionally, to make rational decisions, BDL
provides a way of integrating prior knowledge into learning
systems and updating that knowledge in a coherent and robust
way with the influx of more data.

4) Reliable performance with small datasets: Many real-
world tasks have limited amounts of data (small data) that
conventional deep learning systems cannot address because
the extremely high or low model complexity will lead to the
issues of overfitting or poor performance, respectively. For the
net load forecasting problem, although a large number of mea-
surements can be collected through advanced smart metering
systems, for classical deep learning, which usually requires
millions of training samples, the performance may still be
limited due to the lack of data. However, for BDL, less data
are required to make accurate forecasting. By integrating prior
knowledge into learning systems, BDL can effectively address
the overfitting problem by imposing a prior on hidden units
or neural network parameters, even with small/insufficient
datasets. In other words, BDL enables the network to achieve
automatic model complexity control and structure learning
with the benefits of the built-in implicit regularization [36].
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B. Bayesian Deep LSTM Network (BDLSTM)

The appeal of a special recurrent neural network architec-
ture, long short-term memory networks (LSTMs) [37], has
been demonstrated for short-term residential load forecasting
to tackle the challenges of long-term dependencies in the
literature (e.g., [26]). Beyond that, the deep architecture of
LSTMs can contribute to learning highly nonlinear relation-
ships between the input explanatory features and the output
residential load data through a series of linear or nonlinear
functions.

Fig. 1. The structure of one LSTM cell.

To describe the basic architecture of the proposed Bayesian
deep neural network, we first briefly introduce the structure
of one LSTM cell, as shown in Fig.1. The inputs of the
LSTM cell at one particular time step t are the previous state
ht−1 and the current input xt. Through four fully connected
neurons ft, gt, it, and ot, three gates are employed to fulfill
the function of memory or forget information. In particular,
the forget gate decides how much previous information will be
transported forward, the input gate controls the aspects of new
input information, and the output gate decides what will be
output at this time step. In terms of the outputs, ht is then fed
into the next time step as input, which can be considered as a
short-term state, while ct decides the longer-term dependency.
The overall computation is summarized in equations (1)-(4) as
follows:

ft = σ
(
WT

xf · xt +WT
hf · ht−1 + bf

)
(1)

it = σ
(
WT

xi · xt +WT
hi · ht−1 + bi

)
(2)

ot = σ
(
WT

xo · xt +WT
ho · ht−1 + bo

)
(3)

gt = tanh
(
WT

xg · xt +WT
hg · ht−1 + bg

)
(4)

Given the values of the three gates at next time step, the values
of next state ct and ht are calculated by the equations ct =
ft · ct−1 + it · gt and yt = ht = ot · tanh (ct), respectively,

where WT
xf , WT

xi, WT
xo, and WT

xg represent the weights of
each input vector xt, WT

hf , WT
hi, W

T
ho, WT

hg are the weights
of each previous short-term state ht−1; bf , bi, bo, and bg are
the biases for each of the four. It is notable that at the initial
stage, bf should be initialized with 1 instead of 0 to avoid
forgetting everything from the beginning of training. Overall,
through the above novel structure, LSTM handles time series
by storing the important input information in the long-term
state, preserving it for as long as required and retrieving it
when necessary.

To obtain uncertainty estimates in deep learning, most of
existing Bayesian deep learning approaches can capture only
the epistemic uncertain or the aleatoric uncertainty alone,
which are usually formalized as probability distributions over
the model parameters or the model outputs [33]. To jointly
capture the epistemic uncertain and the aleatoric uncertainty,
a Bayesian deep LSTM network (BDLSTM), casting deep
LSTMs as Bayesian models, is proposed, which retains the
model architecture, placing a prior distribution upon the
network weights and bias parameters of LSTMs and then
inferring a posterior distribution over the given data.

Let Xtrain = [x1, · · · , xTtrain
]T ∈ R

Ttrain×dx and
Ytrain = [y1, · · · , yTtrain

] ∈ R
Ttrain×dy denote the input

data and output label, respectively, of the BDLSTM model
that needs to be trained, where Ttrain is the total number of
training data points, and dx and dy represent the dimensions
of the input and the output, respectively. The primary target
of a deep LSTM network can be formalized as identifying
the optimal parameters W of a function y = fW (x) that
are likely to have generated the outputs (i.e., the actual
net load). In this case, fW (·) represents the deep LSTM
network with NL layers and model parameters are denoted by
W = [W1, ...,WNL

], which is a set of random variables. An
example of the Bayesian LSTM cell of the proposed BDLSTM
network is given in Fig. 2 with a zoomed-in plot of the forget

gate at time step t in the first layer. Detailed mathematical
illustrations are given as follows.

1) The Epistemic Uncertainty: In general, the epistemic un-

certainty (model uncertainty) comprises structure uncertainty
and model parameter uncertainty. More specifically, structure
uncertainty refers to the uncertainty in selecting the most
appropriate model structure to extrapolate or interpolate the
data well. Among a vast number of possible model parameters,
which set of parameters should be selected to best explain
the observations is uncertain, denoted by the model parameter
uncertainty [33]. To capture the epistemic uncertainty, a prior
distribution (e.g., N (0, I)) is placed over W . In the literature,
a series of studies have been carried out on prior selection (e.g.,
[38], [39]). In general, prior distributions can be classified into
1) non-informative prior distributions; 2) highly informative
prior distributions; and 3) moderately informative hierarchical
prior distributions [38].

For Bayesian deep neural networks, the prior distributions
should represent the prior belief about the distribution of
the neural network parameters (weights and bias), which are
difficult to be identified because the physical meaning of
these parameters remains unclear. In other words, selecting
the prior for the Bayesian deep learning is still an open
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Fig. 2. An example of the proposed BDLSTM network with a zoomed-in plot of the forget gate at time step t in the first layer.

question that needs to be further investigated by researchers.
According to references [33], [40], [41], employing standard
parametric distributions has been demonstrated as one of the
most effective solutions when the prior belief is difficult to
be identified. Therefore, in this case, we set the standard
normal distribution as our prior whose zero mean can bring
about the benefit of regularization [33]. It is important to
note that after training the Bayesian deep neural network, the
posterior distribution will be employed to generate the samples
of forecasts rather than the prior distribution.

After determining the appropriate prior, the model like-
lihood p(Ytrain|f

W (Xtrain)) is also defined as a normal
distribution N (fW (Xtrain), σ

2) with a constant noise level
σ. Based on Bayes rule, the posterior p(W |Xtrain, Ytrain) is
calculated by

p(W |Xtrain, Ytrain) =
p(Ytrain|Xtrain,W ) · p(W )

p(Ytrain|Xtrain)
(5)

where p(Ytrain|Xtrain) is the marginal probability that cannot
be estimated analytically. To this end, different inference tech-
niques such as variational inference and Markov chain Monte
Carlo (MCMC) [36] are proposed to approximate it. Note that
p(W |Xtrain, Ytrain) represents the posterior distribution over
weights given the training data {Xtrain, Ytrain}. Given a new
input point x, the new output y, which is defined as a random
variable, can be predicted by integrating

p(y|x,Xtrain, Ytrain) =

∫
p(y|x,W )p(W |Xtrain, Ytrain)dW

(6)

It is notable that the true posterior is usually intractable,
especially for complex models (e.g., deep LSTM networks).
Therefore, an approximating variational distribution qθ(W ),
parameterized by θ, is employed to ensure that the optimal
distribution q̃θ(W ) can well represent p(W |Xtrain, Ytrain),
by minimizing the Kullback-Leibler (KL) divergence between

qθ(W ) and p(W |Xtrain, Ytrain) [42]:

KL(qθ(W )||p(W |Xtrain, Ytrain)) =∫
qθ(W ) log

qθ(W )

p(W |Xtrain, Ytrain)
dW, (7)

using inference algorithms such as variational inference (VI),
which is employed in this work. It is notable that it is
intractable to analytically solve the optimization problem.
Consequently, the objective is transformed from a KL diver-
gence minimization problem to an Evidence Lower Bound
(ELBO) maximization problem. More details regarding the
employed VI algorithm can be found in the reference [33].

After obtaining the optimal distribution q̃θ(W ), the predic-
tive distribution can be approximated by

p(y|x,Xtrain, Ytrain) =

∫
p(y|x,W )q̃θ(W )dW = q̃θ(y|x).

(8)
Let Tsample denote the number of sampled weights
{Ŵt}

Tsample

t=1 , simulating the model based on the input x, the
predictive mean and the predictive variance of y, which is a
vector of size Tsample, can be approximated based on these
samples. Mathematically, the predictive mean (the first raw
moment) can be estimated with the unbiased estimator [33]

Ẽ
[
y] :=

1

Tsample

Tsample∑

t=1

fŴt(x) (9)

where fŴt(x) represents stochastic forward passes through
the model (i.e., samples). On the other hand, to obtain the
predictive variance, the second raw moment needs to be
estimated. Similar to the estimation of the first moment, given
that Ŵt ∼ q̃θ(W ) and p(y|fW (x)) = N (y; fW (x), σ2) for
some σ > 0, we have the estimator

Ẽ
[
yT y

]
:=

1

Tsample

T∑

t=1

fŴt(x)T fŴt(x) + σ2 (10)
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with Tsample samples. Finally, the predictive variance can be
approximated by Ṽar[y] as follows:

Ṽar[y] = Ẽ
[
yT y

]
− Ẽ

[
y]T Ẽ

[
y]

:= MU(x, y,W ) + σ2 (11)

where

MU =
1

Tsample

Tsample∑

t=1

fŴt(x)T fŴt(x)

−
1

Tsample
2

Tsample∑

t=1

fŴt(x)T
Tsample∑

t=1

fŴt(x) (12)

represents the epistemic uncertainty (model uncertainty),
which measures how much the model is uncertain about its
outputs. It is important to note that in equation (11), with the
increasing number of observations, the term MU(x, y,W ) can
be reduced whereas the inherent noise measured by σ2 cannot
be vanished.

2) The Aleatoric Uncertainty: According to the dependency
between the uncertainty and the inputs, the aleatoric uncer-

tainty can be further divided into homoscedastic uncertainty

and heteroscedastic uncertainty [35]. For homoscedastic un-

certainty, the observation noise parameter σ is fixed whereas
in this case, we need to capture the heteroscedastic aleatoric

uncertainty because the uncertainty varies over different pe-
riods of time when dealing with the net load. To this end,
σ in equation (11) needs to be adapted as a function of the
input x, which means it is data-dependent. Let Ttrain denote
the number of training observations, and the minimization
objective of the data-dependent heteroscedastic model can be
expressed as follows:

L(θ) =
1

Ttrain

Ttrain∑

i=1

1

2σ(xi)2
||yi − f(xi)||

2 +
1

2
logσ(xi)

2

(13)
In this case, maximum a posteriori (MAP) inference is carried
out to locate a single parameter, θ, rather than the distribution
of the weights, leading to neglect of the model uncertainty.

3) The Combined Uncertainties: To combine the epistemic

uncertainty and the aleatoric uncertainty in a single BDL-
STM model, the most straightforward and effective way is to
transform the heteroscedastic model into a Bayesian model by
placing a distribution over the weights and the bias [35]. First,
we need to set up a new expression for the model to split the
top layers of a deep LSTM network between the predictive
mean f(x) and the model precision g(x) to simultaneously
output ŷ and σ̂2:

[ŷ, σ̂2] = fŴ
BDLSTM (x) (14)

where fBDLSTM represents the proposed Bayesian deep
LSTM network parameterized by Ŵ ∼ qθ(W ). Given that
a normal likelihood is chosen to model the aleatoric uncer-
tainty, the final loss function of the BDLSTM model can be
formulated as:

LBDLSTM (θ) =
1

Ttrain

Ttrain∑

i=1

1

2σ̂2
i

||yi− ŷi||
2+

1

2
logσ̂2

i (15)

Note that the loss function can consider both the model uncer-
tainty through ŷ and the heteroscedastic uncertainty through
σ̂. Finally, the predictive uncertainty Var[y] of the proposed
BDLSTM model, consisting of both the aleatoric uncertainty

and the epistemic uncertainty can be approximated by

Ṽar[y] :=
[ 1

Tsample

Tsample∑

t=1

ŷt
2 −


 1

Tsample

Tsample∑

t=1

ŷt




2 ]

+
1

Tsample

Tsample∑

t=1

σ̂t
2. (16)

It is important to note that, compared with equation (13)
which has a fixed σ, the second term in equation (16) is data-
dependent. Detailed explanations regarding the Bayesian deep
learning are presented in references [33], [35].

IV. THE PROPOSED BDLSTM-BASED SHORT-TERM

NET LOAD FORECASTING SCHEME

Based on the above-introduced BDLSTM model, a novel
probabilistic short-term net load forecasting scheme is pro-
posed to fully utilize the subprofiles of residential customers
and exploit the partially visible PV output data to enhance the
forecasting performance. In particular, the proposed frame-
work includes four main stages: i) a Clustering Stage; ii) a
Feature Construction Stage; iii) a Forecasting Stage; and iv)
an Aggregation Stage, as shown in Fig.3.

A. Clustering Stage

In the proposed framework, the Clustering Stage aims to
group the prosumers into different clusters based on their
average daily net load patterns over the training days and to
extract representative net load profiles from each cluster. This
step is motivated by the fact that fine-grained subprofiles can
reveal more information about the aggregated load and further
assist in improving the forecasting accuracy [43]. However,
it is impractical and inefficient to build a BDLSTM model
for each individual customer and then aggregate them. The
clustering procedure can also contribute to effectively reducing
the computational complexity by balancing the number of
models and the forecasting accuracy.

Let L = [L1, ..., LN ] ∈ R
T×N denote the historical

load data of N residential customers where T is the total
number of observations. The first step is to separate all
the customers into two groups: by invisible PV generation
and visible PV generation, represented by Linv ∈ R

T×Ninv

and Lvis ∈ R
T×Nvis

, respectively. Given that the numbers
of clusters for each of these groups are Kinv and Kvis,
respectively, as one of the most widely used and powerful
methods, a hierarchical clustering method with Ward’s linkage
[44], [45] is applied based on the average daily net load
patterns of Linv and Lvis, defined as RLP inv ∈ R

Ninv
×48

and RLP vis ∈ R
Nvis

×48, respectively, to obtain the cluster
label for each individual customer. In particular, hierarchical
clustering has the benefits of having a deterministic nature
and terminating the agglomeration procedure at any number
of clusters as required [46]. A detailed explanation of the
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Fig. 3. The overall structure of the proposed framework.

hierarchical clustering method with Ward’s linkage can be
found in references [44]–[46]. Subsequently, we aggregate the
subprofiles in each cluster for both the invisible and visible
groups to obtain the net load at a higher level:

AL
inv(vis)
k =

∑

i∈Ω
inv(vis)
k

Li, ∀k ∈ 1 · · ·Kinv(vis) (17)

where ALinv
k and ALvis

k represent the higher-level net load of
the kth cluster in the groups Linv and Lvis, respectively. It is
notable that the weights of each cluster, P inv = [p1 · · · pKinv ]
and P vis = [p1 · · · pKvis ], are also saved in this stage and then
will be used in the Aggregation Stage.

B. Feature Construction Stage

The task of the Feature Construction Stage is to identify
the most correlated explanatory variables that contribute to
forecasting and construct the training and test sets for the
BDLSTM model. For short-term load forecasting, feature
selection is a key procedure to obtain reliable prediction
strategies by removing ineffective candidate features. Conven-
tionally, feature selection is conducted based on either expert
experience or trial-and-error procedures [47]. To automatically
select the effective features, the relevance of the input features
and the target variable as well as the redundancy among
the candidate features are considered as the two critical
information-theoretic criteria, which have been investigated in
the power systems literature (e.g., [48]–[50]). Beyond that,
the concept of interaction (synergy) is proposed in [47] based
on the mutual information (MI) and the interaction gain

(IG) to measure the interaction among candidate features of
a forecast process. The effectiveness of this novel feature
selection technique has been well demonstrated based on real
load and price data.

Although several advanced feature selection techniques have
been proposed for forecasting tasks, the development of deep
learning techniques renders it possible to effectively handle
raw data without the significant requirements of extensive
domain expertise and careful feature design [51]. Therefore,
instead of implementing or proposing novel feature selection
methods, the investigation in this work focuses on the novel
Bayesian deep learning technique, which has the benefit of
automatically identifying the representative features based on
the raw features while considering uncertainty. The integration
of feature selection methods in the proposed framework will be
studied in our future work to further improve the forecasting
performance. As illustrated in [2], feature selection should
reflect the seasonal effects, the temperature relations, and the
effects of other interactions. To this end, we manually select
two sets of features for the visible and invisible groups.

Given that the target is to forecast the net load at time t for
cluster k in the invisible group, the key selected training fea-
tures for ALinv

k,t include the following: 1) the net load historical
data at the same time step on the previous day ALinv

k,t−24; 2)
ALinv

k,t−24.5; 3) ALinv
k,t−25; 4) the net load historical data at

the same time step on the previous two days ALinv
k,t−48; 5)

ALinv
k,t−48.5; ALinv

k,t−49; 6) the hour of the day ht; 7) the day
of the week dt; and 8) the month of the year mt. In addition to
the aforementioned features, we consider historical aggregated
rooftop PV generation data AGk,t−24, AGk,t−48, AGk,t−72,
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and AGk,t−week as additional features to predict the net load
ALvis

k,t for cluster a k at time t in visible group. Afterwards,
the training sets of cluster k for both the invisible and visible

groups are constructed as follows:

XinvTrain
k,t = [ALinvTrain

k,t−24 , ALinvTrain
k,t−24.5 , ALinvTrain

k,t−25 ,

ALinvTrain
k,t−48 , ALinvTrain

k,t−48.5 , ALinvTrain
k,t−49 , ht, dt,mt] (18)

XvisTrain
k,t = [ALvisTrain

k,t−24 , ALvisTrain
k,t−24.5 , ALvisTrain

k,t−25 ,

ALvisTrain
k,t−48 , ALvisTrain

k,t−48.5 , ALvisTrain
k,t−49 , ht, dt,mt,

AGk,t−24, AGk,t−48, AGk,t−72, AGk,t−week] (19)

where the test sets XinvTest
k and XvisTest

k are defined sim-
ilarly to those of the training sets. In addition, the training
labels, the actual net load, for a cluster k are defined as
Y invTrain
k and Y visTrain

k for the invisible and visible groups,
respectively.

C. Forecasting Stage

The Forecasting Stage is the fundamental core of the entire
scheme in which a novel Bayesian deep learning method is
proposed. As illustrated in Section III, BDLSTM integrates
the Bayesian method with a deep LSTM network to capture
both aleatoric uncertainty and epistemic uncertainty.

For each k, either in the visible group or the invisible
group, the proposed BDLSTM network is trained based on
the constructed features XinvTrain

k (or XvisTrain
k ) and the

target labels Y invTrain
k (or Y visTrain

k ). When initializing the
Bayesian LSTM network, the network parameters including
their weights and bias values are constructed by setting up
a standard normal distribution as the prior. Additionally, the
hyperparameters of the deep LSTM network are optimized in
this stage via grid search and cross-validation. Note that we
need to construct a total of K = Kinv + Kvis BDLSTM
networks for each cluster. Applying the test datasets XinvTest

k

and XvisTest
k to their corresponding models, the final outputs

of this stage are the predicted aggregated net loads for each

cluster [ÂL
test

1 · · · ÂL
test

K ] with a predetermined number of
samples ns for each time step.

D. Aggregation Stage

In the Aggregation Stage, all the individual probabilistic
forecasts are aggregated through convolution with the pre-
viously saved weights to obtain the final probabilistic net

load at the aggregated level, defined as ÂL
test

. Let f(t) and
g(t) denote the probability density functions (PDFs) for two
independent variables A and B, respectively; a convolution
defined as the product of functions f and g over an infinite
range, which is the probability distribution of the sum A+B,
can be expressed as:

h(t) = f(t) ∗ g(t) ,

∫ +∞

−∞

f(τ)g(t− τ)dτ (20)

If A and B follow their respective Gaussian distributions

A ∼ N (µA, σ
2
A), B ∼ N (µB , σ

2
B), (21)

then the convolution of two Gaussian distributions is another
Gaussian distribution

C = A+B ∼ N (µA + µB , σ
2
A + σ2

B) (22)

A detailed explanation and proof of the above equations can
be found in reference [52]. In this case, the probabilistic
forecast of each cluster is assumed to be independent of each
other because the clustering procedure aims to differentiate the
customers according to their net load patterns. Additionally, as
illustrated in Section III, each individual probabilistic forecast
(uncertainty component) obtained via the proposed Bayesian
deep learning method follows a Gaussian distribution. There-
fore, the distribution of the final aggregated net load can
be directly estimated through the above convolution process,
which is expressed as follows:

ÂL
test

∼ N (µ1+...+µ(Kinv+Kvis), σ
2
1+...+σ2

(Kinv+Kvis))
(23)

where ÂL
test

k ∼ N (µk, σ
2
k) represents the sub-aggregated

level net load of cluster k ∈ {1, ...,Kinv +Kvis}.

V. CASE STUDY

A. Data Descriptions

The numerical experiments conducted in this study are
based on real smart meter data collected from the Ausgrid
distribution network, including load centers in Sydney and re-
gional areas in NSW [53]. The Ausgrid datasets are composed
of separately reported measurements of rooftop PV generation
and loads at half-hour time intervals over a three-year period
from 1st July 2010 to 30th June 2013. In this case, we have
the training and test datasets of 21,024 observations and 480
observations, respectively, for both the load and PV generation
data for all 300 customers. The target aggregated net load is
directly obtained by summing the difference between customer
power consumption and the PV outputs for each household.
More detailed information of the Ausgrid dataset is given in
the literature [53].

B. Experimental Setup

To demonstrate the superior performance of the proposed
approach, a series of state-of-the-art load forecasting methods
that have been widely used and firmly demonstrated with
reliable performance in the literature are used for compar-
ison. More specifically, M1 (multiple linear regression) [2]
and M2 (long short-term memory) [26] are point forecast-
ing techniques, and the rest are probabilistic models, i.e.,
M3 (quantile regression) [2], M4 (support vector quantile

regression) [54], M5 (gradient boosting quantile regression)
[13] and M6 (quantile random forests) [13]. The proposed
method M7 (BDLSTM) is the only method that captures both
the epistemic uncertainty and the aleatoric uncertainty in a
single model. More specifically, the hyperparameters of the
proposed BDLSTM model determined by grid searching and
cross validation are given in Table I. All the tested algorithms
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were implemented in Python with the main packages of scikit-
learn [55], Keras [56] (M1-M6) and Edward [57] (M7) and
were run on an Intel Xeon PC with an NVIDIA Titan-V GPU.

TABLE I
Hyperparameters of the Proposed BDLSTM

Parameter Value

Layer type LSTM
Number of hidden layers 2
Number of neurons 10-20
Batch size 720
Number of epochs 150
Number of samples (Tsample) 100
Dropout rate 0.02
Optimizer Adam
Learning rate 0.001

C. Evaluation Metrics

Typical evaluation metrics are used to assess the forecasting
performance of the examined methods (M1-M7), including
the root mean square error (RMSE), the mean absolute error
(MAE), the normalized root mean square deviation (NRMSD),
and the mean absolute percentage error (MAPE) for point
forecasting, the pinball loss function (Pinball) and the Winkler
score (Winkler) for probabilistic forecasting [1], [58]. Given

the actual net load ALtest and the predicted net load ÂL
test

,
the aforementioned metrics are defined and formulated as
below.

1) Metrics for deterministic forecasting: The RMSE mea-
sures the square root of the mean of the squares of the errors
between the actual and the predicted values, which can be
formulated as follows:

RMSE =

√∑T

t=1(ALtest
t − ÂL

test

p=50,t)
2

T
(24)

where ALtest
t and ÂL

test

p=50,t are the actual net load and the
50th percentile value of the predicted net load, respectively, at
time step t. Then, the NRMSD can be calculated as:

NRMSD =
RMSE

(ALtest
max −ALtest

min)
(25)

The MAE and the MAPE are calculated to quantify the
absolute difference between the actual and the predicted net
load in kW and percent %, respectively, and are expressed as
follows:

MAE =
1

T

T∑

t=1

∣∣∣ALtest
t − ÂL

test

p=50,t

∣∣∣ (26)

MAPE =
100%

T

T∑

t=1

∣∣∣∣∣
ALtest

t − ÂL
test

p=50,t

ALtest
t

∣∣∣∣∣ (27)

2) Metrics for probabilistic forecasting: To evaluate the
performance of the probabilistic forecasting methods, the
calibration, reliability, and sharpness are three main factors
that indicate the consistency, the variation, and the tightness of

the estimated distribution, respectively [1]. As one of the most
comprehensive metrics to measure the above factors, Pinball
is used in this work that can be expressed as follows:

Pinball =




(ALtest

t − ÂL
test

q,t )q ÂL
test

q,t < ALtest
t

(ÂL
test

q,t −ALtest
t )(1− q) ÂL

test

q,t > ALtest
t

(28)
Note that the average of all the Pinball values is calculated to
evaluate the overall performance of the probabilistic forecasts
for q = 0.01, 0.02, ..., 0.99, and a lower value indicates better
performance.

Additionally, the Winkler score is another type of compre-
hensive metric for probabilistic forecasting to simultaneously
measure the unconditional coverage and interval width, which
can be expressed as follows:

Winkler =





2(mint −ALtest
t )/α+ δ, ALtest

t < mint

2(ALtest
t −maxt)/α+ δ, ALtest

t > maxt

δ, otherwise

(29)
where mint and maxt represent the lower and upper bounds

of the probabilistic forecasts at time t (i.e., ÂL
test

t ), respec-
tively, and α = 0.1 in this case. A lower score implies
better probabilistic estimation results regarding the estimation
interval.

D. Deterministic and Probabilistic Forecasting Results

In this test, we aim to compare the forecasting performance
of the proposed BDLSTM method with other popular methods
in terms of both the point and probabilistic forecasting results.
Note that we use the 50th percentile values for M3-M7 to
evaluate their deterministic forecasting results. First, for all the
considered methods, we assume that all customers belong to
one cluster (i.e., K=1) and that PV data are 100% available for
each individual customer. Fig. 4 presents the point forecasting

Fig. 4. Point forecasting results for different methods.

results of the RMSE and the MAE in kW and the MAPE and
the NRMSD in PU. The length of the bar represents the value
of the evaluation metric (i.e., a higher value corresponds to
a longer bar). The results show that the BDLSTM model M7
dominates with respect to the point forecasting performance, as
indicated by the approximately 60.60%, 62.15%, 62.28%, and
65.98% lower RMSE, MAE, MAPE, and NRMSD, respec-
tively, when compared with the benchmark method of multiple
linear regression (M1). Moreover, the performance of the
BDLSTM model also dominates when compared with the best
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of the state-of-the-art methods, quantile random forests (M6),
with approximately 14.63 %, 10.29%, 4.8%, and 15.21%
improvements in the four evaluation metrics.

Fig. 5. Probabilistic forecasting results for different methods.

Fig. 6. Probabilistic net load forecasting results: M6 (QRF)

Fig. 7. Probabilistic net load forecasting results: M7 (BDLSTM)

To illustrate the effectiveness of the proposed BDLSTM
method and its capability to capture uncertainty, the overall
probabilistic evaluation metric values of different probabilistic
methods (i.e., M3-M7) are listed in Fig. 5. The data show
that the forecasting results obtained via the proposed Bayesian
deep LSTM network with VI has the highest accuracy fol-
lowed by the quantile random forests method (M6). The
fact that M7 presents the best predictive capability indicates
the significance of capturing both epistemic uncertainty and
aleatoric uncertainty. As shown in Fig. 5, other methods, such

as M3 and M4, perform poorly in this respect because they
focus only on the uncertainty in the net load data (i.e., the
aleatoric uncertainty). Another important finding is that the
performance order across the different probabilistic forecasting
methods is consistent with the results of point forecasting,
shown in Fig. 4. For example, M7 (BDLSTM) outperforms
the other tested methods, showing approximately 64.46% and
60.57% performance enhancements for the pinball loss and the
Winkler score, respectively, compared with M3. Furthermore,
M6 exhibits better performance than the other conventional
approaches.

Additionally, Figs. 7 and 6 show the forecasting results of
the 10 test days obtained via the proposed BDLSTM model
and the second-best model M6 (QRF). Note that the actual
net load during the tested periods is represented by the red
curve with dots. The 98%, 90%, 70%, and 50% confidence
intervals are indicated by an increasing color depth of the
blues. In general, the probabilistic forecasting performance
is evaluated in terms of three primary aspects: reliability,
sharpness, and resolution [1], which have been quantified by
the comprehensive evaluation criteria: the pinball loss and the
Winkler score. Visually inspecting the results of M6 (QRF)
and M7 (BDLSTM), the probabilistic forecasts generated
using the constructed BDLSTM model present the benefits of a
tighter prediction coverage interval, a lower prediction interval
that varies over time, and higher unconditional coverage, corre-
sponding to sharpness, resolution, and reliability, respectively
[1]. It is constructive to highlight that the net loads during the
peak hours of each day, which are crucial factors for system
operation, can be well predicted with reasonable magnitudes
using the proposed Bayesian deep learning method. On the
other hand, it can be seen that M6 overestimates the peak
demand with a misleading trend across the 10 test days.

Additionally, we expand the test datasets from 10 days
to four seasons to investigate the probabilistic forecasting
performance across the different seasons. Fig. 8 presents
the average pinball loss values and the bar plots for all
the probabilistic forecasting approaches (M3-M7). As shown,
although the amount of relative improvement varies across dif-
ferent seasons, the proposed BDBL method (M7) consistently
outperforms the other benchmark approaches, especially in
spring, which exhibits a 40.14% lower average pinball loss
value than that of M6 (QRF). Furthermore, compared with
QRF, 29.99%, 6.83% and 26.77% improvements are obtained
by using Bayesian deep learning to conduct the probabilistic
net load forecasting during the periods of summer, autumn and
winter, respectively.

Regarding the computational cost, the CPU times of the
training process for all the examined methods are presented
in Table III. The proposed BDLSTM method takes longer to
train than most of the other benchmark approaches. However,
it is notable that model training is an offline procedure. Given
the input features, using the constructed model to conduct
day-ahead forecasting only takes a few seconds in practice.
Therefore, the main target in this case is to obtain an accurate
forecasting result.
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Fig. 8. The average pinball loss across different seasons.

TABLE II
Deterministic and Probabilistic Forecasting Results for BDLSTM and QLSTM

Pinball Winkler RMSE MAE MAPE NRMSD

QLSTM 6.1073 91.8621 21.9014 17.7268 0.1155 0.0993
BDLSTM 4.8852 74.7684 17.1698 13.8607 0.0892 0.0775
Relative Improvements (%) 20.01% 18.61% 21.60% 21.81% 22.77% 21.95%

TABLE III
Computational Time For Model Training

CPU Time (s)

M1(MLR) 1.57
M2(DLSTM) 885.25
M3(QR) 53.60
M4(SVQR) 12420,67
M5(GBQR) 198.74
M6(QRF) 441.59
M7(BDLSTM) 2495.13

E. Bayesian LSTM vs Pinball Loss Guided LSTM

Recently, a series of novel deterministic deep learning-based
probabilistic models have been proposed in the literature (e.g.,
[14], [24], [59]) to exploit deep learning to achieve state-
of-the-art performance in probabilistic load forecasting. In
particular, an improved wavelet neural network, a multilayer
perceptron (MLP) and a deep LSTM network are considered
the main networks in [59], [24] and [14], respectively. To
make the comparisons based on the same type of network
considered in this paper (i.e., LSTM), we implement a pinball
loss guided LSTM (QLSTM) algorithm proposed in [14]
in this case. More specifically, instead of using the mean
square error (MSE), QLSTM employs the pinball loss as
the loss function to guide the training of the parameters
and thus extends traditional LSTM-based point forecasting
to probabilistic forecasting in the form of quantiles. The
deterministic and probabilistic forecasting results of QLSTM
and BDLSTM are given in Table II. As can be seen, with the

same network architecture, Bayesian deep learning exhibits
a superior performance to the deterministic deep learning-
based probabilistic model with approximately 20% relative
improvements regarding the evaluation metric values and thus
further highlighting the importance and benefit of capturing
the model uncertainty.

F. Different Numbers of Clusters

After demonstrating the prominent probabilistic forecasting
capability of the Bayesian deep LSTM network, this part
aims to verity the effectiveness of the Clustering Stage in the
proposed framework. In this case, we assume that all the PV
data are still visible and that the number of clusters is set to
K = [1, 2, 3, 4, 5, 6]. The point and probabilistic evaluation
metrics across different Ks are shown in Fig. 9.

Most of the criteria decrease from K = 1 and achieve the
best performance at K = 4 with further improvements of
3.39%, 5.99%, 8.96%, 8.77%, and 7.40% for the pinball loss,
RMSE, MAE, NRMSD, and MAPE, respectively, demonstrat-
ing the importance and effectiveness of performing clustering
based on the subprofiles and then aggregating to the higher-
level net load. In addition, these separate clusters are all trained
by the same network structure, i.e., two layers of 10 and 20
neurons in each layer, which is the best network structure
for the one-cluster, 100% PV-visibility case. Therefore, further
adjustment of the hyperparameters for each individual cluster
may improve the forecasting performance at the aggregated
level.

Furthermore, to investigate how categorizing the costumers
by the invisibility of their solar power affects the prediction
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Fig. 9. Net load forecasting performance across different K.

model, an additional case study is carried out to evaluate the
probabilistic forecasting performance across different combi-
nations of Kvis and Kinv in the context of visibility= 50%.
Table IV presents the calculated average pinball losses for
the proposed BDLSTM method across different numbers of
K = Kvis +Kinv , where Kinv = 1, 2, 3 and Kvis = 1, 2, 3.
The results show that the optimal combination is Kinv =
1,Kvis = 3, which results in an approximately 31.14% im-
provement regarding the average pinball loss when compared
with the no-clustering case (i.e., Kinv = 1,Kvis = 1). In ad-
dition, increasing the number of clusters either for the visible
group or for the invisible group both lead to lower pinball
losses than that of the no-clustering case, which demonstrates
the effectiveness of the Clustering Stage in the proposed
framework. Note that if the number of clusters increases to
a relatively large value (e.g., Kinv = 4,Kvis = 4), the
calculated pinball loss may become larger than that of the
no-clustering case, and thus, it is imperative to select an
appropriate range for Kinv/Kvis to determine the optimal
combinations.

TABLE IV
The average pinball loss across different numbers of clusters

(M7-BDLSTM, Visibility= 50%)

Kinv = 1 Kinv = 2 Kinv = 3
Kvis = 1 6.2100 4.5021 4.9202
Kvis = 2 5.1478 5.4826 4.8550
Kvis = 3 4.2759 4.6060 5.8326

G. Different Levels of PV Visibility

In this part, the case study lies in investigating how and
to what extent the visibility of distributed PV generation can
contribute to a more accurate net load forecasting at the
aggregated level. This experiment is carried out based on the
assumption that K = 1 across various levels of PV visibility,
defined by vis = [0, 0.2, 0.4, 0.5, 0.6, 0.8, 1]. In this case,
vis = 0 and vis = 1 represent the contexts of invisible

and visible PV, respectively, whereas other values indicate
that PV data are partially visible. For example, vis = 0.5
means that 50% of the 300 households have separate meters
for rooftop PV generation, and the rest of the PV outputs are
not measured.

Fig. 10. Net load forecasting performance across various PV visibilities.

Fig. 10 contains the bar plots of the pinball loss and the
Winkler score across different visibility levels. The primary
conclusions stemming from the results are depicted as follows:
i) exploiting the available PV output data from visible PV
generation can enhance the forecasting performance of the net
load at the aggregated level, and ii) in terms of the costs of
installing meters for measuring the PV outputs separately, a
trade-off between the forecasting accuracy and the PV visi-
bility can be made based on the operator’s requirements. For
example, if the system operator can accept an approximately
13% lower pinball loss value (vis = 0.6 vs vis = 1), only 60%
of the households need to install separate meters for rooftop
PV generation, thus leading to a significant reduction in terms
of the costs of the devices and their installation.

Fig. 11. The average pinball loss under different levels of PV visibility.

Finally, to demonstrate the superior performance of the
proposed method under different levels of PV visibility, the
pinball losses for all the tested probabilistic forecasting meth-
ods are calculated and presented in Fig 11. It can be seen that
with the increasing visibility of the PV output, the probabilistic
net load forecasting results of all the tested methods improve
and are indicated by the reduced pinball loss values. To further
enhance the performance of the proposed framework, our



IEEE TRANS. POWER SYSTEMS, ACCEPTED 13

future work will increase the PV “visibility” by estimating the
invisible PV generation using some novel invisible solar power
generation estimation approaches (e.g., [60]). In addition, the
results demonstrate the superiority and effectiveness of the
proposed BDLSTM method across different levels of visibility.

VI. CONCLUSIONS

This paper proposes a novel probabilistic net load forecast-
ing framework using a Bayesian deep LSTM neural network to
capture epistemic uncertainty and aleatoric uncertainty simul-
taneously. In the proposed scheme, the Clustering Stage aims
to enhance the forecasting performance by building a deep
learning model for each individual cluster and aggregating the
probabilistic forecasts of each cluster at the end to obtain
the final predicted net load at the aggregated level. The
effectiveness and importance of considering visible or partially
visible PV output data as an input feature is investigated
across different PV visibility levels. The overall performance
of the proposed method is analyzed and compared with a
series of state-of-the-art probabilistic forecasting models. The
evaluation results demonstrate the superior performance of the
proposed Bayesian deep learning-based method and highlight
the improvements contributed by the Clustering Stage and the
PV visibility.

Future work will further exploit and develop this powerful
technique, Bayesian deep learning, for more challenging tasks
such as net load forecasting at the household level with
higher PV penetration, which exhibits higher variability and
uncertainty. Additionally, with the ability to quantify both
epistemic and aleatoric uncertainties, it might be helpful to
use the Bayesian model as an uncertainty indicator. Hence, it
can realize a self-confidence evaluation as an auxiliary safety
service. In addition, selecting an appropriate prior is still an
open question for Bayesian deep learning, which will also be
investigated in our future work.
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