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Abstract 
 
Wireless ad hoc network is becoming a new research fronter, in which security is an important issue. Usually 
some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the 
limited resource, intrusion detection system (IDS) runs all the time to detect intrusion of the attacker which is 
a costly overhead. We use game theory to model the interactions between the intrusion detection system and 
the attacker, and a realistic model is given by using Bayesian game. We solve the game by finding the 
Bayesian Nash equilibrium. The results of our analysis show that the IDS could work intermittently without 
compromising its effectiveness. At the end of this paper, we provide an experiment to verify the rationality 
and effectiveness of the proposed model. 
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1. Introduction 

A wireless ad hoc network (WANET) is a collection of 
mobile nodes in which the nodes communicate with each 
other without the help of any fixed infrastructure [1]. 
Nodes within each other's radio range communicate di-
rectly via wireless links, while those that are far apart use 
other nodes as relays. Because of the limited resource, 
some nodes may act selfishness. Ad hoc network misbe-
havior maybe inflicted by malicious nodes, each of 
which aims at harming the network operation; conse-
quently, mechanisms that enforce security present a par-
ticular challenge. In order to avoid the harm of malicious 
nodes, one way is the use of an intrusion detection sys-
tem, which watches out for any intrusion and sets out an 
alarm when an intrusion is detected. The intrusion detec-
tion and response mechanism is described in [2]. 

In recent years, we have seen researchers using game 
theory in the area of ad hoc networks. It is a powerful 
tool in that it can be used to model any system which 
exhibits the characteristics of a game. In WANET, mo-
bile nodes typically have selfish motivations, lack of 
cooperation among themselves, and have conflicting 
interests with each other. These characteristics make 
game theory (GT) a promising tool to model, analyze, 
and design various aspects of WANET. We have given a 
two-player game to model the interactions between an 
intrusion detection system and an attacker in wireless ad 
hoc network. Each defender is equipped with an intru-

sion detection system (IDS) in order to monitor the ac-
tiveness of an attacker. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes the one-stage 
game and multi-stage game, and Bayesian Nash equilib-
rium solutions are investigated. Section 4 presents nu-
merical examples to verify the effectiveness of the pro-
posed game. The conclusion of the paper is in section 5. 

2. Related Work 

Game theory has been successfully applied to many dis-
ciplines including economics, political science, and com- 
puter science. Game theory usually considers a multi- 
player decision problem where multiple players with 
different objectives can compete and interact with each 
other. In the context of intrusion detection, several game 
theoretic approaches have been proposed to wired net-
works, sensor networks, and ad hoc networks. 
  Yenumula B. Reddy [3] discuss currently available 
intrusion detection techniques, attack models using game 
theory, and then propose a new framework to detect ma-
licious nodes in wireless sensor networks using zero sum 
game approach for nodes in the forward data path. The 
first part of the research provides the game model with 
probability of energy required for transferring the data 
packets. The second part derives the model to detect the 
malicious nodes using probability of acknowledgement 
at source. Yuhan Moon, Violet R. Syrotiuk [4] present 
CCM-MAC, a cooperative CDMA-based multi-channel 
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medium access control (MAC) protocol for mobile ad 
hoc networks (MANET) in which each node has one 
half- duplex transceiver. They provide an analysis of the 
maximum throughput of CCM-MAC and validate it 
through simulation in MATLAB, and also compare the 
throughput it achieves to IEEE 802.11, a multi-channel 
MAC protocol, and a CDMA-based MAC protocol. 

In [4] Hadi Otrok et al. address the problem of in-
creasing the effectiveness of an intrusion detection sys-
tem (IDS) for a cluster of nodes in ad hoc networks, and 
formulate a zero-sum non-cooperative game between the 
leader and intruder. They solve the game by finding the 
Bayesian Nash equilibrium where the leader’s optimal 
detection strategy is determined. Finally, empirical re-
sults are provided to support their solutions.  

Yu Liu, Cristina Comaniciu and Hong Man [5] have 
used static Bayesian game and dynamic Bayesian game 
to model the interactions between attacker and defender 
in ad hoc networks. They have shown that the static 
game leads to a mixed-strategy Bayesian nash equilib-
rium when the defender’s belief of the attacker being 
malicious is high, and the dynamic game has a mixed- 
strategy Perfect bayesian equilibrium. In [6], they have 
used game theory for developing efficient defense strate-
gies for a network with multiple IDSs. They have for-
mulated a non-zero-sum, noncooperative attacker/de- 
fender game where the payoffs of players are non-strictly 
competitive. They have showed that the game achieves at 
least a Nash equilibrium that leads to a defense strategy 
for the defender. 

A two-player, non-cooperative, non-zero-sum game 
has also been studied by Agah et al. [7] and Alpan and 
Basar [8] to address attack-defense problems in sensor 
networks. In their models, each player’s optimal strategy 
depends only on the payoff function of the opponent and 
the game is assumed to have complete information. [9-11] 
have given the similar model, but the game is assumed to 
have incomplete information. 

Our model is similar to the ones mentioned in the 
aforementioned works in that it is a two-player, non- 
zero-sum and noncooperative game. However, our work 
is not aimed at giving the best strategy of the defender. 
In this paper, we have given a one-stage game and 
multi-stage game. In the proposed works, the IDS of de-
fender runs all the time, which is a costly overhead for a 
battery-powered mobile device since nodes have limited 
resource. The results of our model show that the IDS 
could work intermittently. 

3. Bayesian Game 

3.1. Game Model 

In this section we present our game model. An IDS at-
tempts to detect intrusion from an attacker. Hence, we 
may look at this as a game between two players, the IDS 

and the attacker. The attacker is denoted by  and IDS 
is denoted by . The player ’s intent is to attack the 

network without getting caught, whereas that of the 
player  is to detect intrusion when the attacker attacks. 

There is no cooperation whatsoever between the two 
players. 

i
j i

j

Player  has two types, regular that is denoted by i
0i   and malicious is denoted by 1i . Node’s type 

is his private information and IDS is uncertain about its 
opponent’s type. IDS has only one type, that is regular or 

0j   and it is common knowledge for both players. 

To present our model, we make the following assump-
tions. An IDS needs not be running all the time during 
which the wireless ad hoc network is up. The pure strat-
egy space of this player is denoted by jS = (Monitor t of 

the time, Not monitor),  0, 1t

t

. The first strategy of 

player  depicts the situation when the IDS is active 

for some percentage (denoted by ). For example, if the 
IDS detects by monitoring the traffic, the IDS periodi-
cally monitors the traffic and the rest of the time, it sits 
idle. Likewise, an attacker need not be trying to attack 
100% of the time. The malicious type of player  has 
two pure strategies: Attack s of the time and Not attack, 

j

i

 0,s 1 . The regular type of player  has one pure 

strategy: Not attack. The two players choose their strate-
gies simultaneously at the beginning of the game, assum-
ing common knowledge about the game (costs and beliefs). 

i

We first consider the scenario of the IDS. Tables 1-2 
illustrate the payoff matrix of the game in strategic form. 
In the matrix,  represents the detection rate of the IDS, 

represents the false alarm rate of the IDS, and 

a
b

 , 0, 1a b . In the Table 1(a), the payoff matrix for the 

 
Table 1. The type of player  is malicious. i

(a) Payoff matrix of IDS. 

\i j  (1)iS  (1)iS  

(1)iS  (2 1) (1 ) da tsm t sl tc     sl  

(2)iS  dbtn tc   0 

 (b) Payoff matrix of attacker. 

\i j  (1)iS  (1)iS  

(1)iS  (1 2 ) (1 ) aa tsm t sl sc     asl sc  

(2)iS  0 0 
 

Table 2. The type of player  is regular. i

\i j  (1)iS  (1)iS  

(2)iS  (0, )dbtn tc   (0, 0)  
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player  when player  is malicious is given. m  

denotes the overall gain of the player  for detecting 
the attack, and  is the overall loss for not detecting the 
attack during the whole lifetime. Costs of attacking and 

monitoring are denoted by  and  during the 

whole period. In our model, we assume that  and 
 is reasonable since otherwise the player  

does not have incentive to attack and the player  does 

not have incentive to monitor. The player  monitors t 

of the time, the player  attacks s of the time. The 
probability of the player  monitoring when the attack 

is on is , during which the player  gets a gain of 

. Similarly, the probability of the player  not 

monitoring when the attack occurs is  because of 

which the player j loses an amount of .  is 

the cost incurred due to monitoring. The expected payoff 

j

dc

ts

i

i
j

i

dc

j

)t
(1

l

ac
m l

j

j

)t sl tc

, al c

tsm

i

j

s(1

d

of detecting the attack depends on the value of , which 
is . When the player  is not 

active and there is an attack, so the payoff of the player 
 is 

a
j(2 1) (1 ) da tsm t sl tc   

j sl

dbtn tc  n

i

. The entry at position (row 2, column 1) is 

.  is the overall loss incurred by the player 

 for the false detection. The rest of the entry of the 

matrix is zero as the player  plays Not attack. 

j

The payoff matrix for the player  when the player 
 is malicious is defined as shown in Table 1(b). In 

contrast, the gain of player i is the loss of player , 

which is (1 – 2a)tsm + (1 – t)sl. The entry at (row 1. 
column 2) is the same as in previous scenario. For the 
other entries, when the player  plays  (Not at-

tack), his payoff is always . 

i
i

j

i (2)iS

0
The payoff matrix for the player  when it is regular 

is given in Table 2. The player  has only one strategy 
when it is regular. The payoff of player i  is always 0. If 
player i  ecides not to monitor, his payoff is 0; if he 
decides to play Sj (1), he has the monitoring cost  

and an expected loss  due to the false alarm, so his 
payoff is  . 

i
i

d

dtc

btn

dbtn tc 
 
3.2. One-Stage Game 
 
The intent of both players is to maximize their own pay-
off. This implies that we assume that both players are 
rational. Suppose player  assigns a prior probability j

0  to player i is malicious. In the following, we use 

Bayesian Nash equilibrium (BNE) to analyze the game 
model, based on the assumption that is a common prior. 

If player  plays his pure strategy pair (Attack s of 
the time if malicious, Not attack if regular), then the ex-

pected payoff of player  is 

i

j

0( (1)) ( (1 ) (1 ) )j j dE S at a tsm t sl tcsm       

0(1 )( )   dbtn tc  

02))E S sl( (j j    

So if 0 2
dc

sl

bn

asm sm bn





  
, , 

then the best strategy of player  is to play Monitor t of 

the time. However, if player  plays this strategy, At-

tack s of the time will not be the best strategy if player  
is malicious, and he will transfer to play Not attack in-
stead. Hence, ((Attack s of the time if malicious, Not 
attack if regular), Monitor t of the time, 

( (1)) ( (2))j j j jE S E S

i

0

j

j

 ) is not a 

BNE. If 0 2
dc

m

bn

asm s sl
 

bn  
, ((Attack s of the time 

if malicious, Not attack if regular), Not monitor, 0 ) is 

a BNE. Similarly, ((Not attack s of the time if malicious, 
Not attack if regular), Not monitor, 0 ) is not a BNE. 

THEOREM 1: In the described game-theoretic model, 
there is no pure-strategy BNE when 0  satisfies the 

inequality 

0 2
dbn c

asm sm sl bn





  
. 

We previously showed that no pure-strategy BNE ex-

ists for the game when 0 2
dbn c

asm sm sl bn





  
. But 

there is a mixed-strategy BNE. 
Let  be the probability with which the player  

plays its first strategy. Hence,  is the probability 

with which it plays the second strategy. Similarly, let  

be the probability with which the player  plays its 

first strategy. Hence, (1

p i

q

(1 )p

j

)q  is the probability with 

which it plays the second strategy. Then the expected 
payoff of player  is j

0( (1)) ( (1 ) (1 ) )j j dE S p a a tsm t sl tctsm     

0 0(1 ) ( ) (1 )( )   tc   d dp btn btn tc   

02))E S p sl( (j j    

From ( (1)) (2))j jE S E (j jS , we get that the malicious 

type of player ’s equilibrium strategy is to play first 
strategy with probability 

i

*

0 (2asm )
dbn c

p
sm sl bn



  

. 

and the expected payoff of player  is i
( (1)) ( (1 ) (1 ) )i i aE S q atsm a tsm t sl tc     

(1 )( )   aq sl sc  
( (2)) 0i i E S  
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From , we get that the equilib-

rium strategy of player  is to play first strategy with 

probability 

( (1)) ( (2))i i i iE S E S

j

*

2
al c

q
atm tm tl




 
. 

THEOREM 2: In the described game-theoretic model, 
the strategy pair ((Attack s of the time with probability 

 if malicious, Not attack if regular), Monitor t of 

the time with probability , 

*p
*q 0 ) is a mixed-strategy 

BNE. 
The above described game is a static game, for which 

the players maximize their utilities based on the payoff 
matrix for the game. Due to the difficulty of assigning 
accurate prior probabilities for player i’s type, we extend 
the static to dynamic game, where the player j can update 
his beliefs according to the Bayes’ rule. 
 
3.3. Multi-Stage Game 
 
The aforesaid one-stage game is static Bayesian game, 
for which the player  maximizes his payoff based on 

a fixed prior about the maliciousness of his opponent. 
The lifetime of the network could be broken down into 
intervals of the time and our game could be used as a 
repeated game over these intervals. So, we extend the 
one-stage game to multi-stage game. 

j

We assume that the one-stage game is repeatedly 
played in each time period , where k = 0, 1, … An 

interval of T seconds maybe selected for each stage game. 
In order to get a simple model, we assume that T = 1. 
The payoffs of the players in each stage game are the 
same as in the proceeding one-stage game, and we as-
sume that there is no discount factor with respect to the 
payoffs of the players. The extensive form of each stage 
game can be represented in a similar manner as for the 
static one-stage game. 

kt

In our model, the player 's type is known to all the 

player while the player 's type is selected from the type 
set ={malicious, regular}. Knowing that the player 

's type is a private information. Bayesian equilibrium 
[12] dictates that the player 's action depends on his 
type 

j

i

i


i

 . By observing the behavior of the player , the 
player  can calculate the posterior belief evaluation 

function 

i
j

1
( ( ))kkt i ia t 


 using the following Bayes' rule 

( ( )) ( ( ) )
( ( ))

( ( )) ( ( )
k

k

ki

t i i k i k i

t i i k
t i i k i k i

a t P a t
a t

a t P a t


  
 

)  





  (1) 

where ( ( ))
kt i i ka t   0  and ( ( ) )i k iP a t  is the prob-

ability that strategy  is observed at this stage of 

the game given the type 

( )i ka t

  of the player . From the 
assumption of described game, we know that 

i

( ( ) 1) ( )i k iP a t Attack ap b 1 p      

( ( )  1) (1 )ai k iP a t Not Attack p    

(1 )(1 )  b p  

( ( ) 0)i k iP a t Attack a    

( ( )  0) 1i k iP a t Not Attack b     

LEMMA 1: the multi-stage game satisfies the four 
Bayesian conditions (1)-(4). 

1) Posterior beliefs are independent, and all types of 
player  have the same beliefs, and even unexpected 

events will not change the independence assumption for 
the type of the opponents. 

j

2) Bayes’rule is used to update beliefs from 
( ( )

kt i i ka t  )  to 
1 1( ( )

kt i i ka t 
  )  whenever possible. 

3) The players do not signal what they do not know. 
4) All players must have the same belief about the type 

of another player. 
Proof: condition (1) is trivially satisfied because 

player  has only one type. We can see that the multi- 

stage game satisfies (2) from Equation (1). In our multi- 
stage game context, player 's signal is part of attack 
actions, thus (3) is satisfied. Because there are only two 
players in the game at any stage, the condition (4) is sat-
isfied. 

j

i

THEOREM 3: The multi-stage game has a perfect 
Bayesian equilibrium (PBE). 

At stage game , duo to the updated belief kt ( )  , the 

probability p  is also updated continuously. From the 

previous analysis of section 3.2, the malicious type of 
player 's equilibrium strategy is to play his first strat-
egy with probability 

i

( )(2 )
dbn c

p
asm sm sl bn

 


   
        (2) 

the equilibrium strategy of player  is to play his 

first strategy with probability 

j

2
al c

q
atm tm tl

 


 
             (3) 

So the PBE of the game is given as ( , , ( ))p q    , 

with ( , , ( ))p q     given by Equations (1)-(3). 

 
4. Example 
 
For each experiment, we assume that 1000m l  , 

100n  . Figures 1 and 2 assume , 0.85 0.85ts   , 
5dc  , Figure 3 assumes , , 0.85t  5dc 0.9a  , 

0.02b  , and Figure 4 assumes , 0.9s  0.9t  , 
0.95a  , 0.14b  . Figure 5 assumes , 0.9s  0.5t  , 
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0.95a 
j

, , . For all four scenarios player 

's prior probability 

0.02b  5dc 

0 0.5 

b

. 

From Figure 1, we see that the higher  is, the faster 
posterior belief converges to 1. By contrast, Figure 2 
shows that the lower  is, the faster posterior belief 
converges to 1. In other words, the detection accu- 

a

racy of the IDS affects the convergence speed of player 
's posterior belief. From Figure 3, we see that the 

lower time of attacking, the faster posterior belief con-

verges to 1. From Figure 4, we see that the higher , 

j

dc
the faster the convergence speed of player 's posterior 
belief will be. 

j

  Figure 5 shows the posterior belief of the player  
for these two scenarios. The belief for the first scenario 

j

 

 
Figure 1. Convergence of player j ’s posterior beliefs given  

the observations of a sequence of a sequence of consecutive 
Attack actions under various a. 

 

 
Figure 2. Convergence of player j ’s posterior beliefs given  

the observations of a sequence of a sequence of consecutive 
Attack actions under various b. 

 

Figure 3. Convergence of player j ’s posterior beliefs given  

the observations of a sequence of a sequence of consecutive 
Attack actions under various s. 
 

 

Figure 4. Convergence of player j ’s posterior beliefs given  

the observations of a sequence of a sequence of consecutive 
Attack actions under various . dc
 
converges to 1 faster than the second scenario. This is 
because in the first scenario the player  starts to attack 
earlier compared to the second scenario. Once the belief 
reaches 1, it does not go down even if the player  is 
not attacking since the type has already been identified. 

i

i

 
5. Conclusions 
 
In this paper, our goal is to determine whether it is essen-
tial to always keep the IDS running without compromis- 
ing on its effectiveness. First of all, we assume that the 
IDS works intermittently. Then, we model the interaction 
between intrusion detection system and an attacker as a  
one-stage game, and show that this game has two Bayes 
ian Nash equilibriums. Second, we model this game as a 
multi-stage game, where IDS does not have fixed prior 
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Figure 5. Posterior belief. 

 
probabilities about the type of its opponent and can up-
date its belief at the end of each stage of the game, and 
show that this game has a mixed-strategy perfect Bayes-
ian equilibrium. The results of the proposed two games 
show that IDS could work intermittently while getting 
the same effectiveness. 
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