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Abstract— One of the goals of computer-aided surgery is
to register intraoperative data to preoperative model of the
anatomy, and hence add complementary information that
can facilitate the task of surgical navigation. In this context,
mechanical palpation can reveal critical anatomical features
such as arteries and cancerous lumps which are stiffer than
the surrounding tissue. This work uses position and force
measurements obtained during mechanical palpation for reg-
istration and stiffness mapping. Prior approaches, including
our own, exhaustively palpated the entire organ to achieve this
goal. To overcome the costly palpation of the entire organ, a
Bayesian optimization framework is introduced to guide the end
effector to palpate stiff regions while simultaneously updating
the registration of the end effector to an a priori geometric
model of the organ, hence enabling the fusion of intraoperative
data into the a priori model obtained through imaging. This
new framework uses Gaussian processes to model the stiffness
distribution and Bayesian optimization to direct where to
sample next for maximum information gain. The proposed
method was evaluated with experimental data obtained using
a Cartesian robot interacting with a silicone organ model and
an ex vivo porcine liver.

I. INTRODUCTION

Surgeons performing minimally invasive surgery (MIS)

offer their patients a shorter recovery time and reduced

pain at a cost of increased technical difficulty. One of the

drawbacks of MIS is the loss of direct sensory feedback.

This loss can impede the detection and use of surface and

stiffness features which can help the surgeon find correspon-

dences between the intraoperative scene and the preoperative

imaging data. Computer-aided surgery (CAS) was introduced

to provide surgeons performing MIS with functional and

geometric information that can aid intraoperative naviga-

tion and execution of the preoperative plans. Mechanical

exploration by palpation and tissue manipulation can provide

complementary information about geometric constraints [1],

tissue characteristics [2] and variation in stiffness throughout

the organ [3], thus augmenting the information obtained

through conventional image-based CAS. Li et al. provide a

recent review on intraoperative tumor localization in robot-

assisted minimally invasive surgery which points out to

laboratory experiments and in vivo results [4]. The force and

tactile sensing technologies designed for MIS are reviewed
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in [5]. These works demonstrate that robot-assisted mechan-

ical palpation can facilitate the localization of arteries and

other anatomically critical features, which visually cannot be

detected, in MIS. Accurate registration of the surgical tool to

the coordinate frame of the preoperative model is one of the

primary goals in incorporating intraoperative data, such as

stiffness, into an a priori geometric model of the anatomy. In

this paper, we introduce tools for efficient information-guided

exploration using mechanical palpation and annotation of an

a priori geometric model with complementary information.

Several groups previously proposed heuristic algorithms

for autonomous exploration [6] and segmentation of stiff

features in compliant environments [7]. These methods rely

on the robot visiting locations on a discretized grid on

the organ’s surface. If a rapid change in stiffness is ob-

served between two grid points, the density of the grids

around that location is increased to collect more data in

an effort to localize a stiff feature. Grid maps comes with

the assumption of independence between the grid points,

thus ignore the structural dependency in the environment.

Additionally, aforementioned previous works on palpation

and exploration are not concerned with incorporating the

stiffness information into the preoperative geometric data,

a task that can help the surgeon in correlating preoperative

models, like CT scans, with the current intraoperative scene.

To avoid the costly palpation of the entire organ and

enable fusion of the stiffness information into an a priori

geometric model of the anatomy, we introduce a method

based on Bayesian optimization that minimizes the amount

of probing required to reveal stiff features and registers

the tool to the a priori model. The proposed algorithm

is advantageous because it only visits regions that bring

information gain, contrary to searching a discretized grid

on the entire surface of the organ to find stiff features. In

the Bayesian formulation, a Gaussian process (GP) [8] is

used to define a prior over the unknown stiffness distribu-

tion. GP provides a probabilistic description of the stiffness

map and captures the variance of the stiffness distribution

which helps guide the probing towards unexplored regions.

The stiff regions correspond to regions near local maxima

of the stiffness distribution and the Bayesian optimization

finds the maxima of this unknown stiffness distribution by

directing the probing to points that would result in maximum

information gain in predicting the stiff regions.

We first introduce GP and Bayesian optimization in Sec-

tion II, followed by the description of simultaneous registra-

tion and stiffness estimation. The experimental evaluations

and results are given in Section III.



II. BACKGROUND

A. Gaussian Processes

A Gaussian process is a collection of random variables,

{f(x) : x ∈ X}, indexed by elements from a set X such

that any finite subcollection of random variables has a mul-

tivariate Gaussian distribution [8]. A GP , f(x) ∼ GP(µ, k),
is fully specified by its mean function µ : X → R and a

covariance function k : X × X → R
+. Intuitively, we can

think of GP as a distribution over functions. The distribution

of function values at a point xi ∈ X is represented by a

random variable, Yi. Gaussian processes can be used for

regression and to make predictions at a new point x∗ ∈ X
by defining a prior over functions. In machine learning

literature, x is called the training set and x∗ is called the

prediction or test set [8]. For simplicity, the prior mean

function is generally assumed to be zero mean.

Given a set of n observed inputs x = [x1, x2, . . . , xn]
T

and corresponding outputs Y = [Y1, Y2, . . . , Yn]
T , the

random variables Y are Gaussian distributed with mean

[µ(x1), µ(x2), . . . , µ(xn)]
T and covariance matrix K whose

elements are defined by a covariance function, k(xi, xj)
where i, j ∈ [1, ...n]. A commonly used covariance function

is the squared exponential kernel defined as

k(xi, xj) = σf exp

(

−‖xi − xj‖
2

2ℓ2

)

, (1)

where σf is the variance of the process and ℓ is the length-

scale of the kernel. The conditional (predictive) distribution

Y ∗ can be computed using the conditioning rule of multi-

variate Gaussian distributions

p(Y ∗|Y ) ∼ N (K∗K
−1Y,K∗∗ −K∗K

−1KT
∗
), (2)

where K∗ is the m × n training-prediction set covariance

K(x∗,x) and K∗∗ is the m×m prediction set covariance

matrix K(x∗,x∗).
We employ GP to model the stiffness distribution of the

organ. The values of Y are the stiffness values associated

with the probed points. The position of the points which are

probed form the training set, x, while x∗ is the prediction

grid which spans the surface of the organ. Note that GP

is continuous and the prediction grid is only used to plot

the stiffness distribution for visualization. By using GP, we

assume the stiffness distribution changes smoothly across

the organ and this smoothness is defined by the choice

of the covariance function. In our formulation, we use a

local deformation model for stiffness estimation. Therefore,

a kernel with a fixed length-scale that is on the same order

of the size of the palpation tool’s tip is an effective choice.

We use the squared exponential kernel with σf = 1 and

ℓ = 3mm.

B. Exploration and Exploitation with Bayesian Optimization

Bayesian optimization is a powerful framework for global

optimization of black-box functions [9]. It is most beneficial

when the function does not have a closed-form expression

and obtaining observations from the function is expensive.

Bayesian optimization allows for prior beliefs about an

unknown function to be updated via a posterior. Stiffness

distribution of an organ can be thought of the unknown

function we want to optimize whose maxima correspond

to the stiff features. In the Bayesian framework, we use

GP to define a prior over the stiffness distribution. The

sequential nature of the Bayesian optimization can help guide

the sampling of the continuous search space. Sequential

sampling requires selecting an acquisition function which

uses the mean, µ(x), and variance, σ(x), of the predictive

GP posterior to compute a function which shows the most

likely locations of the global maximum [10].

Acquisition functions such as probability of improvement,

expectation improvement (EI) [9], and upper-confidence

based methods [11] were proposed to find the global max-

imum and to balance exploration with exploitation. EI

provides global exploration of the search space and local

exploitation. The EI acquisition function can be evaluated

analytically and is given as [9]

EI(x) =

{

(µ(x)− Y +)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(3)

where

Z =

{

(µ(x)−Y +)
σ(x)

if σ(x) > 0

0 if σ(x) = 0
(4)

Y + is the output at x+ which is the current maximum of

the sampled points. φ(.) and Φ(.) are the PDF and CDF of

the standard normal distribution respectively.

Fig. 1 illustrates an expected improvement scenario for a

1D example. Expectation improvement is generally used to

find the global maximum of the unknown function and the

search is terminated once a desired improvement is achieved.

Note that after finding the global maximum, the algorithm

still continues exploring other regions in the next iterations

in an effort to reduce uncertainty and to find other local

maxima. In addition to using EI, we do pure exploration

after every 5 samples and select a random point that has 90%

uncertainty. Such exploration is advantageous when there are

multiple stiff features and the initial samples do not include

Fig. 1. A 1-D example that starts with an initial training set of 4 points.
Red triangle shows the maximum of the EI acquisition function which is
the point that should be probed next.



points near stiff regions. Preoperative information such as the

size of the tumor or the width of the artery is useful to decide

on the density of the samples in the initial set, however this

is not the explored in this work. Interested readers can refer

to [12] for discussions on the effect of the initial sample

size in GP predictions.

Fig. 2 demonstrates the stiffness map obtained using

uniform sampling in comparison with the map sampled

using EI for two different cases. With EI we can acquire

useful information about the stiffness distribution compared

to uniformly sampling the surface of the organ for the

examples shown.

C. Registration and Stiffness Estimation

Our group has previously developed a method for simulta-

neously estimating the registration and stiffness distribution

over the surface of a flexible environment using a Kalman

filtering approach called CARE [13] and a more recent

model update method, called Complementary Model Update

(CMU), that decouples stiffness estimation from registration,

resulting in a more robust implementation [14]. Similar to

CARE, the CMU uses the force and position information

obtained by interaction of the surgical tool with the organ

to estimate the local stiffness and to register the organ to

its preoperative model. It is assumed that the local surface

deformations are only due to physical interaction of the

surgical tool with the organ. We also assume that the surface

of the organ is smooth and frictionless, thus the applied

force is along the surface normal and increases with depth.

Registration is performed by finding the transformation that

takes the probed points defined in the tool frame to the cor-

responding points on the preoperative model of the anatomy.

The preoperative model is a computer-aided design (CAD)

model in the form of a triangular mesh.

The stiffness at a probed point is estimated using a best

line fit between the relative sensed deformation depths and

Fig. 2. Two examples that show the advantage of using EI as a sampling
strategy: (a) and (b) show the ground truth stiffness map for a simulated data
with an artery and simulated data with multiple stiff features, respectively;
(c) and (d) show the maps obtained using uniformly sampling with 100
points; (e) and (f) show the corresponding maps obtained using EI with
100 samples.

sensed forces

ci = L
(∥

∥(pR
β )i − (pR

γ )i
∥

∥ , ((Fβ)i − (Fγ)i)
)

, (5)

where ci is the stiffness of the ith probed point, (pR
β )i and

(pR
γ )i are the coordinates of two distinct sensed positions

expressed in the tool reference frame, R, corresponding to the

ith probed point on the surface of the organ and (Fβ)i, (Fγ)i
are the corresponding magnitude of sensed forces. The

registration estimate is obtained using the estimated stiffness,

sensed position and magnitude of the sensed force [14]

T = argmin
T

n
∑

i=1

∥

∥

∥

∥

pC
i −

nC
i (Fβ)i
ci

− T (pR
β )i

∥

∥

∥

∥

, (6)

where T ∈ SE(3) is the homogeneous transformation that

is to be estimated, pC
i is the location of the probed point

in the model’s reference frame, given by C, and the surface

normal at the probed point is denoted by nC
i .

III. EXPERIMENTS AND RESULTS

A. Experimental setup
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Fig. 3. (a) Experimental setup used for ex vivo organ experiments. The
tool frame, R, is located at the end effector,(b) Contact location and surface
norm estimation

A Cartesian robot with an open architecture controller

was used to evaluate the framework proposed in this paper

as shown in Fig. 3(a). The robot is equipped with an ATI

Nano43 6-axis force sensor at the robot end-effector (EE)

and is capable of executing the hybrid motion/force tasks

described in Khatib [15]. We assume that the robot end

effector has been positioned above the organ. We do not

assume any prior knowledge of the local surface normal.

Experiments were conducted with a silicon phantom organ

and an ex vivo porcine liver. In the silicon phantom exper-

iment the top surface of the organ was lubricated and in

the ex vivo experiment the organ surface was hydrated to

reduce friction during probing. In both experiments, a target

region was defined by the user. This region was then used

as a reference to generate a uniformly distributed grid map

with uniform spacing in the x-y plane of the tool’s reference

frame, R. For a particular reference probing location, the

following procedures were repeated automatically to obtain

the force/deformation profile data.

1) Making high force contact: The robot controller is given

a desired probing location xp and a force magnitude

of 0.5N. The hybrid force/motion controller decouples



the combined commands into compatible (orthogonal)

force/motion commands that direct the robot to achieve

a desired position in the x-y plane and a stable contact

force with the environment along the z axis.

2) Estimating surface norm: The contact location and

surface normal estimation is shown in Fig. 3(b). The

surface normal, n, is computed using the force sensed

from the environment, n = fs/‖fs‖, assuming the

surface friction is negligible.

3) Finding low force surface contact point: In this step,

the robot first retreats swiftly away from the surface

and then moves towards the surface, along the surface

normal this time, to find the zero force intersection.

An offset is applied from the robot EE to obtain the

estimated contact point as xcont = xEE −nr where r is

the radius of the robot end effector ball. A 9mm radius

probe was used in the silicon examples and a 6.3mm

radius probe was used in the ex vivo organ experiment.

4) Probing and recording: The robot is commanded in po-

sition control mode along the estimated surface normal

direction with 0.3mm increments until 3mm probing

depth. Hence, there are 10 position measurements, p,

and 10 force measurements, F , for each point we probe.

B. Bayesian Optimization Guided Probing

To evaluate Bayesian optimization guided probing, we

simulated experiments using the experimentally collected

data. A block diagram description of the probing method is

shown in Fig. 4. Prediction of the stiffness distribution is car-

ried out in the tool frame, R. Initially, the actual registration

is unknown, hence we do not know where the probed points

correspond to in the preoperative CAD model. We assume

palpation is carried out inside a region of interest (ROI). It is

assumed that the initial set of samples, x0
R, include points

on the boundary of the ROI as well as uniformly distributed

points inside the ROI. The training set consists of previously

probed points, xi
R, where i = 1, 2, ..., n. We use gridfit

function [16] to interpolate the previously probed points to

form a dense grid inside the ROI, x∗

j
R where j = 1, 2, ...m,

to make predictions using GP. This grid is used to estimate

the stiffness distribution for visualization. The stiffness value

at a probed point, ci, is estimated, in our case by the CMU,

and corresponds to Y R
i at xi

R in the GP formulation. Based

on the posterior of the predictive distribution given by µ and

σ the point at which the expectation improvement takes a

maximum value is selected to be the next palpation point,

xR
n+1. As a new point is palpated, it is added to the training

set and the prediction grid is regenerated. We use the updated

registration estimate, T , to transform the probed points

and their associated stiffness values to the corresponding

points on the CAD model. This procedure enables displaying

experimentally collected stiffness data on the preoperative

CAD model. On Matlab, predicting the stiffness distribution

and determining the next point to palpate takes 0.11s on

average while updating the registration takes 1.2s on average

for 100 probed points.

C. Evaluation

The proposed method was evaluated with various stiffness

distributions and in the presence of measurement noise. We

test the algorithm for four different scenarios:

1. Simulated data of an organ with a multimodal stiffness

distribution.

2. Simulated data of an organ with a perturbed multimodal

stiffness distribution and sensor noise.

3. Silicon phantom organ with an embedded mock artery.

4. Ex vivo porcine liver with a stiff inclusion.

The goal of Example 1 is to demonstrate that expectation

improvement is effective in finding all the local maxima and

not just the global maximum. We start with an initial set

of 19 samples and terminate the palpation after 100 points.

Fig. 5(a) shows where we think the position of all the probed

points are based on the initial registration guess and their

registered position estimated by the CMU algorithm. The

registered position of the probed points (deformed points) lie

below the surface of the CAD model as expected; validating

that the registration estimate is accurate. Fig. 5(b) and (c)

show the ground truth stiffness map and the predicted stiff-

ness map, respectively. The predicted stiffness map captures

the stiff features present in the ground truth stiffness map.

Example 2 shows the effect of noisy sensor measurements

in the prediction of the stiffness distribution. The ground

truth stiffness map of Example 2 was obtained by perturbing

the stiffness distribution for Example 1. An artificial sensor

noise with (µx, σx) = (0, 0.3mm) was added to the sensed

position and (µF , σF ) = (0, 0.1N) was added to the sensed

force to simulate a more realistic scenario. Fig. 6(a) shows

the registration results. Fig. 6(b) and (c) show the ground

truth stiffness map and the predicted stiffness map, respec-

tively. In the presence of noisy sensor measurements, the

algorithm still reveals the stiff features and the registration

parameters converge to the correct values.

The silicon organ used in Example 3 and the ex vivo

organ used in Example 4 are shown in Fig. 7(a) and (b),

correspondingly. The ground truth stiffness distribution for

Example 3 and for the ROI in Example 4 were obtained

by interpolating the experimental data at the grid locations

shown in Fig. 7(c) and (d) and are shown in Fig. 7(e) and

(f), respectively. We emphasize that the organ was discretized

only to palpate each grid point with the robot for the purpose

of generating a ground truth stiffness map of the organ

Fig. 4. Block diagram description of the Bayesian optimization guided
probing



to test our algorithm. Fig. 8(b) shows that sensed force is

proportional to the depth of probing for the three locations

shown on the CAD model of the liver in Fig. 8(a), validating

that the linear stiffness is a valid assumption for 3mm

probing depth.

Fig. 9 shows the successful registration and the estimated

stiffness map that reveals the mock artery in the silicon

organ. Fig. 10 shows the registration result and the position

of the embedded triangle overlayed on the estimated stiffness

map of the ex vivo porcine liver. The actual registration

parameters, the estimated registration parameters and the root

mean square (RMS) error between the estimated location of

all the probed points and their true positions are shown in

Table I for all examples. The required clinical accuracy of

registration is application dependent. For tumor localization,

the registration accuracy can be dictated by the size of the

smallest tumor that needs to be resected or ablated [17]. For

example, the smallest tumor size detected in livers is 1cm

on average [18]. Hence, we conclude that the registration

accuracy we achieve is well above the requirements.

TABLE I

REGISTRATION RESULTS

Example x(mm) y(mm) z(mm) θx(deg) θy(deg) θz(deg) RMS(mm)

Actual 1-3 5 10 -15 11.46 -11.46 5.73 –
Actual 4 5 7 -13 11.45 -5.72 8.59 –
Guess 1-4 0 0 0 0 0 0 –

CMU 1 4.51 9.56 -15.03 12.57 -11.42 5.53 0.91
CMU 2 4.31 9.55 -14.97 12.53 -11.42 5.53 1.04
CMU 3 4.56 9.24 -14.97 12.58 -11.27 5.69 1.14
CMU 4 5.78 6.4 -13.04 11.84 -5.50 8.66 0.74

IV. CONCLUSIONS

This work introduced a probabilistic estimation of the

stiffness distribution of the organ using Gaussian processes

Fig. 5. The algorithm starts with an initial set of of 19 points: 4 corners
and 15 uniformly spaced points. The results are shown for 119 probed
points. Example 1: (a) Registration results, (b) Ground truth stiffness map,
(c) Estimated stiffness map

Fig. 6. Example 2: (a) Registration results, (b) Ground truth stiffness map,
(c) Estimated stiffness map. The algorithm starts with an initial set of 19
points: 4 corners and 15 uniformly spaced points. The results are shown for
119 probed points.

Fig. 7. (a) Silicon phantom organ (b) ex vivo porcine liver with an inclusion
sutured inside the organ, (c) 619 points were probed on the organ to generate
a ground truth for the silicon organ, (d) 196 points were probed on the
ex vivo organ to generate a ground truth stiffness map, (e) Stiffness map
used as the ground truth for the silicon organ, (f) Stiffness map used as the
ground truth for the ex vivo organ

Fig. 8. (a) CAD model of the organ showing three locations with a square,
star and a circle, (b) Force vs probing depth for the three locations shown
on the CAD model.



Fig. 9. (a) Registration results for Example 3, (b) Estimated stiffness map
for Example 3 with 119 probed points. The algorithm starts with an initial
grid of 19 points: 4 corners and 15 uniformly spaced points.

Fig. 10. (a) Registration results for Example 4, (b) Estimated stiffness map
for Example 4 with 79 probed points. The initial set for Example 4 consists
of 7 samples that define the boundary of ROI and 12 uniformly distributed
samples inside the ROI.

and the use of Bayesian optimization to direct the probing for

maximum information gain. We believe fusing intraoperative

data into the preoporative model is important to alleviate the

limited situational awareness in MIS. The performance of

the method was demonstrated by a number of examples and

the results show that information-guided probing can avoid

probing the entire organ and successfully reveal the stiff

regions while registering the tool to the a priori geometric

model of the organ.

There are several directions for future work. We used a

simple experimental setup and an unconstrained environ-

ment to evaluate our method to avoid additional sources

of error such as workspace limitation and deflection of the

robot. In our future work, we will demonstrate the proposed

method in real-time using a continuum robot [19] and the

da Vinci Research Kit. Another extension of this work is

the intraoperative reconstruction of the organ surface and

stiffness features as the organ goes through changes during

the surgical procedure. We envision that the information-

guided probing will enable generation of an updated model of

the visible anatomy and reduce the time it takes to reconstruct

the intraoperative scene.
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