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Abstract

Many modern FPGAs use lookup table (LUT) logic blocks
which can be programmed to realize any function of a �xed
number of inputs. Since permutations and negation of sig-
nals are virtually costless operations in FPGAs, it is possible
to employ logic blocks that realize only a subset of all func-
tions, while the rest can be obtained by permuting and negat-
ing the inputs. Such blocks, known as Universal Logic Modules
(ULMs), have only recently been considered for application in
FPGAs. In this paper we propose a class of ULMs useful in
the FPGA environment. Methodology for systematic develop-
ment of such blocks is presented, based on BDD description of
logic functions. We give an explicit construction of a 3-input
LUT replacement that requires only 5 programming bits, which
is the optimum for such ULMs. A realistic size 4-input LUT
replacement is obtained which uses 13 programming bits. Such
logic blocks are especially important when FPGAs are used in
a recon�gurable manner, because they can reduce the time and
memory needed for changing the con�guration.

1 Introduction

First commercially available Field-Programmable Gate Arrays
(FPGAs) had an array of 3-input logic blocks, where each
block could realize any function of three variables using an
8-bit RAM. Such a block is a lookup-table with 3 inputs
(LUT.3). A decade or two before that, there was a signi�-
cant amount of theoretical research on Universal Logic Mod-
ules (ULMs), which are logic blocks capable of realizing all
functions of a �xed number of variables assuming that permu-
tations and negations of variables are provided outside these
blocks. Old research on ULMs and new work on FPGAs have
not been related until recently, when studies started appear-
ing about the usefulness of ULM circuits as logic blocks in
FPGAs [8], [13]. In this paper, we propose a new type of
ULMs for use in FPGAs. Practical designs for 3- and 4-input
LUT (LUT.3 and LUT.4) replacements are presented together
with the methodology to systematically derive such blocks.

Universal Logic Modules are de�ned as blocks withm gen-
eral purpose inputs that can realize any function of up to n
inputs, n < m, under the assumption that permutations and
negations of signals are generated cost-free outside the logic
block [11]. These blocks achieve their functionality by bridg-
ing some inputs and/or assigning them to a constant, which
are also assumed to be costless operations. This concept is il-
lustrated in Figure 1.a. Classical ULM research was based on
this de�nition of ULMs. Lower and upper bounds are known
for m as a function of n, and they asymptotically approach
each other. To realize all n-input functions, the total num-
ber of inputs m needed is on the order of 2n=log(n). Several
methods have been proposed for constructing such ULMs.
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Figure 1: ULM alternatives

Recent research on ULMs has been focused on investigat-
ing the tradeo� between the functionality of logic blocks and
their usefulness in real applications. In [13] it is shown that
cells with up to 8-inputs can be used to compete with the
Actel family of commercial FPGA circuits. The goal of that
research, and the work presented in [8], is to �nd a subset of
functions that a ULM can realize so that it behaves as close as
possible to the LUT. These papers deal with blocks that have
functionality comparable to LUT.3 [8] and LUT.4 [13], but
they are not functionally complete. 1 The block in [8] has four
inputs and realizes 10 out of 14 nonequivalent 3-input func-
tions, while the block from [13] requires 8 inputs to realize
almost all 4-input functions.

In this paper, we argue that a di�erent type of ULMs is
needed. Since for realization of an n input function we have
to provide m = O(2n=log(n)) inputs in a standard ULM, an
unreasonable amount of routing resources may be needed if
such blocks are used. In addition to providing the access to
all m input pins, the routing network must provide resources
for bridging the input pins. There are O(m2) bridging con-
nections possible for each block. These are the reasons why in
[8], the total number of inputs is limited to 4, as opposed to
8 as in [13]. We propose a class of ULM circuits that avoids
this problem and limits the number of input pins to n by using
separate programming bits. Like FPGAs, these ULMs are pro-
grammed by serial input to perform a particular function. As
in classical ULMs, the functions obtained by permuting inputs
and negating inputs (and possibly outputs) are considered to
be equivalent. Such ULMs can serve as LUT replacements
that require fewer programming bits. Figure 1 illustrates the
di�erence between these two approaches for a ULM.n that can
realize all n-variable functions.

Since the programming bits are loaded serially in SRAM-
based FPGAs, there are no additional inputs required, other
than the usual function inputs, which would compete for valu-
able routing resources. When compared with standard LUTs,
our blocks need less time and storage area to recon�gure. This
is especially important for emerging architectures in which re-
con�gurability of FPGAs is essential [1], [7], [12]. The logic
block presented in [12] contains memory storage for 4 "con-
texts", which are the programs for the logic block that can be
used interchangeably. In this case, any saving in the number
of programming bits is multiplied by 4.

Our goal is to reduce the length of the description of
Boolean functions and to develop logic blocks which can use

1The block in [8] is named "semi-ULM" to express the fact that
it is not functionally complete
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the reduced descriptions as their programs. We show that for
large blocks it is impossible to obtain a signi�cantly more suc-
cinct representation than the one used in a RAM-based LUT.
However, for smaller (but practically useful) blocks, savings
achieved in the number of programming bits needed can be
signi�cant, and we explicitly construct ULMs that reach the
theoretical minimum.

2 Realization of ULMs

We now describe a procedure for obtaining a class of ULMs
with the functionality comparable to LUTs. We exploit the
fact that only a subset of all n-variable functions is su�cient
to represent them all if inversions and permutations of signals
are available. Further, if there are C such functions, they can
be encoded by B = dlog2(C)e < 2n bits. This alone is not
su�cient if the ULM circuit is too complex or too slow to be
of practical use. In this paper, we design such circuits which
are inexpensive relative to the LUTs.

2.1 Equivalence Classes of Switching Functions

The fact that many functions are equivalent under permuta-
tion or inversion of inputs and inversion of outputs allows us to
group all functions into equivalence classes. The equivalence
under all three operations is commonly called npn-equivalence
[6]. In FPGAs, we are primarily interested in the restricted
notion of np-equivalence, which allows permutations and in-
versions of inputs only. The output inversions and npn-class
will be considered here primarily as a theoretical shortcut in
developing the main results.

The equivalence classes of switching functions have been
investigated in early studies of switching functions [5]. Using
group theoretic tools, a closed form expression can be derived
for the number of equivalence classes, as a function of n, the
number of variables. For our purposes, it is su�cient to derive
a lower bound on the number of npn-equivalence classes:

C(n) �
22
n

n! � 2n � 2
: (1)

This bound is obtained as follows. There are at most n!�2n �2
di�erent permutations and negations of inputs and outputs,
which de�nes an upper bound on the class size. The number
of classes is then larger than the ratio of the number of all
possible functions (22

n

) and this bound on the class size. The
exact number of equivalence classes is larger than this esti-
mate, especially for small n. For example, for n = 3, there are
14 such classes, while for n = 4, the number of equivalence
classes is 222.

Our concept of the ULM assumes that a number of pro-
gramming bits are provided that specify which equivalence
class is to be realized by the block. For this model, we can de-
rive an estimate on the number of programming bits needed,
B = dlog2(C)e. After taking a logarithm of Equation 1 in
which the factorial function is replaced by Stirling approxima-
tion we obtain:

B(n) � 2n � nlog(n)� (n+ 1) + nlog(e)� 1=2log(2�n)

This bound rapidly approaches the size of the original lookup
table 2n. Hence, for large n, ULMs are not practical.

However, for small n, which is of most practical interest,
substantial savings can be obtained. For n = 3, the total
number of bits needed to encode functions realized by a ULM
is 4 (as opposed to 8 in LUT.3), while for n = 4 and n =
5, the minimal number of programming bits B is 8 and 20,

respectively. For any number of inputs n, up to C(n) classes of
functions have to be provided, for which it is su�cient to have
B(n) programming bits. For np-equivalence type of device,
one programming bit must be added, which would invert the
polarity of the output.

Although the saving in the number of programming bits
looks encouraging, the implementation of such ULMs may
be much larger and slower than that of LUTs. We now de-
rive ULMs whose implementations are comparable to those of
LUTs.

2.2 Realization of ULMs using BDDs

Each equivalence class can be represented by one function,
which is called a class prototype or representative in literature.
To generate all functions of n variables in a ULM, it is su�cient
to have a block that realizes only the representatives. Further-
more, only functions that depend on exactly n variables have
to be considered, because functions of fewer variables can be
obtained by assigning a constant value to some of the inputs.

We devise e�ective ULMs by constructing a exible "su-
percircuit" that can implement all representative functions by
using special programmed switches provided in that circuit.
Our realization uses the structure of BDDs (Binary Decision
Diagrams) [3] to realize a complete set of representative func-
tions. Additional switches, which select the function to be
realized, are used to recon�gure the BDD structure. BDDs
are chosen because they are a canonical representation of bi-
nary functions which can be used in physical implementation.
To realize a function given by a BDD, it is su�cient to replace
each node by a multiplexer.

The procedure for designing optimal ULMs consists of:

� enumerating all classes of functions,

� realizing each class representative by a BDD,

� creating a superset structure, called a Super BDD, from
the union of all BDD representatives,

� providing exibility in the Super BDD by adding routing
resources,

� minimizing the number of routing paths and switches in
the Super BDD,

� minimizing the number of programming bits, and

� optimizing circuits that use the programming bits to
con�gure the desired function.

Based on this scheme, we design 3- and 4-input logic blocks.

3 Realization of ULM.3

It is su�cient to enumerate only the npn-equivalent functions,
because BDDs describing both a representative of such class
and its complement have the same structure, with only the
terminal nodes being reversed. For n = 3, there are 14 equiv-
alence classes, of which 10 are functions of exactly 3 variables.
Table 1 shows these classes and the number of functions they
represent.

For each representative three-variable function, a BDD can
have up to 5 nonterminal nodes. The union of these classes
will, therefore, have at most 5 of these nodes, plus an in-
terconnection structure and programming switches needed to
program the ULM.3. All 10 representative BDDs are shown
in Figure 2. The input (control) variables are ordered as:



No. Class representative # f's

1 x1x2x3 8
2 x1x2x3 + �x1�x2�x3 12
3 x1x2 + x1x3 24
4 x1x2 + �x1�x2x3 24
5 x1x2�x3 + x1�x2x3 + �x1x2x3 8
6 x1�x2�x3 + �x1x2�x3 + �x1�x2x3 + x1x2x3 2
7 x1x2 + x1x3 + x2x3 8
8 x1�x3 + x2x3 24
9 x1x2x3 + x1�x2�x3 12
10 x1x2 + x1x3 + �x1�x2�x3 24

Table 1: Equivalence classes for functions of three variables
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Figure 2: All representative BDDs for three-variable functions

x1; x2; x3; we say that the nodes controlled by variable xi be-
long to level i. The left outgoing edge, 0-edge, of each node is
taken when input variable is 0, which is indicated by a dashed
line. The two successors are referred to as 0- and 1-successor.
The values of terminal nodes are not speci�ed, because of
the possible inversion of outputs under the (considered) npn-
equivalence model; it is assumed that in the canonical case the
left terminal node is zero.

3.1 Super BDD as a ULM

We can combine the BDDs to create the Super BDD (SBDD.3)
in Figure 3 that is capable of realizing all 10 class represen-
tative functions of three variables. This union structure has
5 nonterminal nodes, which we label as in the sixth BDD in
Figure 2.

The SBDD.3 is obtained from the representative BDDs by
the following transformations. By enumerating the outgoing
edges from each node, a set of possible interconnections is ob-
tained. Sets of outgoing edges are reduced by considering all
possible polarities of input variables. At the last stage of op-
timization, we allow one extension to canonic BDDs, which
leads to simpler representation: polarity of the selection vari-
able at node 2 can be changed independently from the selection
variable at node 3. The required polarity change is controlled
by the switch S4 in Figure 3. Other switches in this BDD are
used to de�ne the multiplexed connections to outgoing edges.
Switch S7 changes the polarity of terminal nodes, i.e. inverts
the function.

The design in Figure 3 requires 6 switches, if the npn-
equivalence is assumed. Seventh switch, S7, is needed for the
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Figure 3: Super BDD (SBDD.3)

Function Programming Switch Inverted
Number 1 2 3 4 5 6 Variable

1 0 x x x 1 0 x3
2 1 0 0 1 1 0 x3
3 0 x x x 0 1
4 1 0 0 1 1 1
5 1 0 0 0 0 0
6 1 1 1 1 0 0 x3
7 1 0 0 0 0 1
8 1 0 1 0 0 1 x2 and x3
9 0 x x x 0 0 one of x2,x3
10 1 0 1 1 0 1

Table 2: Programming bits for three variable representative
functions

np-equivalence, in which case the terminal nodes can have two
possible sets of values. The SBDD.3 does not implement func-
tions of two or one variables directly; this is done by assigning
some inputs to a constant.

The SBDD.3 can be used as a ULM. Using one bit per
switch, the number of programming bits is 7, which gives us
a saving of one bit compared to LUT.3.

3.2 Encoding of programming bits

It is possible to shorten the function descriptions for the pro-
posed ULM by encoding more compactly all possible con�gu-
rations of switches. To optimize the encoding of programming
bit patterns, we enumerate all possible switch assignments for
each representative function. The programming bit settings
for each function are listed in Table 2. The left path of a pro-
gramming switch is selected if the corresponding bit is equal
to 0. An exception is switch S4, which changes the polarity
of node 2 in the BDD. If this bit is one, then the 0-successor
of node 2 is selected when the input variable x2 is 1. The last
column in Table 2 indicates if any variable is complemented at
the input to the circuit. For function 9, either x2 or x3 should
be complemented, but not both.

The desired optimization can be achieved by using the
input encoding [15]. Since there are 10 programming combi-
nations, 4 bits are su�cient to encode all of them uniquely.
However, this alone does not lead to the simplest logic cir-
cuits. To simplify the decoding circuits, we use the functional
composition and reorder some of the BDDs in Figure 2.

Switches 1 through 4 in Table 2 can be encoded separately,



Function Programming Switch Inverted
Number 1 2 3 4 5 6 Variable

8 1 0 0 1 0 1 x2
10 1 1 1 x 1 1

Table 3: Programming bits for permuted representative func-
tions

B0 B1 S1 S2 S3 S4

0 0 0 x x x
0 1 1 0 0 1
1 0 1 0 0 0
1 1 1 1 1 1

Table 4: Encoding for the �rst four switches

because the functions can be decomposed. Since there are 6
combinations of these switches in Table 2, three encoding bits
are necessary for these four switches, and 5 bits are needed for
the whole circuit. However, the optimal ULM.3 should use
only 4 bits in total, as shown in Section 2.1. To obtain the
optimal length encoding, we can have at most 4 programming
combinations for these 4 bits. To achieve the further reduc-
tion, we consider all input permutations for the representative
functions. Only �ve functions can be replaced by reordering
the variables, because the other �ve functions are symmetri-
cal (indicated by bold typeface in Table 2). Table 3 lists the
programming combinations for the permuted representatives
that were used to optimize the SBDD.3. The decoder circuit
can be simpli�ed if the two functions in Table 3 replace the
corresponding functions in Table 2. With these replacements,
there is a total of 4 di�erent combinations of the programmable
switches S1 through S4. These combinations are given in Ta-
ble 4. An e�cient encoding that satis�es the constraints in
the table is given by:

S1 = B0 +B1

S2 = S3 = B0 �B1

S4 = B1

This allows a simple implementation of the decoder us-
ing only two 2-input gates. (Note also that a simple polarity
change in switches and/or programming bits B0 and B1 al-
lows us to use simpler NAND and NOR circuits.) The pro-
gramming bits needed after the minimization is performed are
shown in Table 5.

3.3 Implementation issues

The proposed ULM.3 can be implemented in a straightfor-
ward way. In addition to the SBDD.3, the decoder and the

No. B0 B1 S5 S6 Inverted

1 0 0 1 0 x3
2 0 1 1 0 x3
3 0 0 0 1
4 0 1 1 1
5 1 0 0 0
6 1 1 0 0 x3
7 1 0 0 1
8 0 1 0 1 x2
9 0 0 0 0
10 1 1 1 1

Table 5: Optimized programming bits

LUT.3 ULM.3 Note

Memory (bits) 8 5 4 for dual output

Datapath Mux 7 3 1 invertible

Program Mux 0 5 can be small

Decoder 0 1 two 2-input gates

Program Inv. 0 2 S4 , S7
Transistors 78 70 5 transistor RAM

Delay 1.38 ns 1.31 ns small width transistors

Table 6: Comparison between LUT.3 and ULM.3

programming bit memory are needed. The decoder consists
of two 2-input gates, while the programming bits can be kept
in a standard SRAM memory. The implementation of ULM.3
can follow the layout of the SBDD.3, which has physically a
fairly rectangular shape. Figure 4 compares its layout with the
LUT.3 logic block. The ULM.3 switches correspond to those
in SBDD.3. We targeted pass-gate CMOS implementation for
most of the logic, as in many LUT implementations [10].

The ULM.3 implementation has advantages with respect
to the area. First, only three multiplexers (outlined in bold) in
ULM.3 must have the complete functionality; all others per-
form simpler logic functions, which allows us to decrease the
area required without any impact on the speed. Moreover,
our ULM avoids a constant overhead of one bu�er that each
SRAM memory must have when used in LUT con�gurations
[10]. Since there is a possibility of bidirectional current ow
when the input to LUT changes, the contents of SRAMs can
be erased and an inverter must be added to isolate the SRAM
cells. In ULM.3, the memory controls only the gates of transis-
tors and there is no current ow towards SRAMs. Finally, the
tree-like structure, which in standard LUT architectures can
cause an area overhead in the physical layout, is not present
in this block.

The ULM.3 implementation also has some advantages
when the delay is considered. Paths of input signals can be
kept shorter, which limits the propagation delay when the gate
is in use. Figure 4 shows the critical paths for the two circuits,
from input x3 to output f . Speed can be improved further by
placing an inversion switch in node 3, instead of node 2, of the
SBDD.3.

Both LUT.3 and ULM.3 in Figure 4 have been simulated
in Spice using 0.8 �m BNR BATMOS technology [2]. With
small topology transistors, both blocks (output bu�ers were
not considered) work equally fast. Even though our ULM.3
block uses one more level of logic than LUT.3, the time critical
signal (control variable x3 does not control any pass transis-
tors; instead this signal propagates through the channels of
MOS transistors which are set (opened or closed) long before
the signal reaches the transistor. The comparison is summa-
rized in Table 6.

One other variation is possible; the block can have the
function output available in both its true and complemented
form. It would be then for routing resources to select the
proper polarity (or both). In this case, only 4 programming
bits would be needed for the block, but adding one more out-
put pin is expensive.

4 Larger Blocks - ULM.4

The same procedure can be used to design ULMs for larger
logic blocks, but the complexity of the process increases
rapidly. We illustrate on the example of ULM.4 the proce-
dure of (computer aided) search for an e�ective logic block.
It is theoretically possible to derive a 4-input block that uses
a minimal number of programming bits (8 for npn-equivalent
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Figure 4: Implementation of ULM.3 and LUT.3

and 9 for np-equivalent ULM). However, since the minimal-
length encoding may be too expensive to implement, we inves-
tigate trade-o�s between the encoding length and the circuit
complexity by using nonoptimal encodings as well.

There are 222 npn-equivalence classes of 4-variable func-
tions; 208 of them depend on exactly 4 variables. These classes
are enumerated in reference [4]. We used this enumeration as
an input to a program that generates BDDs for all represen-
tative functions. We made these BDDs mutually comparable
by using a unique node labeling. The next step was to an-
alyze the connectivity pattern and �nd outgoing edges from
each node in the BDD. Then, a possible Super BDD struc-
ture was constructed, which had a number of programmable
switches. The subsequent steps consisted of minimizing the
number of switches, the number of programming bits and the
logic needed to perform the encoding function for the switches.

4.1 Unifying representative BDDS

The �rst step in the procedure for developing the ULM is easy
to automate. All the class representatives in [4] are sorted
according to the output they produce. There are 208 such
functions; we will refer to them as f1 to f208.

The maximal number of nodes in individual BDDs dic-
tates how many nodes there should be in the SBDD.4. The-
oretically, the largest BDD representing a 4-variable function
should have at most 9 nodes, excluding terminal nodes. Start-
ing from the root (level 1) node, the edges can branch as in
the full decision tree, except for the fact that there can be only
two level-4 nodes. There are 15 BDDs that have this maximal
number of nodes.

Unique labeling of nodes is necessary for analyzing the
BDDs in a uni�ed way. It is easy to distinguish between two
level-2 nodes: they are either 0- or 1-successors of the root
node. Also, the two terminal and two level-4 nodes are unique.
To label the remaining, level-3 nodes, we use the following
scheme. We assign numbers 1 and 2 to terminal 0 and 1 nodes,
respectively. Then, a node v is labelled by combining the labels
of its 0- and 1-successors using the expression

label(v) = 2 � label(v:0) + label(v:1) (2)

Figure 5 shows an example of the BDD labeling. The terminal
nodes are labeled as 1 and 2, respectively, while all other labels
are obtained using the function label. Note that nodes 4 and
5 correspond to the functions x and �x, respectively.

1 2

4 5

T4 8 9 15

17 31

65

Figure 5: Example BDD labels

This labeling is almost unique. There are
�
4

2

�
= 12 possible

combinations of two di�erent successors of level-3 nodes and
only two pairs of successor nodes with the same label. Number
9 can be obtained as 9 = 2 � 2 + 5 = 2 � 4 + 1, the number
9 could label two di�erent nodes, the one with successors (2,
5) and another with successors (4,1). To make the labeling
unique, we assign the label 15 to the second of these nodes
while keeping the label 9 for the �rst node, as in Figure 5.

To optimize the interconnection, we allow that some level-
3 nodes can have both outgoing edges pointing to the same
node. (Note that this node would not exist in standard BDDs.)
When the successor of such node is at level 4 (node 4 or 5),
we label the level-3 node as T4 or T5. An example of node T4
is shown in Figure 5. Note that when computing a label for a
node at level 2 (e.g. node 17 in the �gure), the value of T4 is
4.

The interconnect patterns can be analyzed with the above
unique labeling. For each node v, the set of successors S(v) is
recorded. Since we want to minimize the total interconnect,
we �rst examine if the successor sets can be minimized. We
found that since there are many functions, only a few edges
can be eliminated by permuting the variables in some of the
functions.

Analysis of the structure of the given representative func-
tions shows much regularity. For example, there is no edge 0
(dashed edge) between the root and the level-3 nodes. The
goal is to exploit the regularity in the prototype functions to
simplify the structure of the Super BDD.
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4.2 Generating Super BDD (SBDD.4)

The number of nodes in SBDD.4 is calculated in the previous
step, and it remains to determine the interconnections. The
�rst step in this process consists of assigning the node labels
to the physical nodes in SBDD.4. There are 12 possible labels
for the level-3 nodes, but only 4 such nodes are present in the
SBDD.4. Therefore, these nodes must be capable of realizing
several functions. The functions should be assigned to these
nodes, to minimize the total number of switches.

Several iterations were made in permuting the variables,
to minimize the number of switches. By exchanging variables
x1 and x2 in functions f185 and f207, variables x1 and x3 in
f205; f206, and ordering the �rst three variables as x2; x3; x1 in
f201, we eliminated two switches, a1 and d2, from the SBDD.4.

The encoding of the switches is analyzed and grouped with
respect to the con�guration of the �rst four switches. All the
functions are enumerated in Table 7. All possible functions
assigned to the four L3 nodes are given in columns. While
nodes 2 and 3 (called L3.2 and L3.3) have to realize all possible
functions, the other two L3 nodes have to realize just a few,
which leads to a saving in the number of switches. Thus,
the SBDD.4 can be simpli�ed as shown in Figure 6. This
implementation requires 15 programming switches and hence
15 programming bits.

4.3 Input encoding for programming bits

To reduce the number of programming bits, we can encode
the possible switch settings. To solve this problem, we use the
input encoding algorithm in NOVA, which is included in the
SIS [9] package. Since the minimal-length encoding is expected
to be expensive, we consider several other encoding strategies.

The four switches S1 through S4 can be encoded us-
ing three bits for 5 possible con�gurations, corresponding to
groups G1 to G5, as shown in Table 8. This leads to a simple
decoder:

S1 = B3

S2 = B1

S3 = B2 �B3

S4 = B2 +B3

G B1 B2 B3 S1 S2 S3 S4

G1 0 0 0 0 x x x
G2 0 0 1 1 0 x 0
G3 0 1 1 1 0 x 1
G4 1 0 1 1 1 0 1
G5 1 1 1 1 1 1 1

Table 8: Encoding for �rst four switches

Fourteen programming bits are needed in this arrangement.
Note that group G5 in Table 7 has exactly one function in
it (the 4-input XOR), which costs a programming switch, S3.
The edge emanating from this switch is marked as "XOR" in
Figure 6.

Further reduction in the number of programming bits can
be achieved through more careful encoding of functions in each
of the existing 5 groups. Notice that this encoding does not
a�ect the speed of the circuit. All the additional circuits are
placed between the memory cells and switches, and they are
not in the path of the signal.

We were able to remove two more bits in the encoding of
the function needing less than 10 gates for all the decoding
circuitry in the ULM.4. The encoding of functions is based
on sharing bits among the sub-blocks and encoding the XOR
function as part of group G4. We omit the details of this
encoding for lack of space. The threshold of 10 gates is se-
lected for the decoding circuitry because with this overhead,
our ULM.4 is still smaller than LUT.4. Thus, we can realize
a block that uses 12 programming bits with no extra expense
in the hardware. To go further, to the theoretical limit of 8
bits, one must rely on the general-purpose input encoding pro-
grams, combined with pre-encoding. We tried several encod-
ing alternatives, but the circuits that we obtained in this way
were too expensive to be used in realistic blocks. It is an open
question if there exists a solution that uses less than 12 bits
with a reasonable amount of decoding circuitry. Note that all
encodings in this section are given for an npn-equivalent/dual-
output class of ULMs, and that one more bit should be added
for np-equivalent circuits.

5 Other Issues

5.1 Technology mapping using ULMs

The ULM blocks provide the same functionality as lookup
tables, but with a restriction on the ordering and polarity of
variables. For recognizing the order and polarity of inputs
and outputs of each block, we have implemented an algorithm
based on Generalized Reed-Muller form matching, as in [14].

Assuming that the interconnection resources in FPGA al-
low arbitrary permutations of inputs to logic blocks, the only
remaining constraint is the polarity of input variables to each
block. There can be a polarity disagreement, when both po-
larities of a signal are needed. Then, some of the ULM-based
blocks must be replicated. The study in [8] found, using the
MCNC benchmarks, that their ULM needs both polarities for
only 6.6% of the nodes, and that the required increase in the
number of blocks is 9% compared to LUT.3. Since that study
was done using a block with incomplete functionality, the in-
crease in the number of logic blocks using our block of the
same granularity (ULM.3) can be in the worst case 6.6%. It is
su�cient to replicate those blocks with polarity disagreement
at the output. Also, since nodes tend to fanout less when gran-
ularity of the logic block increases, the results for our larger
blocks (ULM.4) can only be better.



G S1S2S3S4 L3.1 L3.2 L3.3 L3.4 #

G1 0xxx x 1, 4, 6, 10, 13 2, 6, 8, 10-15 x 16
G2 10x0 4, 6 T5,T4,2,4-8,10-15 T5,T4,2,1,4-15 x 93
G3 10x1 x 2, 10, 12-15 T5,T4,2,1,4-15 10, 13 59
G4 1101 4, 6 T5, 8, 10-15 T5,4,5,6,8-15 8,10,13,14 39
G5 1111 x 14 13 14 1

Table 7: Encoding groups

5.2 Functionally incomplete blocks

The motivation of work in [8] and [13] was to investigate the
construction of functionally incomplete blocks. Their blocks
implemented 10 out of 14 and 201 out of 208 representa-
tive functions, respectively. It is interesting to note that us-
ing standard approaches for designing a functionally complete
ULM.3, the best solution requires 5 input pins [11]. Hence,
the only reason why 4 pins were su�cient in [8] is that the
block was incomplete. The price of such complete LUT.3 re-
placement is obviously too high. Since our ULM.3 is complete
and requires a minimum number of programming bits with no
area or delay overhead compared to LUT.3, there is no need
to consider incomplete blocks for 3-variable functions.

The SBDD.4 construction given here is useful in consider-
ing incomplete blocks as well. It is obvious from our ULM.4
that eliminating the 4-input XOR function (f208) would re-
move one switch and one programming bit in the block. An-
other bit can be saved by considering the node L3.4 in Figure 6,
for which there are 4 possible functions. Analysis shows that
one switch can be eliminated by excluding functions f185 and
f202 to f206. Hence, the logic block based on our ULM.4 that
implements all but these seven functions requires 12 program-
ming bits, with the total decoding circuits consisting of only
two 2-input gates. For comparison, the block in [13] realizes
the same number of functions, but 8 input pins are required.

One more bit can be removed by excluding two more func-
tions, f201 and f207, but with the added price of one more
2-input decoding gate. This incomplete ULM circuit would
require 11 bits for dual-output block and 12 bits for single-
output np-equivalent block and it would realize 199 of 208
class representatives.

6 Concluding Remarks

We presented a class of FPGA logic blocks based on the con-
cept of ULMs, which are functionally complete if the permu-
tations and negations of inputs are provided outside the block.
As in SRAM-based FPGAs, we use separate programming
bits, which is of advantage in practical FPGAs. Previously
considered ULMs require costly additional inputs to the logic
blocks.

We also presented a methodology for designing such
blocks, using BDDs for both classi�cation and realization of
Boolean functions. As an illustration, we showed detailed de-
signs of replacements for 3- and 4-input lookup tables. In the
case of ULM.3, only 5 programming bits are needed, for a
block slightly smaller than LUT.3. For ULM.4, several alter-
natives with di�erent tradeo�s between the number of pro-
gramming bits and the complexity of the circuit are consid-
ered. A circuit that requires 13 bits is devised, such that it
is smaller than LUT.4. Furthermore, while the known ULM
circuits considered for application in FPGAs [8], [13] are func-
tionally incomplete, our construction o�ers the complete func-
tionality at a reasonable price.

The proposed blocks are particularly interesting for FP-
GAs that will cater to the emerging area of recon�gurable

computing.
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