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Abstract In this paper, we show that a new set of visual
features, derived from a feed-forward model of the primate
visual object recognition pathway proposed by Riesenhuber
and Poggio (R&P Model) (Nature Neurosci. 2(11):1019–
1025, 1999) is capable of matching the performance of
some of the best current representations for face identifica-
tion and facial expression recognition. Previous work has
shown that the Riesenhuber and Poggio Model features can
achieve a high level of performance on object recognition
tasks (Serre, T., et al. in IEEE Comput. Vis. Pattern Recog-
nit. 2:994–1000, 2005). Here we modify the R&P model in
order to create a new set of features useful for face identi-
fication and expression recognition. Results from tests on
the FERET, ORL and AR datasets show that these fea-
tures are capable of matching and sometimes outperforming
other top visual features such as local binary patterns (Aho-
nen, T., et al. in 8th European Conference on Computer Vi-
sion, pp. 469–481, 2004) and histogram of gradient features
(Dalal, N., Triggs, B. in International Conference on Com-
puter Vision & Pattern Recognition, pp. 886–893, 2005).
Having a model based on shared lower level features, and
face and object recognition specific higher level features, is
consistent with findings from electrophysiology and func-
tional magnetic resonance imaging experiments. Thus, our
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model begins to address the complete recognition problem
in a biologically plausible way.
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1 Introduction

Over the past ten years, appearance based approaches to face
identification and object recognition have become increas-
ingly popular. This rise has been supported by increase in
machine learning methods that use statistical and probabilis-
tic methods to discriminate between patterns found in nat-
ural images (Pontil and Verri 1998; Jones and Viola 2003).
Yet it is becoming increasingly clear that the development
new machine learning algorithms alone might not be the
best approach to solving recognition problems, and that the
feature set used has a large impact on the performance of
these appearance based algorithms. Indeed, many of the best
recognition algorithms in recent years have achieved their
high levels of success due to new features sets (Lowe 2003;
Ahonen et al. 2004). However, it still remains unclear what
method should be used to derive new feature sets. Since the
human visual system is the only example of a system that
can perform identification tasks at a level of accuracy that
is useful for most applications, it seems natural to try to un-
derstand and emulate how it represents visual data in order
to derive features that will be useful in computer vision sys-
tems.

Within the field of computer vision recognition, object
recognition and face identification are generally treated as
separate problems with different feature representations, al-
gorithms, and test sets used for each task. There are several
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reasons why this division exists. The most obvious reason is
one of practicality. If a system is designed to identify crim-
inals, for example, having it report that it has recognized a
zebra is a useless feature. The second, more interesting rea-
son is that perhaps these tasks require different processing,
feature representations or algorithms to be effective. Face
identification requires the ability to detect subtle changes to
a similarly shaped class of objects, while object recognition
requires the ability to deal with large variations within an
object class by finding specific indicative features, ignoring
many other less relevant details. Despite these differences,
many lower level problems, such as handling illumination
changes, are common to both tasks. Moreover, many higher
level classifiers that assign labels to given sets of features,
are often similar among such systems. Reusing early repre-
sentations and later stage classifiers offers not only a possi-
ble increase in efficiency, but also creates a highly versatile
system that can be readily adapted to work with new visual
tasks.

Literature from systems neuroscience shows that the pri-
mate visual system also uses a strategy of shared general
early level processing that branches off into more specific
higher level representations. Almost all visual information
that reaches higher levels of the cortex first passes through
center-surround processing in the retina and lateral genic-
ulate nucleus (LGN), as well as through an early localized
edge/spatial frequency representation in the primary visual
cortex (V1) (Zigmond 1999). Later processing, specialized
for identifying the location of an object, or recognizing what
an object is, is done in different brain regions (Ungerleider
and Mishkin 1982). Within regions involved in visual identi-
fication, there are areas that are more active for face images
when compared to images of other objects (Kanwisher et al.
1997). Whether these areas are processing information in a
fundamentally different way, or whether the same process-
ing is being applied but different features are being used for
faces and other objects, still remains an open question.

In this paper, we expand on the R&P model of object
recognition (Riesenhuber and Poggio 1999) by building a
new set of face-specific features. Similar to the strategy used
in the visual system, shared early level representations are
pooled in different combinations to build later stage face
and object specific features. These face representations can
then be run through the same types of classifiers, such as
Nearest Neighbor Classifiers and Support Vector Machines
to achieve a level of classification accuracy that matches
some of the best algorithms currently available. By com-
bining these results on face identification with the high per-
formance previously shown for object recognition, the cur-
rent implementation of the R&P model is starting to resem-
ble a neurologically based computational system capable of
approaching human performance on the ‘complete’ visual
recognition problem.

2 Background

Below we discuss some advances in the field of face iden-
tification, and give a general background on the biological
inspired image descriptors we use.

2.1 Face Identification Algorithms

Much progress has been made in the field of face identifica-
tion and expression recognition. Commercial systems have
been developed, and there are several standardized datasets
to compare results against (Bolme et al. 2003; Phillips et
al. 2002; Martinez and Benavente 1998). A few promi-
nent approaches that have achieved a reasonable amount
of success include applying Linear Discriminant Analysis
(LDA) and Principal Component Analysis (PCA) on the
pixel intensities of the images (Etemad and Chellappa 1997;
Turk and Pentlanbd 1991), as well as using a Bayesian In-
tra/Extrapersonal Classifier on the differences between pixel
intensities of two images (Moghaddam et al. 1996). More
recently, techniques using Local Binary Patterns (LBP) as
features have outperformed these algorithms on the FERET
and ORL datasets (Ahonen et al. 2004).

In this paper, we will primarily compare our results
against LBPs and histograms of oriented gradient (HOG)
representations. A comparison of our results to LBPs shows
that our features can match the performance of one of the
top representations used for face and expression identifica-
tion. Comparing our results to histograms of oriented gradi-
ents illustrates that not all representations of oriented filters
are equivalent. We also compare our results on the FERET
database to PCA, LDA, and Bayesian Intra/Extrapersonal
Classifier algorithms using the Colorado State University
test system (Bolme et al. 2003).

Local Binary Patterns were originally introduced as a tex-
ture descriptor by Ojala (Ojala et al. 1996), and have sub-
sequently been used as face and expression identification
features (Ahonen et al. 2004; Shan et al. 2005). An LBP
is created at a particular pixel location by thresholding the
3 × 3 neighborhood surrounding the pixel with the central
pixel’s intensity value, and treating the subsequent pattern
as a binary number. A more general version of LBPs can be
generated by specifying a particular radius around a central
pixel, and a sampling value indicating the number of pixels
to use from this radius. For example, specifying a radius of
2 and a sampling value of 16 (denoted (16, 2)), would con-
sist of taking all the outer pixels in a 5 × 5 neighborhood
surrounding the central pixels (see Ahonen et al. 2004 for
more details). One further refinement consists of using only
uniform binary patterns which are those binary patterns that
have at most 2 transition from 0 to 1. For example, 1000111
is a uniform binary pattern while 1001010 is not. LBP rep-
resentations for a given image are generated by dividing an
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image into several windows and creating histograms of the
LBPs within each window. In such representations, all non-
uniform LBPs are treated as equivalent and given one his-
togram bin.

Histograms of Oriented Gradients (HOG) representations
were introduced by Dalal and Triggs (2005) and have been
shown to achieve some of the highest performance when
used for pedestrian detection. Conceptually, these features
are similar to the SIFT descriptor (Lowe 2003). First a his-
togram is defined wherein each bin represents a spatial lo-
cation within the image as well as a particular orientation
on the unit circle. In the published work the best results
were obtained with one bin per 8 pixels in either spatial
direction, and four or more orientations uniformly distrib-
uted from 0◦–180◦. Next, the magnitude and orientation of
the brightness gradient is computed at each pixel. In order
to calculate the feature vector, the magnitude of the gradi-
ents are added to the appropriate histogram bins by linearly
interpolating between the nearest eight bin centers in both
location and orientation. Finally, a normalization step is ap-
plied. In this paper we use a multi-scale version of these
features by sub-sampling each image at half octave inter-
vals over three octaves. Normalization is applied separately
to each half octave. Preliminary tests on the ORL dataset
(Samaria and Harter 1994) showed that this multiscale con-
figuration achieves the best performance. It should be noted
that HOG features have not been shown to be effective for
face identification. We include them in our experiments so
that we have a comparison against other front-end gradient
based features.

2.2 R&P Model of Object Recognition

The R&P model of object recognition consists of several
multi-scale hierarchical feed-forward layers of processing
that correspond to different layers of processing found in the
primate visual system. This model follows a similar struc-
ture as the classic Neocognitron model (Fukushima 1980),
with alternating layers of simple (S) and complex (C) cell
units creating increasing complexity as the layers progress
from V1 to inferior temporal cortex (IT). One notable differ-
ence is that when pooling inputs at the C layers, a maximum
operation over the S units is used rather than their sum.

The specific implementation of the model used for ob-
ject recognition contains the following parameters. The first
layer of the model, called the S1 layer, is created by con-
volving an array of Gabor filters at four orientations and
16 scales, over the input image. Pairs of S1 units at adja-
cent scales are then grouped together to create 8 ‘bands’ of
units for each of the orientations. The second layer, called
the C1 layer, is then created by taking the maximum re-
sponse within a local spatial neighborhood and across the
scales within a band, to create a representation that contains

8 bands × 4 orientations. By taking the maximum filter re-
sponse value within a small range of position and scale, tol-
erances to small shifts and changes in scale are built into
the C1 representation. For the object recognition represen-
tations used in Serre et al. (2005), two higher level layers,
called S2 and C2 layers, are built. In the S2 layer, conjunc-
tive combinations of C1 units are learned from patches ex-
tracted from natural images. This combination of lower level
features creates a higher level representation that is more se-
lective and thus useful for discriminating between classes of
objects. These S2 units are then convolved over an entire im-
age and C2 units are assigned the maximum response value
found from this convolution. Results from experiments us-
ing these C2 features achieve a high level of performance
on a wide spectrum of object recognition tasks (Bieschi and
Wolf 2005; Serre et al. 2005).

3 S2 Facial Features

The new set of facial identification features created in this
paper, which we call S2 facial features (S2FF), contain three
modifications to the R&P C2 features used for object recog-
nition. The first modification consists of adding a center-
surround stage of processing to each scale band prior to
the extraction of S1 layer Gabor features. This processing
is done by dividing the intensity value of each pixel by the
mean of its intensity value and the intensity values of sur-
rounding pixels within a window that is the size of the Gabor
filter at a given scale. For example, if we are on the small-
est scale where each Gabor filter occupies a 7 by 7 pixel
region, then the intensity of each pixel is normalized by the
mean value in a 7 by 7 region. From a biological perspective,
this processing is analogous to the ‘center-on surround-off’
center-surround processing that occurs in the retina and in
the lateral geniculate nucleus of the thalamus. From a com-
putational perspective, center-surround preprocessing can
eliminate intensity gradients due to shadows, and creates a
representation similar to the self-quotient images that has
been shown to be effective for face recognition (Wang et
al. 2004). Results from our algorithm with and without this
center-surround processing are reported in Sect. 5.

It should be noted that a more complete model of the
retina and LGN would also include center-surround process-
ing analogous to ‘center-off surround-on’ center-surround
cells. We have decided to exclude this step of processing for
the results reported in this paper since adding this process-
ing doubles the number of features and hence memory and
computational time required to run our algorithm. However,
if ‘center-off surround-on’ processing is included by invert-
ing the ‘center-on surround-off process’ (i.e., for each pixel,
dividing the surround by the pixel’s intensity), we notice a
marginal improvement in performance (see Sect. 5.1).
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Table 1 Parameters used to create the S2FF features. Filter size indicates the size of the filter used for the center-surround and the Gabor filters

1 2 3 4 5 6 7 8

filter size s 7 & 9 11 & 13 15 & 17 19 & 21 23 & 25 27 & 29 31 & 33 35 & 37

rid size NΣ 8 10 12 14 16 18 20 22

σ 2.8 & 3.6 4.5 & 5.4 6.3 & 7.3 8.2 & 9.2 10.2 & 11.3 12.3 & 13.4 14.6 & 15.8 17.0 & 18.2

λ 3.5 & 4.6 5.6 & 6.8 7.9 & 9.1 10.3 & 11.5 12.7 & 14.1 15.4 & 16.8 18.2 & 19.7 21.2 & 22.8

θ 0; π/4; π/2; 3π/4

The second modification to the R&P model was to create
face identification specific features using a linear combina-
tion of the C1 outputs. Weights for this linear combination
were derived from a training set of images using a kernelized
and regularized version of the relevant component analysis
algorithm (Bar-Hillel et al. 2005) (KR-RCA) that is capable
of dealing with high dimensional data. While using the KR-
RCA algorithm to find the weights may not be biologically
realistic, for the sake of showing that a linear combination
of C1 features are capable of achieving a high level perfor-
mance, the KR-RCA algorithm gives a convenient short-cut
for finding appropriate weights. Until more evidence is gath-
ered regarding the neurological mechanisms of perceptual
learning, KR-RCA is a simple and effective surrogate.

One final difference that exists between S2FF features
and C2 features concerns the final pooling stage. When cal-
culating the final output value for a C2 feature, the feature
is convolved over the whole image and the maximum output
response is taken as the feature’s value. This allows for large
translational movements of object parts necessary to capture
the high variability that is often seen within different ex-
emplars of objects within a particular class. S2FF features
do not perform a final maximizing stage, and thus these fea-
tures are much more localized to a particular region in space.
Such processing is better suited for identifying faces since
faces have the same general shape and can be more accu-
rately detected and aligned than most objects. Features from
all scales and orientations are combined into one vector to
form the S2FF feature set. The feature vector is subsequently
normalized by having each data point sum to one and then
taking the square root of each feature entry. Below is an al-
gorithmic description of how to create S2FF features, and
Table 1 lists the parameters that we used which are the same
as were used by Serre et al. (2005). Figure 1 diagrams the
construction of S2FF and C2 features.

1. Filter the image by applying center-surround divisive
normalization processing. This is done by dividing each
pixel’s value by the mean value of the pixel and the pix-
els in it’s neighborhood, where the neighborhood is of
size s × s. In our experiments s takes on 16 different val-
ues since we used 8 scale bands and we have two levels
within each band.

Fig. 1 A diagram showing how the S2FF and C2 features are created.
S1 and C1 features are based on (Riesenhuber and Poggio 1999), S2
and C2 constitute an alternative pathway for object recognition as used
in (Serre et al. 2005). Our contributions to the model are the addition of
center-surround processing, and the S2FF features that are analogous
to the face specific cells in the brain

2. Create the S1 representation by filtering each of the
above center-surround images with Gabor patches that
are the same size s that were used for the center-surround
filtering, at four different orientations Θ . The equation
for creating the Gabor filters is: G(x,y) = exp(−(X2 +
γ 2Y 2)/2σ 2)×cos(2πX/γ ), where X = x cos θ +y sin θ

and Y = −x sin θ + y cos θ .
3. Create the C1 representations by first taking the maxi-

mum value within a local neighborhood of size NΣ ×
NΣ , where Σ is an index for a particular scale band. This
creates a down-sampled representation. Then for each
neighborhood, take the a maximum value within each
scale band.
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4. Apply KR-RCA to a concatenated list of all the C1 fea-
tures across all orientations and scales to get the S2FF
features.

5. Normalizing the features by having the representation of
each image sum of one, and then taking the square root
of each feature before applying a classifier usually helps
improve performance.

For images in the Feret database, which are 150 ×
130 pixels, the S2FF representation has dimensionality d of
15 772 features. For ORL images, which are 112 × 92 pix-
els, there are 8556 features, and for AR images, which are
144 × 192 pixels, there are 22 204 features. Since the num-
ber of images N in the ORL, AR and Feret, databases are
400, 533, and 3368 respectively, the number of features
forms a highly overcomplete basis for these images, which
is a similar strategy that seems to be used by the primate vi-
sual system (Olshausen and Field 1997). While the dimen-
sionality of these representations could be reduced by either
choosing coarser parameters when using the R&P model,
or through features selection methods, we instead choose to
create a kernelized version of RCA that can assign a similar-
ity score to representations in this high dimensional space.
The creation of this kernelized version of RCA is described
in the next section.

4 “Kernel Regularized Relevant Component Analysis”

There is little biological evidence to guide how to build high
level image descriptors. While there are many existing al-
gorithms that can extract meaningful information from data,
only specific algorithms which satisfy the constraints listed
below are suitable for our purposes.

One significant constraint is that the method should be
multiple class, and not binary in nature. This means that
most common feature selection methods are not appropri-
ate. Another constraint is that we would like to build generic
high level face descriptors, and not ones that need to be re-
trained whenever a new face is introduced into the database.
Indeed, in several of our experiments, the individuals who
the training images were generated from were distinct from
the individuals used to create the set of probe images. While
many object recognition researchers have noted a boost in
performance when employing a multiclass SVM compared
to the nearest neighbor method, SVMs are not appropriate
here. In the FERET dataset, the gallery contains just one face
image per person, making the direct use of SVM, AdaBoost
and other commonly used classifiers unattractive (however,
see (Jones and Viola 2003) for a clever use of a such classi-
fiers for this problem).

The recent study of data driven metrics (Hastie and Tib-
shirani 1996; Bar-Hillel et al. 2005; Goldberger et al. 2004),

that are used together with a nearest neighbor classifier, pro-
vides a suitable framework. These methods embed the data
in a Euclidean space such that points that belong to the same
class are ideally close to one another while having large dis-
tances to points from other classes. We tried several such
methods on a variety of small data sets, and while it is hard
to draw definite conclusions, Relevant Component Analy-
sis (RCA) (Bar-Hillel et al. 2005) was found to perform
consistently among the best. RCA is also simple conceptu-
ally: given some data points that are known to belong to the
same cluster, e.g., they are known to originate from the same
person, the RCA algorithm finds a linear embedding trans-
formation that minimizes the distances between the points.
RCA is very similar to Linear Discriminant Analysis (LDA),
except that LDA also tries to maximize the between class
covariance.

Let the points {xj1, xj2, . . . , xjnj
}, xji ∈ Rd belong to

such a group that has the same label (termed “chunklet” in
Bar-Hillel et al. 2005). In each group there are exactly nj

points, and N is the total number of points. Assume that
there are n such groups, which correspond, in our experi-
ments, to n individuals in the training set. The metric em-
bedding is given (implicitly) as a positive-definite matrix B

such that the new distance between two points x and x′ is

given by ((x − x′)�B(x − x′)) 1
2 . Let mj be the center of the

j chunklet, i.e., mj = 1
nj

∑nj

i=1 xji . The RCA method mini-
mizes the distances between the points in each chunklet by
solving the following optimization problem:

min
B

1

N

n∑

j=1

nj∑

i=1

(xji − mj)
�B(xji − mj) s.t. |B| ≥ 1,

where the constraint on the determinant prevents B from
shrinking to zero.

This minimization problem is easy to solve algebraically,
and the solution is given (up to scale) as B = Ĉ−1 where:

Ĉ = 1

N

n∑

j=1

nj∑

i=1

(xji − mj)(xji − mj)
�.

The RCA algorithm has several disadvantages that we aim
to rectify below:

1. It requires the computation and inversion of a d × d

matrix Ĉ. For problems of the size we consider below,
and many other feature sets used currently in vision,
this might be difficult and time consuming on a standard
hardware.

2. Due to the inversion operator, it is unstable. This means
that very small perturbations to the data can alter the out-
coming result B dramatically.

3. As is, it works only for linear kernels.
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The authors of (Bar-Hillel et al. 2005) suggest to com-
bine the RCA transformation with a dimensionality reduc-
tion step, to help stabilize the algorithm, thus partly solving
problem 2. However, in our experiments the dimensionality
reduction did not provide satisfactory results. One reason
may be that such a solution ignores directions that in the
data that were not expressed during the training stage (see
also the comparison with the pseudo-inverse solution below,
which can be seen as one particular example of dimensional-
ity reduction). Instead we found that a better alternative was
to add a regularization term to the matrix Ĉ prior to inver-
sion. The computational problem (1) is solved by working
in the dual space, or in other words, by kernelizing the algo-
rithm. This also enables us to work with non-linear kernels,
which potentiality makes the algorithm much stronger. In
our experiments, however, we did not observe a large ad-
vantage to non-linear kernels.

Regularization. Maybe the simplest way to add stability
to the algorithm is to add the demand that all the points that
are identical in all d coordinates except for one coordinate
will have a small distance between them. This can be en-
forced by adding d groups of the form {xk, xk + λ0ek}, k =
1, . . . , d , where xk is an arbitrary vector, ek is a vector of all
zeros except for the kth coordinate which is one, and λ0 is a
small constant that determines the amount of regularization.

With these added groups, the original matrix Ĉ would
become the following regularized matrix:

Ĉλ = Ĉ +
d∑

k=1

λ2
0

2
eke

�
k = Ĉ + λId,

where λ = λ2
0

2 and I is the identity matrix in Rd . By apply-
ing the simple smoothness demand we therefore obtain the
Tikhonov regularization, with a constant λ.

In a preliminary set of experiments, we found that the
performance is steady across a wide range of regularization
parameters (λ). For example, for the ORL dataset (Samaria
and Harter 1994), there is a large plateau of performance at
the level of 96–99% depending on the features. This plateau
happens for λ values between 10−10 to 10−3 times the
largest eigenvalue of the covariance matrix Ĉ. However, by
taking the regularization parameter to zero, which is equiv-
alent to taking the pseudoinverse of Ĉ, performance drops
by 3–10% depending on the feature representation. Having
a regularization parameter which is too high (more than a
tenth the largest eigenvalue of the covariance matrix Ĉ) re-
duces performance by 1–5%. Throughout our experiments
in Sect. 5, we used the regularization value of 10−4 times
the largest eigenvalue of Ĉ.

Kernalization. Let us order all the training points as the
columns x1, x2, . . . , xN of the matrix X ∈ Rd×N and let
c(k) be the chunklet indicator of point k, i.e., if point k

belongs to group j then c(k) = j . Let Rj ∈ {0,1}N be the

point indicator for class j , i.e., Rj (i) = 1 ⇔ c(i) = j . Con-
sider the matrix Ĉ above, and notice that it can be written as
Ĉ = ZZ�, where

Z = [
x1 − mc(1)|x2 − mc(2)| · · · | xN − mc(N)

] = XM,

M = IN −
n∑

j=1

1

nj

RjR
�
j .

Let K = X�X be the kernel matrix. As in many other kernel
methods (Schölkopf and Smola 2002), the matrix X itself
can be of infinite dimension or computationally infeasible,
but it is sufficient to assume that we can compute the dot
product of two of its columns by employing some kernel
function.

The dual of the matrix Ĉ = (XM)(MX�) is the ma-
trix K̂ = (MX�)(XM) = MKM which is a matrix of size
N × N . As we will show below, in order to compute the
RCA transform it is sufficient to manipulate the matrix K̂ ,
avoiding the need to manipulate a d × d matrix.

Let D(s) denote the diagonal matrix with the elements
of the vector s along its diagonal. Consider the follow-
ing three Singular Value Decompositions: Ĉ = UcD(sc)U

�
c ,

K̂ = UD(s)U� and Z = XM = UzD(sz)V
�
z . Since Ĉ =

ZZ� and from the properties of SVD Uc = Uz, similarly,
K̂ = Z�Z and therefore U = Vz. For the same reasons
sz(i) = √

sc(i) = √
s(i), i = 1..min(d,N). The decompo-

sition XM = UzD(sz)V
�
z also implies that

Uc = Uz = XMVzD(sz)
−1 = XMUD(s)−

1
2 .

Assume that the decompositions above are thin decomposi-
tion, i.e., that the matrices U,Uc,Uz,Vz have the minimal
number of columns and that all the elements of the vectors
s, sc, sz are nonzero. The thin SVD decomposition can be
recovered from the usual SVD decomposition by dropping
columns out of the matrices, and trimming the s vectors.

Let Ūc be an orthogonal basis to the subspace orthogo-
nal to the matrix Uc. Note that Id = UcU

�
c + ŪcŪ

�
c . Below

s + λ means that we add the scalar λ to every element of the
vector s.

Ĉλ = Ĉ + λId = UcD(sc + λ)U�
c + λŪcŪ

�
c ,

and therefore

B = (Ĉλ)
−1 = UcD(sc + λ)−1U�

c + 1

λ
ŪcŪ

�
c

= XMUD(s)−
1
2 D(s + λ)−1D(s)−

1
2 U�MX�

+ 1

λ
(Id − XMUD(s)−

1
2 D(s)−

1
2 U�MX�)

= 1

λ
Id + XMU(D(s)−1D(s + λ)−1

− D(λs)−1)U�MX�.
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Notice that in order to compute expressions of the form
x�Bx′ it is required to compute the scalar x�x′ and the vec-
tors x�X and X�x′. These are readily computed using the
kernel function.

This new form of RCA (which we call KR-RCA), can
handle much higher dimensional feature spaces than the
original RCA (Bar-Hillel et al. 2005). In our experiments,
however, we did not observe a large advantage to non-linear
kernels, so the results for all experiments shown below are
based on a form of KR-RCA that uses a linear kernel.

5 Experiments

To test the performance of S2FF representation for face
identification, the FERET and ORL datasets were used.
Tests using the FERET dataset were done using the CSU
Face Identification Evaluation System, which implements
the FERET test for semi-automatic face recognition algo-
rithms with a few minor modifications (Bolme et al. 2003;
Phillips et al. 2002). The CSU system preprocesses the
images by registering eye coordinates, cropping an ellip-
tical mask to exclude non-face regions and then equaliz-
ing the histogram of gray level intensities. For each algo-
rithm/representation tested, a distance matrix is generated
that contains a measure of the similarity between all pairs of
images in the dataset. These distance matrices are then used
to test different probe and gallery image sets to evaluate the
performance of various algorithms. In this paper we report
the results of the permutation tool, which uses a subset of
FERET that contains 160 unique subjects, each with 4 im-
ages. On each iteration of the test, one probe image and one
gallery image is chosen for each of the 160 subjects, and the
result is marked correct if the shortest distance from a given
probe is to the gallery image of the same subject. The per-
mutation test runs for 10 000 iteration and returns statistics
including the mean recognition rate, the 95% confidence in-
terval, and the probability that one algorithm outperforms
another.

The CSU system comes with implementations of PCA,
LDA, Bayesian Intra/Extrapersonal face identification algo-
rithms whose performance we compare against our S2FF
features. Results reported for the Bayesian Intra/Extra Per-
sonal Classifier used the maximum a posteriori estimate
(Bayesian MAP), which gave a higher accuracy than us-
ing the maximum likelihood estimate. Results for the PCA
eigenfaces used the Mahalobis cosine angle, which showed
higher performance than using the Euclidean distance met-
ric. We also compare our results with results obtained from
using a multi-scale histogram of oriented gradients (HOG)
representation similar to that used in (Dalal and Triggs 2005)
for pedestrian detection as well as to results obtained using
LBP. Parameters for the LBP features consisted of using uni-
form binary patterns with a (16, 2) radius neighborhood, a

18 × 21 window size, thus copying the parameters used in
(Ahonen et al. 2004). KR-RCA was also always applied to
the HOG features since it always improved the results for
these features.

Two different training sets were used to evaluate the per-
formance of different feature sets and to measure how ef-
fective KR-RCA is in increasing each feature set’s perfor-
mance. The first training set consisted of a subset of the
‘CSU standard’ training (called feret_training_x2.srt in the
CSU system). Images in this subset come from the fa and
dup1 splits of the FERET dataset, and this training set is
used to train the PCA, LDA and Bayesian MAP algorithms
in the CSU system. The second training set consisted of half
the images from the fc split of the FERET dataset (images
1110–1206) and the corresponding images from the fa split.
This subset, called subfc, was used in the experiments re-
ported by Ahonen et al. in their paper showing that LBPs are
good features for face identification (Ahonen et al. 2004).

The ORL dataset (Olivetti Research Laboratory, Cam-
bridge) consists of 10 different images of 40 subjects
(Samaria and Harter 1994). The images vary along several
dimensions including facial expression, scale up to 10%, and
tilting and rotating of the head up to approximately 20 de-
grees. Tests on this dataset were done by randomly choosing
5 images of each individual as probe images and 5 images as
gallery images, for 100 random permutations. Mean accu-
racies for S2FF, multi-scale HOG features, and for uniform
LBP using a (16, 2) radius and with 30 × 37 window size
are calculated, again exactly copying the parameters used in
Ahonen et al. (2004). When applying KR-RCA, the gallery
images were used as a training set.

Tests on face identification under different lighting con-
ditions were also done on the AR data set (Martinez and
Benavente 1998). In these experiments, images under three
illumination conditions, left, right and frontal lighting were
used as probes, and the gallery of images consisted of one
neutral lighting image. When KR-RCA was applied, all four
images of half the individuals were used for training, and
the probe images consisted of the three illumination images
taken from the other half of the individuals who were not in
the training set. The gallery images for this experiment con-
sisted of a single image of each individual in the probe set
under the neutral lighting conditions.

5.1 Results

Table 2 shows the results from tests on the FERET dataset
for the permutation test and for the fb, fc, dup1 and dup2
splits of the data, using the CSU standard training set. Re-
sults from the CSU permutation test show that the S2FF
representation achieve a statistically significant higher mean
rank one identification rate than the other five representa-
tions shown in the table (P(S2FF>other features)>0.995).
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Table 2 Percent correct identification on the FERET database using ‘CSU standard training set’ for training

FB FC DUP1 DUP2 Mean Lower Upper

S2FF 91.5 95.4 75.9 72.2 82.5 77.5 86.9

HOG 89.8 43.3 65.1 55.1 72.8 67.5 78.1

LBP w/ KR-RCA 92.2 51.5 67.7 56.4 73.0 68.1 78.1

LBP original 93.3 41.2 60.9 49.6 75.3 70.6 80.0

Bayesian_MAP 81.7 35.1 50.8 29.9 72 66.9 77.5

LDA 71.7 43.2 45.3 18.9 68.9 63.1 77.4

PCA_MahCosine 85.1 66.0 44.0 21.8 72.2 66.2 77.5

Fig. 2 Rank curves comparing S2FF, LBP, HOG, LDA, PCA Bayesian MAP face identification accuracies on different splits from the FERET
database (a) FB, (b) FC, (c) DUP1, (d) DUP2. Training for the different representations was done using the CSU standard training set. As can be
seen, S2FF features have a higher performance than other features on most splits. Image were generated by CSU Face Identification Evaluation
System (Bolme et al. 2003)

Figure 2 shows the rank curves for the different representa-
tions.

Results on the FERET dataset using the subfc training
set (as used in Ahonen et al. 2004) are shown in Table 3.
Here S2FF features again receives a higher mean score on

the permutation test than LBP and HOG representations al-
though the difference between S2FF and LBP is not statisti-
cally significant at the alpha = 0.05 level - P(S2FF > LBP)
= 0.89. One additional method used in Ahonen et al. (2004)
to boost the performance of LBPs was to add a set of weights
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Table 3 Percent correct identification on the FERET database using subfc split for training

FB FC DUP1 DUP2 Mean Lower Upper

S2FF 90.5 96.4 56.9 65.0 81.9 76.9 86.2

HOG 90.0 74.2 54.0 46.6 75.8 70.6 80.6

LBP with KR-RCA 91.1 76.8 52.9 41.5 78.7 73.8 83.1

LBP and weights 96.7 68.0 64.3 59.4 79.5 75 83.8

LBP weights and KR-RCA 94.1 84.0 55.5 51.3 82.7 78.1 86.9

Combined S2FF and LBP 95.0 91.2 61.6 58.5 84 79.4 88.1

Table 4 Percent correct on face identification using the ORL and AR datasets

ORL w/o KR-RCA (L2) ORL with KR-RCA AR w/o KR-RCA AR with KR-RCA

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

S2FF 96.2 1.4 99.1 0.8 97.7 1.2 99.8 0.4

LBP 97.7 1.2 99.1 0.9 96.1 1.1 98.9 0.7

HOG 95.5 1.4 98.7 1.3 96.7 1.3 98.4 1.0

Table 5 Comparing different contribution to the S2FF performance on face identification (FERET mean results using the CSU permutation test)

Variant of SS2FF FERET ORL AR

Original C1 features - No center-surround or KR-RCA 74.5 95.5 96.9

Center-surround, but no KR-RCA 74.9 96.2 97.7

No center-surround but with KR-RCA (subfc training) 76.1 98.7 99.2

No center-surround but with KR-RCA (CSU standard training) 74.5 N/A N/A

Center-surround, KR-RCA, but no MAX (subfc training) 77.5 96.8 97.6

Center-surround, KR-RCA, but no MAX (CSU standard training) 52.7 N/A N/A

S2FF CSU standard training 82.5 99.1 99.8

S2FF subfc training 81.9 N/A N/A

S2FF_average CSU standard training 84.2 99.2 99.8

S2FF_average subfc training 82.1 N/A N/A

to the histograms derived from different windows in the im-
age before computing the chi-squared distance measure be-
tween images. The weights for each window were calcu-
lated using the subfc training set and classifying image us-
ing only one window at a time. The windows whose classi-
fication rate was below the 0.2 percentile received a weight
of 0, windows whose rate was above the 0.8 and 0.9 per-
centiles received weights of 2 and 4 respectively. Results
using this weighting are also shown in Table 3. Here we
see that once the weights are added, weighted LBP with
KR-RCA does achieve a higher mean score on the permu-
tation test than the S2FF features although the difference
is not statistically significant P(KR-RCA weighted LBP >

S2FF) = 0.8072. When the weighted LBP features and
S2FF are combined into the same vector and KR-RCA is
applied, the mean performance is even higher. These results,
however, are still not significantly different from the S2FF

results P(LBP+S2FF+KR−RCA > S2FF) = 0.7885. The
fact that combining LBP and S2FF achieves better perfor-
mance than either alone, suggests that there is some unique
information that each feature is capturing.

It should be noted that the LBP weights, which were ob-
tained from (Ahonen et al. 2004) can lead to overfitting be-
cause the weighting scheme was designed heuristically, pos-
sibly to maximize performance on the testing set. Thus the
results reported in Table 2 are probably the best indicator of
LBPs true level of performance on the FERET dataset. Also,
it is important to note that the original C1 and C2 features
used by Serre et al. do not perform as well as the S2FF fea-
tures created here (74.5% and 52.8% respectively vs. 82.5%
for S2FF). A breakdown of which additions made to the C1
feature to create the S2FF features lead to an increase in per-
formance can be seen in Table 5.
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Table 6 Comparison of C1 and center surround processing with the original C1 features for object recognition. Each cell shows the area under
the ROC curve of a classifier built using C2 features. The corresponding C2 features were computed based on the two types of the C1 features as
in Serre et al. (2005)

Caltech dataset C2 CS C2 CS C2 average instead of Max

Airplanes 95.4 98.9 94.2

Motorbikes 99.2 99.9 98.3

Faces 97.2 99.6 97.9

Cars 99.9 100.0 99.5

Leaves 99.0 99.4 97.3

Results from the ORL and AR face identification exper-
iments are shown in Table 4. As can be seen in the table,
LBPs and S2FF have the same level of performance on the
ORL dataset while S2FF features have the best performance
on the AR dataset.

Table 5 shows the performance of S2FF features when
the center-surround processing, and the KR-RCA transform
are left out. This table gives some insight into the relative
contributions that components give to the overall S2FF per-
formance. As can be seen, each modification by itself is only
marginally beneficial, but the combination of the modifica-
tions creates a very significant improvement. This complex
behavior, which we observed in other data sets and for other
features, makes finding effective features a difficult task. We
also looked at the affects of eliminating the maximum oper-
ator step at the C1 level, which is another way to compare
our method to other techniques based on Gabor filter repre-
sentations. To do this we used the smallest Gabor filter size
in each band and we sub-sampled the S1 units over the same
neighborhood sizes NΣ used above but without taking the
maximum value in this neighborhood first (using the larger
size filters for each scale band gave similar results). As can
be seen in Table 5, eliminating the application of the maxi-
mum operation also hurts performance.

Additionally, we tried replacing the max operation with
an average operation by taking an average over the local
neighborhood and between the two different sizes within
each scale band (i.e., replacing the max operation with the
average operation in step 3 of the algorithm listed in Sect. 3).
Results from this modification were higher than the S2FF
feature results on the Feret dataset, although not at a statisti-
cally significant level. Results between the average and max
on the ORL and AR datasets were almost identical. How-
ever, changing the max operation to an average resulted in a
decrement in object recognition performance due to the av-
eraging eliminating the invariance to scale and position that
the max operation gives (see Sect. 5.2).

Finally, we tested S2FF features with the addition of
‘center-off surround-on’ processing on the ORL and AR
databases, and noticed a marginal increase in performance
(99.97% and 99.94% respectively vs. 99.09% and 99.74%

prior to adding these features). This increase, though small,
made the S2FF features significantly better than the other
algorithms on the ORL database. Comparing the S2FF with
‘center-off surround-on’ processing on the FERET database
was not possible due to memory constraints.

5.2 Object Recognition Experiments

Since adding a center-surround stage of processing modifies
the higher level C2 object representations as well as our new
S2FF face representations, it is important to make sure that a
high level of performance is still achieved on object recogni-
tion tasks. To verify this, we compared performance on the
5 CalTech datasets of Airplanes, Motorbikes, Faces, Cars
and Leaves (Weber et al. 2000; Fergus et al. 2003; Fei-Fei et
al. 2004). The center-surround operator was applied prior to
creating the C1 representations, and then C2 features were
created from these C1 outputs as was done in Serre et al.
(2005). We used the original splits of the datasets, modi-
fied such that 30 negative examples were used for training,
and removed from the testing set. A linear SVM was used
for classification. In Table 6 we report the area under the
ROC curve. As can be seen, adding the center-surround nor-
malization does not hurt the performance of C2 features on
object recognition tasks.

We also compared the performance of C2 units built on
top of normal C1 units and C2 units built on top of center
surround C1 units, on the multiple class problem of the 101
object dataset (Fei-Fei et al. 2004). A total 1000 C2 units of
each type were computed in four different scales. The un-
derlying prototypes needed to compute the C2 units were
gathered from a set of “natural images”. Using 15 training
images per class and all the rest of the images as testing im-
ages, we got an average performance of 44.40% using the
original C2 and 43.77% using the center surround units. In
both cases the s.t.d was about 1%. Again, the differences
in performance were not statistically significant. Finally we
tested the C2 features that were created by taking the aver-
age response within a window and within each scale band
instead of taking a max, and we noticed a decrease in per-
formance.
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6 Conclusions

In this work, we showed that at set of features based on
what is known about the biology of the visual system
is capable of achieving state of the art performance on
face processing tasks. In order to construct these biologi-
cally inspired S2FF features, we modified a model of vi-
sual object recognition processing proposed by Risenhuber
and Poggio, by adding center-surround processing to han-
dle illumination changes, and introducing a new method
of combining lower level features based on a kernelized
and regularized version of the relevant component analy-
sis transformation that is capable of handling high dimen-
sional data. Tests on a several popular datasets showed
that these S2FF features are indeed as good, and some-
times better, than other popular face image representa-
tions.

Since it was previously shown that R&P C2 features
are capable of achieving some of the highest levels of per-
formance on object recognition tasks (Serre et al. 2005;
Mutch and Lowe 2006), and since our modifications to the
R&P model do not disrupt the object recognition perfor-
mance, our modified R&P model is beginning to address
the ‘complete recognition problem’ in a biologically plau-
sible way. Furthermore, using a set of shared set lower
level features to deal with processing that is common to
all visual tasks, as well as unique higher level descrip-
tors to handle task specific functions not only emulates
the processing of the human visual system, but it also
is a much more efficient than having separate processing
for all tasks. Finally, constructing a biologically plausi-
ble model of face and object recognition might not only
be useful to the computer vision community, but it could
also potentially provide insights psychologists and neuro-
scientists who are trying to understand the nature of how
faces and objects are processed in the primate visual sys-
tem.
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