

 University of Groningen

Using bipartite and multidimensional matching to select the roots of a system of polynomial
equations
Bekker, H.; Braad, E.P.; Goldengorin, B.

Published in:
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bekker, H., Braad, E. P., & Goldengorin, B. (2005). Using bipartite and multidimensional matching to select
the roots of a system of polynomial equations. In O. Gervasi, ML. Gavrilova, Kumar, A. Lagana, HP. Lee, Y.
Mun, D. Taniar, & CJK. Tan (Eds.), COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA
2005, VOL 4, PROCEEDINGS (pp. 397-406). (LECTURE NOTES IN COMPUTER SCIENCE; Vol. 3483).
Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://research.rug.nl/en/publications/dad58fcd-6787-43e9-a438-b5df0e300d5e

Using Bipartite and Multidimensional Matching
to Select the Roots of a System of

Polynomial Equations

H. Bekker∗, E. P. Braad∗, and B. Goldengorin∗∗

∗ Department of Mathematics and Computing Science,
∗∗ Faculty of Economic Sciences, University of Groningen,

P.O.Box 800, 9700 AV Groningen, The Netherlands
bekker@cs.rug.nl, e.p.braad@wing.rug.nl, b.goldengorin@eco.rug.nl

Abstract. Assume that the system of two polynomial equations f(x, y)
= 0 and g(x, y) = 0 has a finite number of solutions. Then the solution
consists of pairs of an x-value and an y-value. In some cases conven-
tional methods to calculate these solutions give incorrect results and
are complicated to implement due to possible degeneracies and multiple
roots in intermediate results. We propose and test a two-step method
to avoid these complications. First all x-roots and all y-roots are calcu-
lated independently. Taking the multiplicity of the roots into account,
the number of x-roots equals the number of y-roots. In the second step
the x-roots and y-roots are matched by constructing a weighted bipartite
graph, where the x-roots and the y-roots are the nodes of the graph, and
the errors are the weights. Of this graph the minimum weight perfect
matching is computed. By using a multidimensional matching method
this principle may be generalized to more than two equations.

Keywords: combinatorial optimization, bipartite matching, system of
polynomial equations.

1 Introduction

Consider a system of two polynomial equations

f(x, y) = 0 g(x, y) = 0 (1)

with numerical constants, and of low degree say ≤ 6. Assume that of this system
it is known that the number of solutions in C is finite. Solving this system, using
floating point arithmetic, is no problem for a computer algebra system, say
MAPLE c©. In general the calculations consist of two steps. First, with symbolic
computations, a Groebner basis or resultants are calculated, and as a second step
numerical calculations take place. For testing and prototyping this approach is
very useful.

In this article a different situation is considered, that is, we assume that some
of the constants in (1) are symbolic and we assume that (1) has to be solved

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3483, pp. 397–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

398 H. Bekker, E.P. Braad, and B. Goldengorin

for many thousands of problem instances per second for different values of the
symbolic constants. Then, for the sake of speed, one is forced to program the al-
gorithms in a conventional programming language, say C 1. It is not acceptable,
however, to copy the complete process as performed by the computer algebra
system into C because the symbolic computations may be very time consuming,
even in C. Therefore, the symbolic computations should be performed in a pre-
processing phase by the computer algebra system, and the resulting equations
should, for every problem instance, be solved by numerical methods implemented
in C.

1.1 The Conventional Approach and Its Problems in More Detail

In more detail, the conventional approach means that from (1) a univariate poly-
nomial, say p(x), is derived by MAPLE. Obviously, p(x) will contain symbolic
constants. Now p(x) = 0, f(x, y) = 0 and g(x, y) = 0 are copied into the C
program and for every problem instance the constants in these equations are
replaced by numerical values. In general, solving p(x) = 0 is straightforward,
giving the roots x1...xn. Subsequently, for every root xi the corresponding root
yi has to be determined. To that end, xi is backsubstituted in f(x, y) = 0
and g(x, y) = 0, giving the univariate polynomial equations f(xi, y) = 0 and
g(xi, y) = 0. Solving f(xi, y) = 0 for y gives the solutions yf1...yfm, and solving
g(xi, y) = 0 for y gives the solutions yg1...ygk. The value yi occurring both in
yf1...yfm and yg1...ygk is the desired value, i.e., the pair xi, yi is a root of (1).
During this process, a number of complications may occur:

1. The equation f(xi, y) = 0 may be degenerate, i.e. may be 0 = 0, or even
worse, may be near degenerate within the noise margin. The case of exact
degeneracy is easily detected but it is not trivial to detect near degeneracy.
In both cases every solution of the other equation, that is, of g(xi, y) = 0 is
a correct root. Analogously, g(xi, y) = 0 may be degenerate, giving the same
problems. As we know that (1) has a finite number of solutions the situation
that f(xi, y) = 0 and g(xi, y) = 0 are both degenerate will not occur.

2. It is sometimes hard to select from yf1...yfm and yg1...ygk the collective value
yi because, by numerical errors, the actual value of yi will be different in the
two sets.

3. p(x) = 0 may have multiple roots, that is, the roots x1...xn may contain
(near) identical values. Let us assume that there is a double root, given by
the the identical values xj and xj+1. Then there will be two matching roots
yj and yj+1, not necessarily with the same value. When yj is matched to xj ,
in a later stage not yj should be matched to xj+1 but yj+1.

The problems mentioned in 1 are the hardest to detect and to handle. When
this is not done properly, solutions may be lost or may be completely wrong.
None of the problems in 1,2,3 can be foreseen, prevented or solved during the

1 Of course, instead of MAPLE and C every other computer algebra system and
programming language may be used.

Using Bipartite and Multidimensional Matching to Select the Roots 399

preprocessing stage, they have to be dealt with during the numerical calculations.
On the other hand, none of these problems is insurmountable. For example, when
the problem in 1 occurs, in general the substitution u = x+y, v = x−y gives non-
degenerate equations. Also, by using exact computations, interval arithmetic or
floating point filters the problem in item 2 can be avoided, and by bookkeeping
properly the problem in item 3 is solved. However, apart from the speed penalty
introduced by these techniques, the complexity of the implementation increases
significantly by these measures. Moreover, every new set of equations (1) should
be analysed, possible degeneracies should be signalled, and appropriate measures
should be devised and implemented to handle these degeneracies. The method
we propose avoids these complications. It is simple and robust, and most of all
it is universal, i.e. no problem specific programming is required. It only assumes
that two univariate polynomials p(x) and q(y) can be derived from (1), and it
uses the minimum weight perfect bipartite matching algorithm.

For more than two equations a more general combinatorial optimization tech-
nique is required namely the multidimensional assignment method. Recently a
new algorithm for this problem has been proposed [1,2] and in the last section
it is discussed to which extent it may be used for more than two equations. Be-
cause the crucial part of our method is a combinatorial optimization technique
we call it the CORS method, which stands for Combinatorial Optimization Root
Selection method.

Literature. The CORS method is not mentioned in the literature. In [3] a
method is discussed that avoids part of the problems in 1,2, and 3, but it only
works for exact arithmetic. Essence of that method is that the root yj , matching
the root xi, is found by substituting xi in (1), and to calculate of these equations
the greatest common devisor (GCD) with for example Euclid’s algorithm. The
root of the GCD is the desired value yj .

Packages. Some numerical packages in C exists to solve (1) as for example
SYNAPS [4]. The disadvantage of these packages is however that the symbolic
computations are not handled in a preprocessing phase, which results in a sig-
nificant decrease of the performance, but most of all, sometimes solutions are
missed due to the problems mentioned earlier.

Not in this article. This article is not about a numerical method to obtain
more precise results. It is about robustness. Solutions that are missed by other
methods are found with the CORS method.

Article structure. In section 2 the minimum weight perfect bipartite matching
is introduced and it is shown how this may be used to select roots. In section
3 the implementation and the results of CORS are discussed. In section 4 it is
discussed how the CORS method may be generalized to more than two equations.

1.2 An Example Problem

To see how (1) is solved using the conventional approach let us look at the
following small example.

400 H. Bekker, E.P. Braad, and B. Goldengorin

–3

–2

–1

1

2

3

y

–3 –2 –1 1 2 3 4

x

Fig. 1. The conventional method to solve (1). Lower part: the univariate polynomial
p(x) plotted logarithmically (in order to limit the dimension in the y direction). The
local minima represent the roots of p(x). Upper part: the curves f(x, y) and g(x, y), and
vertical lines at positions corresponding with the roots of p(x). To find the intersections
of the curves, for every vertical line the intersections with the curves are calculated and
identical y-values are selected. For more details see the main text

f(x, y) = (x − a)3 + (y + b)3 − 5 (x − a) (y + b) − c = 0

g(x, y) = (0.3x − d)2 + (y − e)2 − h = 0 (2)

with a = 1.5, b = 1, c = 0.4, d = 0.3, e = 0.29756 and h = 1.2. For these
constants the system has four single real roots and a double real root, see figure 1.

As an example, let us determine the root yi, matching the root x = 4.1481
which is the rightmost x-root in this figure. The line x = 4.1481 intersects
f(x, y) three times, giving yf1 = −5.192317423, yf2 = 0.8525335317 and yf3 =
1.339783891 The linex = 4.1481intersects g(x, y)twice, giving yg1= 0.8525335293
and yg2 = −0.2574135293. Hence, y = 0.8525335 is the root matching x =
4.1481. Clearly, yf2 = 0.8525335317 does not equal yg1 = 0.8525335293, which
demonstrates point 3.

The CORS method will be tested on these equations and on the equations
that were the starting point of this research, that is, the equations resulting from
a computational geometry problem [5], given by

Using Bipartite and Multidimensional Matching to Select the Roots 401

a1u
2w2 + b1u

2w + c1uw2 + d1u
2 + e1w

2 + f1u + g1w + h1 = 0
a2u

2w2 + b2u
2w + c2uw2 + d2u

2 + e2w
2 + f2u + g2w + h2 = 0. (3)

Here, a1..h1 and a2..h2 are real constants, as they occur in the computational
geometry problem.

2 Selecting Roots by Constructing a Minimal-Weight
Matching

2.1 The Bipartite Weighted Graph and Matching

A complete weighted bipartite graph G = (V,E,w) consists of a set of vertices
V = V1 ∪ V2, |V1| = |V2| = n, and of a set of n2 arcs (i, j) ∈ E ⊆ V1 × V2

with weights w(i, j) for all (i, j) ∈ E. We define a feasible matching π as
a permutation which maps V1 onto V2 and the weight of permutation π is
w(π) =

∑
(i,j)∈π w(i, j). The Minimum Weighted Bipartite Matching Problem

is the problem of finding π0 ∈ arg min{w(π) : π ∈ P}. Here P is the set of all
permutations, and π is called feasible if w(π) < ∞. This problem is well-known
in the field of combinatorial optimization and is called the Linear Assignment
Problem (LAP). Many efficient algorithms exist for solving the LAP with time
complexity O(n3), see [8] and references within. All these algorithms are based
on the shortest augmenting path method, the implementation of which, for ex-
ample in the Hungarian algorithm, is based on the Koning-Egervary theorem
[8].

In figure 2 part of a complete bipartite weighted graph is shown with four
vertices in V1 and four in V2, and two matchings derived from this graph are
shown. The rightmost matching has minimum weight.

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

����

����������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

1.4

0.9

1.2

0.7

0.7

0.2

0.5

V1 V2

(some edges are omitted)

���� ����

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

V1 V2

1.4

0.9

0.7

0.7

Total weight: 3.7

���� ����

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

V1 V2

0.9

1.2

0.7

0.5

Total weight: 3.3

Fig. 2. Left: a weighted bipartite graph G with four vertices in V1 and in V2,
and with seven arcs. Middle: a possible matching of G. Right: the minimum weight
matching of G

402 H. Bekker, E.P. Braad, and B. Goldengorin

–3

–2

–1

1

2

3

y

–2 2 4

x

Fig. 3. The CORS method explained graphically. The figure consists of three parts.
Lower part: the univariate polynomial p(x) plotted logarithmically. The five local min-
ima represent the roots of p(x). The root at x = 0.912 is a double root. Left part: the
univariate polynomial q(y) plotted logarithmically. The five local minima represent the
roots of q(y). The root at y = −0.797 is a double root. Main part: the curves f(x, y) and
g(x, y). The vertical lines are at positions corresponding with the roots of p(x) and the
horizontal lines are at positions corresponding with the roots of q(y). The intersections
of the curves are found by intersecting the horizontal lines with the vertical lines and
selecting from all 36 intersections six intersections. The selection process is performed
by calculating the minimum weight perfect bipartite matching. For more details see
the main text

2.2 Selecting the Roots by Using a Bipartite Matching

Let us now see how a bipartite weighted graph and a minimum weight matching
of this graph is used to select the roots of two polynomial equation. We con-
sider again the polynomials with symbolic constants in (1). A computer algebra
system is used to eliminate from (1) y and x, giving two univariate polynomi-
als p(x) and q(y) respectively. Whether this done by calculating two Groeb-
ner basis or by calculating two resultants is irrelevant. Now p(x), q(y), f(x, y)
and g(x, y) are copied into the C code. In these four equations, for every prob-
lem instance, the symbolic constants are replaced by numerical values and the

Using Bipartite and Multidimensional Matching to Select the Roots 403

roots in C of p(x) and q(y) are calculated numerically. Both p(x) and q(y) have
n roots represented by x1..xn and y1..yn respectively. These roots are used to
calculate n2 weights, where wi,j is defined as

wi,j =
√

(|(f(xi, yj))2| + |(g(xi, yj))2|). (4)

Subsequently a complete weighted bipartite graph G is constructed. The nodes in
V1 consist of the values x1..xn, and the nodes in V2 consist of the values y1..yn.
The arc between node xi and yj is assigned the weight wi,j . Now of G the
minimum-weight perfect matching π0 is calculated. The n arcs in π0 represent
the optimal solutions of (1). Here, optimal means that the sum of the errors is
minimal. In the following this method of root selection is called CORS1.

Instead of minimizing the sum of the errors it is also possible to minimize
the maximum error. This is done by adjusting the weights in G as follows. All
n2 arcs and their weights are stored in a linear list L. Subsequently, L is sorted
in increasing order of the weight. Now the weight in the first entry in L is set
to 1, and the weight of item i is set to the sum of the weights in previous items
plus one, i.e. weight[i] = (

∑i−1
j=1 weight[j]) + 1. Table (5) is generated with this

method. In this way the matching is forced to consist of a subset of the first M
items in L, with M as small as possible. We call this method CORS2.

3 Implementation, Tests and Results

Implementation. From (3) the univariate polynomials p(u) and q(w) are de-
rived with MAPLE. The numerical calculations are implemented in C++ in
double precission. Laguerre’s method [6] is used to compute the roots of the
polynomials p(u) and q(w). The LEDA [7] implementation of the minimum
weight bipartite matching algorithm is used. Problem instances are obtained
by randomly generating instances of the computational geometry problem [5],
giving the constants a1..h1 and a2..h2.

Tests. We tested the CORS1 and CORS2 method on (2) and on (3). Only the
results of the latter problem are presented here, the results of (2) are similar.
Every problem instance is solved in two ways: with the CORS method and with
SYNAPS, a C++ package for solving polynomial equations. We solved 105 prob-
lem instances with CORS and SYNAPS, and ≈ 400 with MAPLE. The latter
problem instances were solved correctly by CORS and were missed by SYNAPS,
i.e. we use MAPLE to decide whether CORS or SYNAPS gave the correct result.

Results. In general the results of CORS1 and CORS2 are identical. In the tests
approximately 2.4% of the solutions is missed by SYNAPS and are found by
CORS. This is confirmed by solving these problem instances with MAPLE. No
solutions were missed by CORS. The average error of the solutions found by
SYNAPS is 1.3 10−10 and of CORS 6.5 10−11. Running 105 problem instances
with CORS takes 14 sec. and with SYNAPS 475 sec.

404 H. Bekker, E.P. Braad, and B. Goldengorin

4 Applying the CORS Method to More Than Two
Equations

The CORS method can easily be implemented for a system of two polynomial
equations because many efficient implementations of the minimum weight bipar-
tite matching algorithm exist. However, multidimensional matching algorithms
are less abundant. Therefore, we now propose the Tolerance Based Algorithm
(TBA) for solving the d-Dimensional Matching Problem (DMP). The idea of
this algorithm is similar to the idea of a recently designed algorithm for solving
the ATSP [2]. For sake of simplicity we first outline the TBA for the 2-DMP.

The algorithm is based on the tolerances for the Relaxed LAP (RLAP). A
feasible solution θ to the RLAP is a mapping θ of V1 into V2 with w(θ) < ∞. A
feasible solution π to the LAP can be represented by a set of n arcs (i, j) such
that the out-degree d(i) = 1 for all i ∈ V1 and the in-degree d(j) = 1 for all
j ∈ V2, and a feasible solution θ to the RLAP can be represented by a set of n
arcs (i, j) with the out-degree d(i) = 1 for all i ∈ V1 and

∑
j∈V2d(j) = n. We

denote the set of all feasible solutions to the RLAP by Q. It is clear that P ⊂ Q.
Note that θ is feasible to the LAP if the in-degree d(j) = 1 for all j ∈ V2. The
RLAP is the problem of finding min{w(θ) : θ ∈ Q} = w(θ0) ≤ w(π0) which is a
lower bound w(θ0) of w(π0).

The tolerance problem for the RLAP is the problem of finding , for each e ∈ E,
the maximum decrease l(e) and the maximum increase u(e) of the arc weight
w(e) preserving the optimality of θ0 under the assumption that the weights of
all other arcs remain unchanged. The values l(e) and u(e) are called the upper
and the lower tolerances, respectively, of edge e with respect to the optimal
solution θ0 and the function of arc weights w. For a selected arc, i.e an arc
[i1, j1(i1)] ∈ θ0 we define the upper tolerance u[i, j1(i)] = w[i, j2(i)] − w[i, j1(i)]
with w[i, j1(i)] ≤ w[i, j2(i)] ≤ ... ≤ w[i, jn(i)], and the lower tolerance l[i, j1(i)] =
∞. Similarly, for an unselected arc, i.e an arc [i1(j), j] /∈ θ0 the lower tolerance
l[i1(j), j] = w[i1(j), j] − w[i1(j), j1(i1(j))] with w[i1(j), j] ≤ w[i2(j), j] ≤ ... ≤
w[in(j), j], and the upper tolerance l(i, j) = ∞. The bottleneck tolerance value
b(θ) = max{u(θ), l(θ)} is defined as follows. For each j ∈ V2, u(j) = min{u(i, j) :
for all (i, j) with deg(j) > 1}, and u(θ) = max{u(j) :for all j with deg(j) > 1}.
Similarly, for each j ∈ V2, l(j) = min{l(i, j) :for all (i, j) with deg(j) = 0},
l(θ) = max{l(j) :for all j with deg(j) = 0. Further we treat each π, and each θ
as the sets of corresponding arcs such that |π| = |θ| = n.

The TBA is based on the following results [1,2]:

(i) if θ0 /∈ P, then w(θ0) + b(θ0) ≤ w(π0).
(ii) if Q0 = {θ : w(θ) = w(θ0)} and u(i, j) > 0 for all (i, j) ∈ θ0 then |Q0| = 1.
(iii) if u(i, j) > 0 for (i, j) ∈ α ⊂ θ0 and u(i, j) = 0 for (i, j) ∈ θ0\α, then |Q0| > 1

and | ∩ Q0| = |α|. and can be outlined as follows.

Based on these properties of the RLAP, the LAP may be solved using the
following tolerance based algorithm

Using Bipartite and Multidimensional Matching to Select the Roots 405

1. Find θ0.
2. If θ0 ∈ P, then π0 = θ0, and output π0 with w(π0), stop.
3. Find b(θ).
4. If b(θ) = u[i, j1(i)], then replace in θ0 the arc [i, j1(i)] by the arc [i, j2(i)];

otherwise (if b(θ) = l[i1(j), j]) replace in θ0 the arc [i1(j), j1(i1(j))] by the
arc [i1(j), j].

5. Return to step 2.

Note that for CORS2, after each iteration of the TBA for solving the LAP, the
current number of vertices j ∈ V2 with d(j) = 1 will be increased by at least one
vertex. Hence, the time complexity of the TBA is O(n3).

In the following example we illustrate the TBA for the complete weighted
bipartite graph below

8
2

512
1

16384
16

32768
1024

256
4

128
8192

4096
64
32

2048

(5)

1.θ0 = {(1, 1), (2, 1), (3, 4), (4, 1)};2.θ0 /∈ P;3.b(θ) = 14;4.b(θ) = l(2, 2),replace
ininθ0thearc(2, 1)by(2, 2).5.Returntostep2.2.θ0 = {(1, 1), (2, 2), (3, 4), (4, 1) /∈ P;
3. b(θ) = 248; 4. b(θ) = u(1, 1), replace in in θ0 the arc (1, 1) by (1, 3); 5. Return
to step 2. 2. θ0 = {(1, 3), (2, 2), (3, 4), (4, 1) ∈ P, then π0 = θ0, and output π0 with
w(π0) = 305, stop.

This tolerancebasedalgorithmmaybegeneralized tomore than twodimensions
as follows. In case of d-DMP V = ∪d

i=1Vi, |Vi| = n, the set of arcs e ∈ E ⊆ ⊗d
i=1Vi

withweightsw(e) foralle ∈ E, andthe in-degreed(j) forall arcs (i, j)will bedefined
similarly to the 2-DMP with replacing V2 by V2 which is a projection of the⊗d

i=2Vi

on V2. If the objective function of d-DMP is to minimize the maximim error of all
n matched roots, then TBA has O((d − 1)n3) time complexity.

Currently we are implementing the multidimensional tolerance based matching
algorithm, and we will test it on a system of three polynomial equations. For the 3D
casewecannotuseSylvesterresultantstocalculatetheunivariatepolynomialsp(x),
q(y) and r(z), we have to use a multiresultant method. These are widely available.
No other algorithms are required to test the CORS method on three polynomial
equations.

5 Discussion and Conclusion

As mentioned before, the CORS method is not meant to refine numerical results
but to find solutions that aremissed by othermethods.The numerical quality of the
solutions foundbyCORSdependsonthequalityoftheunivariatepolynomialsolver.
WeusedLaguerre’smethod,butformultiplerootsofevendegreeit isprobablybetter
to use Broydens method [6]. In spite of using a non-optimal univariate polynomial
solver, our experiments show that theCORSmethod outperforms currentmethods
in the sense that it does not lose roots. Moreover, it is faster and more acurate.

406 H. Bekker, E.P. Braad, and B. Goldengorin

The CORS method is only suitable for systems of d equations with N solutions
with small d and small N . That is because the number of arcs in the graph G is Nd.
We think that the CORS method is efficient for d ≤ 3 and N ≤ 20, and may be
used to analyze a system of equations with d ≤ 5 and N ≤ 30. Probably, for larger
systems the overhead will be unacceptable.

Manyproblemsinengineeringandtechnologyboildowntosolvingasmallsystem
ofpolynomial equations.UsingtheCORSmethod,onlysimpleunivariateequations
have to be solved. Selecting the correct roots with a combinatorial optimization
method proves to work well. In this way the user does not have to worry about
degeneracies and other complications.

References

[1] Goldengorin, B., Sierksma, G. Combinatorial optimization tolerances calculated in
linear time. SOM Research Report 03A30, University of Groningen, Groningen, The
Netherlands, 2003(http://www.ub.rug.nl/eldoc/som/a/03A30/
03a30.pdf).

[2] Goldengorin,B.,Sierksma,G.,andTurkensteen,M.ToleranceBasedAlgorithmsforthe
ATSP.Graph-TheoreticConcepts inComputerScience.30th InternationalWorkshop,
WG2004,BadHonnef,Germany,June21-23,2004.HromkovicJ.,NaglM.,Westfechtel
B. (Eds.). Lecture Notes in Computer Science Vol. 3353, pp. 222-234, 2004.

[3] Sederberg, T., W., Zheng, J. Algebraic methods for computer aided geometric design
in Handbook of computer aided geometric design Farin, G., Hoschek, J., Kim, M., S.,
(Eds.), North-Holland Elsevier (2002) p. 378.

[4] Synaps. Available at: http://www.inria.fr/galaad/logiciels/synaps/inex.html
[5] Bekker,H.,Roerdink,J.B.T.M.Calculatingcriticalrotationsofpolyhedraforsimilarity

measure evaluation. Proceedings of IASTED International conference on Computer
Graphics and Imaging, Palm springs, October 1999.

[6] Press,W.H.,Flannery,B.P.,Teukolsky,S.A.,andVetterling,W.T. NumericalRecipes
in C++, the Art of Scientific Computing. Cambr. Univ. Press, New York.

[7] K.Melhorn,Näher,S.LEDAAPlatformforCombinatorialandGeometricComputing.
Cambridge University press,Cambridge. 1999

[8] Burkard, R.E. Slected topics on assignment problems. Discrete Applied Mathematics
123 (2002) 257–302.

	Introduction
	The Conventional Approach and Its Problems in More Detail
	An Example Problem

	Selecting Roots by Constructing a Minimal-Weight Matching
	The Bipartite Weighted Graph and Matching
	Selecting the Roots by Using a Bipartite Matching

	Implementation, Tests and Results
	Applying the CORS Method to More Than Two Equations
	Discussion and Conclusion
	References

