
  

  

Abstract—In this paper we utilized the concept of stable 

phase synchronization topography – synchrostates – over the 

scalp derived from EEG recording for formulating brain 

connectivity network in Autism Spectrum Disorder (ASD) and 

typically-growing children. A synchronization index is adapted 

for forming the edges of the connectivity graph capturing the 

stability of each of the synchrostates. Such network is formed 

for 11 ASD and 12 control group children. Comparative 

analyses of these networks using graph theoretic measures show 

that children with autism have a different modularity of such 

networks from typical children. This result could pave the way 

to a new modality for possible identification of ASD from non-

invasively recorded EEG data. 
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I. INTRODUCTION 

Recent researches have established phase 
synchronization to be a biological mechanism of 
communication between brain regions [1]. Studies have 
found evidences of short- and long range phase synchrony as 
a key manifestation of information integration process in 
brain during cognition [2] and its study provides an 
independent dimension of understanding information 
processing in the brain [3]. 

ASD is a life-long condition that is characterized by lack 
of empathy and atypical behavior and early intervention is 
projected as the best possible way for managing it. 
Prominent research conducted in the field of ASD suggests 
that autism is caused by deficit of neural level information 
integration due to under-functioning integrative circuitry [4, 
5]. The functional Magnetic Resonance Imaging (fMRI) 
based studies have reported evidences of overall functional 
under-connectivity in autism compared to controls [6]. 
Tommerdahl et al. [7], in their study of sensory perception in 
autism detected local under-connectivity in autistic adults. 
Therefore quantitative characterization of the connectivity 
derived from phase synchronization characteristics in ASD 
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patients may lead to an effective diagnostic modality 
enabling intervention at appropriate stage.  

The existence of unique set of millisecond-order stable 
phase synchronized topographies over the scalp from EEG 
recording (termed synchrostate) during execution of a face 
perception task in an adult was first demonstrated by Jamal 
et al. [8] showing that the optimal number of synchrostates 
was consistently in a small range (3–6) over a number of 
repeated trials and the inter-synchrostate switching follows a 
well-behaved temporal sequence during the task. It also 
showed that some of these synchrostates occur more 
frequently compared to others during the execution of the 
task. The present study extends this concept to capture the 
stability of the individual synchrostates with a 
synchronization index which is representative of information 
exchange mechanism within the brain. We show that when 
this synchronization index is used to build a connectivity 
map over the scalp corresponding to the maximum or 
minimum occurring synchrostates, its analysis using graph-
theoretic measures effectively distinguishes between children 
with ASD and age matched controls when presented with 
faces with different emotions viz. fearful, happy and neutral, 
as studied in Apicella et al. [9], leading to a possible new 
way of diagnosing ASD children from EEG analysis.  

Complex network measures have been used in recent 
studies to quantify brain networks [10]. Bellmore and Sporns 
[11] demonstrated the usefulness of complex network 
approaches to study anatomical and functional brain 
networks. Specifically, modularity is a sophisticated measure 
that quantitatively characterizes the segregation property of a 
network reflecting the degree to which a network can be 
subdivided into a group of nodes with small number of 
between-group links (edges) and large number of within-
group links [12]. Since measure of segregation in a brain 
network quantifies its ability for specialized processing and 
therefore describes the organizational property of the local 
connectivity during information integration, we deem that 
modularity could be a useful index for characterizing an 
ASD brain. Thus in this paper, we use modularity to 
quantitatively compare network topographical differences 
between two age-matched populations viz. typical and ASD 
and show that it may be possible to distinguish these two 
groups from modularity measure. The rest of the paper is 
structured as follows: Section II gives a theoretical 
background of synchrostate formulation and modularity 
measure along with the experimental protocol, Section III 
analyses the experimental results and establishes the 
possibility for distinguishing ASD group from age-matched 
controls and the conclusions are drawn in Section IV.    
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II. THEORETICAL BACKGROUND AND EXPERIMENTS  

A. Mathematical Foundation of Synchrostate 

Complex Morlet wavelet transform when applied on 
EEG signal yields instantaneous amplitude and phase 
components of the signal captured at an EEG electrode. This 
instantaneous phase information is used to construct a phase 
difference time series relative to each frequency or wavelet 
scale. Unsupervised k-means clustering [13] is applied to 
these difference matrices to form compact clusters or states 
during which there is little variation in phase topography and 
hence have been termed as synchrostates [8] and inter-
synchrostates switching follows a temporal sequence 
responsible to complete that specific task. However since the 
clustering technique only identified the synchrostates but 
does not capture their temporal stability period, for its 
quantitative estimation we use the phase synchronization 
index [14] given in (1) which is an inverse statistical 
analogue of variance.  
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Here, ( , )x a tϕ and ( , )y a tϕ are the arguments of the complex 

wavelet transform in terms of time t and wavelet scale a 

(function of frequency) of signals ( )x t and ( )y t  respectively. 

Also, N is the number of data points in the time series 

and ( ) [ ]0,1xy aΓ ∈ . The synchronization index thus 

calculated between all pairs of EEG electrodes for each 

synchrostate can be used to form a corresponding 

connectivity matrix where its high values indicate a high 

degree of synchronization between two channels and hence 

higher degree of connectivity. 
Now the brain connectivity graph can be structured from 

the connectivity matrix formulated in (1). In order to 
quantitatively characterize the connectivity graph, as 
mentioned in Section I, we use modularity as a measure of 
segregation and therefore the ability of specialized 
processing in the brain networks reflecting the degree of 
local connectivity during specialized processing [15]. The 
modularity of a complex weighted network graph can be 
expressed as [12]: 
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B. Experimental Paradigm with Typical and ASD Children 

The experimental population for this study consists of 12 
healthy control children with neuro-typical development and 
11 children diagnosed as ASD – both groups in the age range 

of 6 – 13 years [9]. Both groups were presented three types 
of emotional face stimuli with standardized face expressions 
of happiness, fear and neutral expression which were 
presented 40 times [9]. 128-channel EEG was used to 
continuously record data at 250 samples per second. Data 
was segmented into 1000 ms epoch with 150 ms of baseline 
and 850 ms of post stimuli response. Epochs over a threshold 
of 200μV were rejected as artifacts. Data was baseline 
corrected and band pass filtered from 0.5 Hz to 50 Hz to 
remove drift and noise. 

 

Figure 1.  Optimum k estimate for gamma band for typical children. 

 

Figure 2.  Optimum k estimate for gamma band for children with ASD. 

With the EEG data thus processed, we followed the 
procedures described in [8] to form the synchrostates. 
However, since we are interested in the group results we 
averaged the phase response of all subjects in each class - 
ASD and typical – before we ran the clustering algorithm to 
determine the optimal number of synchrostates. We only 
focus on the gamma band (30Hz - 48 Hz) response of both 
ASD and typical children as previous research confirms 
modulations in the gamma band activity induced during 
visual information processing [16]. The clustering results 
show that for each case of ASD and typical, the number of 
synchrostates was consistently three (determined by 
observing a significant knee in the cost function in Figs. 1-2) 
for each of the three stimuli.  

III. VISUALIZATION AND ANALYSIS OF THE RESULTS 

A. Synchrostates in Typical and ASD Children 

Once formulated, the phase topographical plots for the 
synchrostates corresponding to each of the stimuli show 
marked comparative difference between the typical control 



  

(Fig. 3 – 5) and ASD group (Fig. 6 – 8). Although the phase 
topography for the typical group remains more or less the 
same for the three stimuli, the configurations are visibly 
different in the ASD group under different stimuli implying 
different network configurations for the selected stimuli 
compared to the typical group.  

 

Figure 3.  Synchrostates for typical children with fearful face stimulus. 

 

Figure 4.  Synchrostates for typical children with happy face stimulus. 

 

Figure 5.  Synchrostates for typical children with neutral face stimulus. 

 

Figure 6.  Synchrostates for ASD children with fearful face stimulus. 

 

Figure 7.  Synchrostates for ASD children with happy face stimulus. 

 

Figure 8.  Synchrostates for ASD children with neutral face stimulus. 

B. Brain Connectivity Analysis for Typical and ASD 

Children 

We used the synchronization index (1) to formulate the 

connectivity graphs for each of the synchrostates 

corresponding to each of the stimuli with the EEG electrodes 

representing the nodes and the synchronization index value 

as the edges between them. Here we only consider those 

synchrostates which occur the most and the least frequent 

times (termed as max_state and min_state respectively) 

during the entire task. The resulting connectivity graphs are 

shown in Fig. 9-11 with only 4% of the strongest connections 

retained with the colors representing the degree of 

synchronization. An interesting observation from Fig. 9–11 

is that in general the min_states show more segmented and 

highly localized connectivity compared to those of the 

corresponding max_states for all the three stimuli in both the 

ASD and typical groups. This may mean that most of the 

specialized information integration operations occur during 

the min_state and therefore its quantitative characterization 

may be indicative towards the ability of information 

integration in ASD and typical children. 

TABLE I.  MODULARITY VALUES OF THE MAX/MIN SYNCHROSTATES 

FOR ASD AND TYPICAL CHILDREN WITH DIFFERENT STIMULUS 

Stimulus 
Modularity of max_state  Modularity of min_state 

ASD Typical ASD Typical 

fear 1.85×10-06 2.50×10-06 3.72×10-06 1.86×10-05 

happy 1.82×10-06 2.01×10-06 1.81×10-06 1.86×10-05 

neutral 1.77×10-06 1.97×10-06 1.96×10-06 1.86×10-05 



  

 

Figure 9.  Brain connectivity of typical/ASD with fearful face stimulus. 

 

Figure 10.  Brain connectivity of typical/ASD with happy face stimulus. 

 

Figure 11.  Brain connectivity of typical/ASD with neutral face stimulus. 

Table I shows the results of modularity comparison for the 

two groups under consideration for their respective min_state 

and max_state. It is evident that for all the stimuli the 

modularity values of the max_state in both the groups are of 

the same order whereas the same for the min_state in typical 

group are consistently an order higher than those in the ASD 

group. Putting into the perspective of physical meaning of 

modularity of a network this difference implies that the ASD 

subjects are less able to do specialized processing during the 

min_states as their ability to form these localized networks is 

less than that of the typicals. In one sense this conforms to 

the findings in the anatomical study of Tommerdahl et al. 

[7]. On the other hand this also shows that modularity could 

be used as a possible marker for distinguishing ASD from 

typically-growing children.  

IV. CONCLUSION 

We explore the possibility of finding a possible marker to 

distinguish between ASD and typical population using graph 

theoretic measure of brain connectivity network. It shows 

that modularity of the connectivity network formulated 

following synchrostate analysis of non-invasively recorded 

EEG data could be an effective identifier of ASD children 

from age-matched typically-growing ones. Further studies 

can be performed on individual subjects to explore the 

degree of distinction modularity values give between these 

groups. 
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