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Using Broad Phonetic Group Experts for
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Abstract—In phoneme recognition experiments, it was found
that approximately 75% of misclassified frames were assigned
labels within the same broad phonetic group (BPG). While the
phoneme can be described as the smallest distinguishable unit
of speech, phonemes within BPGs contain very similar charac-
teristics and can be easily confused. However, different BPGs,
such as vowels and stops, possess very different spectral and tem-
poral characteristics. In order to accommodate the full range of
phonemes, acoustic models of speech recognition systems calculate
input features from all frequencies over a large temporal context
window. A new phoneme classifier is proposed consisting of a
modular arrangement of experts, with one expert assigned to each
BPG and focused on discriminating between phonemes within that
BPG. Due to the different temporal and spectral structure of each
BPG, novel feature sets are extracted using mutual information, to
select a relevant time-frequency (TF) feature set for each expert.
To construct a phone recognition system, the output of each expert
is combined with a baseline classifier under the guidance of a
separate BPG detector. Considering phoneme recognition exper-
iments using the TIMIT continuous speech corpus, the proposed
architecture afforded significant error rate reductions up to 5%
relative.

Index Terms—Automatic speech recognition, broad phonetic
groups (BPGs), mixture of experts, mutual information (MI).

I. INTRODUCTION

T
HE fundamental task of the acoustic model in a speech rec-
ognizer is to estimate the correct subword or phonetic class

label for each frame of the acoustic signal. The phoneme can be
defined as the smallest phonetic unit in a language that is capable
of conveying a distinction in meaning; however, phonemes that
may be within the same broad phonetic group (BPG) contain
very similar temporal characteristics and can be easily confused.
In phoneme recognition experiments on the TIMIT database, re-
ported in [5], it was observed that almost 80% of all misclassi-
fied frames are identified as phonemes within the same BPG as
the correct target. The BPGs in these experiments were vowels,
stops, weak fricatives, strong fricatives, and nasals.

Manuscript received August 2, 2005; revised April 17, 2006. This work was
supported by Enterprise Ireland under the ATRP Program in Informatics, and
by the Defense Advanced Research Projects Agency (DARPA) ubder the EARS
Novel Approaches Program. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Ananth Sankar.

P. Scanlon was with University College Dublin, Dublin 4, Ireland. She is
now with Alcatel-Lucent, Bell Laboratories, Ireland, Dublin 15, Ireland (e-mail:
scanlon@alcatel-lucent.com).

D.P.W. Ellis is with the Electrical Engineering Department, Columbia Uni-
versity, New York, NY 10027 USA (e-mail: dpwe@ee.columbia.edu).

R.B. Reilly is with the School of Electrical, Electronic and Mechan-
ical Engineering, University College Dublin, Dublin 4, Ireland (e-mail:
richard.reilly@ucd.ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2006.885907

Fig. 1. Confusion matrix with phonemes grouped into BPGs. Rows are nor-
malized to give conditional probabilities, and values larger than 20% (including
most of the leading diagonal) are clipped to that level. Forty-eight percent of
confusions fall into the same group, rising to 74% if vowels, dipthongs, and
semivowels are merged into a single group.

Similar results to those reported in [5] are illustrated in Fig. 1,
where almost 75% of misclassified frames were given labels
within the same BPG. In Fig. 1, phonemes are divided into the
BPGs of vowels, stops, fricatives, and nasals, where the vowel
group contains all phonemes that may be labeled as vowels,
semivowels, or dipthongs. Distinguishing between these three
vowel-like groups, it is observed that almost 50% of confusions
still lie within the same group as the true label. However, since
the vowel-like sounds are especially confusable, they are placed
in a single group. The confusion matrix of phonemes is given in
Fig. 1, with the phonemes ordered in groups i.e., the first 25 are
vowel or vowel-like phonemes, the next eight are stops, then ten
fricatives, seven nasals, and finally 11 silence/pause/stop-clo-
sures.

The task of speech recognition is complicated by the fact that
the information relevant to phoneme classification is spread out
in both frequency and time—due to mechanical limits of vocal
articulators, other coarticulation effects, and phonotactic con-
straints. As a result, it is generally advantageous to base classi-
fication on information from all frequencies and across a large
temporal context window. This generalized feature window re-
sults in a large number of parameters as input to the classifier,
and hence requires very large training sets, as well as frustrating
the classifier training with redundant and irrelevant information.
Using such a large, general-purpose feature space can lead to
confusion between phonemes of the same BPG as seen in Fig. 1.

In this paper, a new modular architecture for speech recogni-
tion is proposed in which an expert is assigned to each BPG.
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These experts focus discrimination capabilities of the classi-

fier on the sometimes subtle differences between phonemes be-

longing to the same BPG, rather than between all phonemes in

all BPGs. Since separate classifiers are used for each group, it

is proposed that different feature sets be used for each expert

that better support discrimination between the phonemes of that

group. In this paper, mutual information (MI) is used as a basis

for selecting particular cells in the TF plane to optimize the

choice of features used as inputs to each BPG classifier.

MI-based feature selection for speech recognition has been

investigated previously in the literature. Morris et al. [7] exam-

ined the distribution of information across a time-aligned au-

ditory spectrogram for a corpus of vowel-plosive-vowel (VPV)

utterances. The MI was estimated between each TF cell and the

VPV labels, as was the joint mutual information (JMI) between

pairs of TF cells and the VPV labels. The goal was to use MI and

JMI to determine the distribution of vowel and plosive informa-

tion in the TF plane. Features with high MI and JMI were used

to train a classifier to recognize plosives in the VPV utterances.

Bilmes [1] used the expectation-maximization (EM) algorithm

to compute the MI between pairs of features in the TF plane.

He verified these results in overlay plots and speech recogni-

tion word error rates. Yang et al. [13] used methods similar to

[7] but their focus was on phone and speaker/channel classifica-

tion. Multilayer perceptrons with one or two inputs were used

to demonstrate the value for phone classification of individual

TF cells with high MI and pairs with high JMI. In Scanlon et

al. [10], in addition to calculating MI over all phonetic classes,

the MI is examined for subsets formed by BPGs, such as the MI

between specific vowel labels across only the vowel tokens, etc.

The hypothesis that high MI features provide good discrimina-

tion was verified in [10] where a range of vowel classifiers are

evaluated over the TIMIT test set and show that selecting input

features according to the MI criteria can provide a significant

increase in classification accuracy.

The work described in this paper extends this work by ex-

tracting the relevant feature sets for each BPG. Specifically, the

use of MI as measure of the usefulness of individual TF cells for

each of the BPGs has been investigated, using the phonetically

labeled TIMIT continuous speech corpus as the ground truth.

Modular or hierarchically organized networks as opposed to

monolithic networks have been studied extensively in the lit-

erature. The speech recognition task is divided among several

smaller networks or experts and the output of these experts are

combined in some hierarchical way yielding an overall output.

A hierarchical mixture of experts (HME) was applied

to speech recognition in [14], where the principle of di-

vide-and-conquer was used. The training data was divided into

overlapping regions which are trained separately with experts.

Gating networks are trained to choose the right expert for

each input. In the HME architecture the combining process is

done recursively. The outputs from the experts are blended by

the gating networks and proceed up the tree to yield the final

output. In HME the decomposition is data driven and each

expert has the same feature set as input.

The Boosting algorithm constructs a composite classifier by

iteratively training classifiers while placing greater emphasis

on certain patterns. Specifically, hard-to-classify examples are

given increasing dominance in the training of subsequent clas-

sifiers. The hybrid NN/HMM speech recognizer in [11] shows

it is difficult to take advantage of very large speech corpora,

and that adding more training data does necessarily improve

performance. The AdaBoost algorithm can be used to improve

performance by focusing training on the difficult and more in-

formative examples. In this paper log RelAtive SpecTrAl Per-

ceptual Linear Predictive (log-RASTA-PLP) features, modula-

tion-spectrogram-based features, and the combination of these

feature sets are compared. It was shown that Boosting achieves

the same low error rates as these systems using only one feature

representation.

Previous research into using BPG experts in a modular archi-

tecture has been carried out in [5], which also includes the idea

of using different feature sets for each of the BPG experts. These

feature sets were varied in dimension and in time resolution and

empirical measures were employed to determine the best fea-

ture set for each expert. BPG feature sets varied greatly using

different feature vector dimensions, resolution, and including a

variation of other features such as duration and average pitch for

vowel and semivowel classes, zero-crossing rate, total energy of

the segment, and time derivative of the low-frequency energy for

the fricative class. In [5], no variation of the network parameters

was made for each of the BPG experts. A maximum a posterior

(MAP) framework was used for overall phoneme classification.

This framework combines posterior probabilities from all BPG

experts outputs with the posterior probability of its group.

Another approach to modular architecture for speech recog-

nition was investigated in [9]. This architecture decomposes the

task of acoustic modeling by phone. In the first layer, one or

more classifiers or primary detectors are trained to discriminate

each phone, and in the second layer, the outputs from the first

layer are combined into posterior probabilities by a subsequent

classifier. It is shown that the primary detectors trained on dif-

ferent front-ends can be profitably combined due to independent

information provided by different front-ends. As different fea-

ture sets have individual advantages and disadvantages, the use

of different feature sets such as mel-frequency cepstral coeffi-

cients (MFCCs), PLP, and linear predictive coding (LPC) fea-

ture sets and combinations of these feature sets were compared.

In these experiments, the feature set combination that maxi-

mized the entire system was used. Another primary detector was

incorporated into the framework to detect the presence of BPGs

over a large context window, to combine with previous outputs

to further improve performance.

Chang et al. [3] proposed that a hierarchical classifier based

on phonetic features, i.e., one classifier for manner, then a con-

ditional classifier for place given manner (which together distin-

guish all consonants), could significantly outperform traditional

nonhierarchical classification based on experiments using the

assumption of perfect recognition of the conditioning manner

class. However, recent work [8] disproves this proposal by im-

plementing a similar system where the conditioning manner

class is automatically detected and showed that gains suggested

in [3] were minimized.

In Sivadas and Hermansky [12], a hierarchical approach to

feature extraction is proposed under the tandem acoustic mod-

eling framework. This was implemented as hierarchies of MLPs

such as speech/silence, voiced/unvoiced, voiced classes, and un-

voiced classes. The output from the hierarchy of MLPs was

subsequently used as feature set in a Gaussian mixture mod-

eling (GMM) recognizer after some nonlinear transformation.
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It was observed that the hierarchical tandem system performed

better than the monolithic-based classifier using context-depen-

dent models for recognition and worse when context-indepen-

dent models were used. It was suggested that a more structured

approach to the design of the classification tree would improve

performance.

Modular approaches to speech recognition in the literature

typically extract homogeneous feature vectors to represent

the acoustic information required to discriminate between

all phones [3], [8], [9], [11], [14]. While the performance of

different feature sets and combinations of these sets has been

compared in [9] and [11], homogeneous feature vectors are

used as input to the entire system. The use of heterogeneous

feature sets for modular-based ASR system has also been

expored. A heuristic approach is used in [5] where empirical

results are used to chose the feature set for each BPG (or

phone-class). These feature sets vary greatly in dimensionality,

inclusion of temporal features and inclusion of other features

such as zero-crossing rate, energy, and pitch. In [12], the output

from a hierarchy of MLP networks is used as the feature input

to a GMM-based speech recognizer. In this paper, the use of

MI criterion is proposed to select the most relevant features

based on speech class information. In this way, just one unique

TF pattern per BPG is selected and discriminative classifiers

are used to distinguish within that group.

Our proposed approach combines modular network of BPG

experts with a scheme to select only features relevant to each ex-

pert. Using a development set the size on the expert network’s
input layer, number of hidden nodes is chosen to maximize the

performance of the BPG experts. Our implementation of this

architecture assigns each frame to a BPG or the silence group.

Each candidate frame is assigned to one of the BPGs or a silence

group. In order to easily incorporate the proposed modular ar-

chitecture into our existing baseline framework, the output from

the set of experts is combined or “patched” into the baseline

monolithic classifier posterior estimates.

The remainder of this paper is organized as follows. Section II

describes the basic approach of decomposing acoustic classifi-

cation into a set of subtasks, and then Section III provides the

background for MI, its computation, and the subtask-dependent

feature selection algorithm. In Section IV, the proposed classi-

fier architecture is described. Details of the baseline system and

the BPG experts and the BPG detector and integration methods

are given. Section V discusses the benefits of the proposed fea-

ture selection method and provides experimental demonstration

of the architecture.

II. MIXTURES OF EXPERTS

Central to the system presented is the idea of decomposing the

phone classification problem into a number of subtasks (i.e., our

within-BPG classification) and building expert classifiers spe-

cific to each of those domains. This ensemble of experts is used

as a (partial) replacement for a single classifier deciding among

the entire set of phones, but in order to make these alternatives

directly interchangeable, it is necessary to decide how to com-

bine each of the experts into a single decision.

Consider our basic classification problem of estimating, for

each time frame, a phone label (which can take on one of a

discrete set of labels , based on an acoustic feature vector

. A monolithic classifier, such as a single MLP neural net-

work, can be trained to make direct estimates of the posterior

probability of each phone label . If, however,

a classifier is trained only to discriminate among the limited

set of phones in a particular BPG, this new classifier is es-

timating posterior probabilities conditioned on the true BPG

of the current frame taking on a specific value (also drawn

from a discrete set ). Thus, each expert classifier estimates

for a different BPG class . These can

be combined into a full set of posteriors across all phones with

(1)

i.e., as a weighted average of the experts, weighted by some

estimate of which expert is in fact best suited to

the job—this process is called “patching in,” since at different

times the merged output stream consists of “patches” coming

from different individual experts. The weights could constitute

a “hard” selection (i.e., 1 for a particular and 0 for all others),

or they could be constants smaller than 1 (allowing some small

proportion of different classifiers to come through at all times),

or they could also be dynamic, varying in proportion to some

kind of confidence estimate for the class estimation.

The BPG weights need to be obtained

somehow, most obviously through training a further classifier

simply to identify the appropriate BPG. However, this ex-

pert-selection classifier will surely make some mistakes, and so

the overall benefit of this two-stage classification (BPG, then

phone given BPG) is a tension between the benefits of discrim-

ination only within a narrow set of phones (as performed by the

expert) and the degradation caused by imperfect estimation of

BPG labels. Such systems can be “tuned” to be more conserva-

tive simply by making it less likely that a frame will be marked

as relevant to one of the experts, assuming that the baseline

classifier is used when none of the experts is selected, so that in

the limit the system backs off to the simple baseline system.

With ideal classifiers, decomposing the problem this way

should make no difference. However, since actual classifier

performance is a complex function of classifier algorithms and

available training data, the decomposition can have benefits. In

particular, because each of the experts is looking at a distinct,

homogeneous problem (discriminating phones within a single

class), the “structural” discrimination of using different feature

vectors for each expert can be incorporated, thereby reducing

the number of parameters in the experts compared to the base-

line classifier, and possibly improving their ability to exploit

the finite training data. In Section III, how MI is used to select

these distinct per-expert feature sets is discussed.

III. MUTUAL INFORMATION

A. Background

The entropy of a random variable is a measure of its unpre-

dictability [4]. Specifically, if a variable can take on one of a
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set of discrete values with a probability then

its entropy is given by

(2)

If a second random variable is observed, knowing its value

will in general alter the distribution of possible values for to

a conditional distribution .

Because knowing the value of can, on average, only reduce

our uncertainty about , the conditional entropy is al-

ways less than or equal to the unconditional entropy . The

difference between them is a measure of how much knowing

reduces our uncertainty about , and is known as the MI be-

tween and

(3)

Note that ; this symmetry emerges natu-

rally from the expectations being taken over both variables, and

leads to the intuitive result that the amount of information that

tells us about is the same as the amount of information

that knowing would tell us about . Further,

, and , if and only if and

are independent.

B. Selection Algorithm and its Implementation

Putting aside for the moment the issue of computing (3), the

MI-based algorithm for feature selection within the candidate

pool of TF features can be expressed as

and (4)

for , with , where is the desired dimen-

sionality of the selected feature vector. Note that this approach

represents a simple sorting of all mutual information values and

it results in a nested selected feature set .

Note also, however, that this greedy strategy does not find the

optimal set of points since there may be information “overlap”

between the successively chosen points. In the worst case,

two TF points that always had identical values would have equal

(and would thus be neighbors in the sorted list), but in-

cluding the second would not add any additional information

about over that provided by the first.

To obtain estimates of the MI values needed in (4), the his-

togram approach was used to approximate the density functions

required in (3), as in [13]. The histogram approach requires

choosing the number of bins to be used and their bin widths.

In order to exclude outliers (that can result in empty or sparsely

filled bins), the range over which the histogram is computed, and

hence the bin width, is determined by setting the lower bound

equal to the mean of the samples minus three standard devia-

tions; the maximum is similarly obtained.

Following [13], Doane’s rule,

is used to determine the number of bins to estimate

and . In this rule, is the estimate of the kurtosis

of the TF components (i.e., of random variable ), and is the

TABLE I
PHONETIC BROAD CLASS GROUPS

total number of training samples. In our experiments, ,

and, on the average, 30 bins are derived for each TF component.

Note that the kurtosis estimates indicate that the TF components

are non-Gaussian.

Given the number of bins, equally spaced intervals are formed

, , between the upper and lower bounds, as

described above, computed for each . Then ,

iff , is approximated where denotes the number of

observations . Assuming that class labels are

available for the training samples, the and counts can

similarly be obtained, thus estimating and approx-

imating , for all , , and

.

Based on these estimates of the density functions, the com-

putation of (3) becomes feasible.

C. Mutual Information for Broad Phonetic Groups

The phonemes are divided into phonetic broad classes as in

Table I based on the distribution on confused phonemes in the

confusability matrix in Fig. 1.

The MI was computed between the phonetic labels and the

individual cells across the TF plane. The baseline features were

perceptual linear predictive (PLP) cepstral coefficients [6] cal-

culated over a 25-ms window with 10-ms advance between adja-

cent frames. For the TIMIT dataset, which is sampled at 16 kHz,

12-order PLP models were used.

Temporal regression features (or first derivative features)

were computed over a context window of nine frames along

with acceleration (or second derivative) features over the same

window. These temporal features were appended to the feature

vector, resulting in 39 PLP features. A temporal window of

15 frames around the labeled target frame (i.e., 31 time

frames total) was used as the domain over which MI was

computed. These features undergo a per-utterance mean and

variance normalization prior to MI calculation providing a

degree of invariance against variations in channel characteristic

(microphone positioning etc.).

An MI plot consisting of 39 31 cells was calculated for

each BPG. The MI calculation was performed for each indi-

vidual time-quefrency cell, for PLP cepstra, against the pho-

netic labels within each BPG. An MI plot was generated for

each of the groups as shown in Fig. 2. To take advantage of the

MI plots, an MI feature selection mask is created by selecting

TF cells with the largest MI values. This results in an irreg-

ularly shaped pattern in the TF plane (MI-IRREG) consisting

of all the cells with values above some threshold. The threshold

was varied to extract different feature vector dimensionalities.
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Fig. 2. Information distribution using MI for BPGs. (a) Vowels. (b) Stops.
(c) Fricatives. (d) Nasals. The irregular outlines contain the top 200 cells in
each case. Each block has three panes corresponding (from bottom to top) to
static, and first and second derivatives, respectively. The PLP static features are
13 PLP coefficients.

As an example, Fig. 2 shows MI masks used to select 200 fea-

tures as outlines. Standard feature vectors corresponding to rect-

angular regions in the TF plane (RECT) are also extracted in the

experiments, where all spectral components, e.g., 13 PLP, plus

first and second derivative features across a temporal window of

nine successive 10-ms frames, are used.

It can be seen from Fig. 2 that the BPGs contain very different

spectral and temporal characteristics.

It can be seen that information for discriminating between

all the vowel-like phonemes is concentrated mainly in the static

features. The information is spread out 50 ms and concen-

trated mainly in the third, fourth, sixth, and eighth coefficients.

For Stops, information is spread out over the static and first

derivative features. For the PLP features the most significant

information exists in the second coefficient (spectral tilt) from

70 to 30 ms, with some less relevant information in the third,

fourth, and fifth coefficients over a shorter time span. The MI

between the TF cells and the fricative BPG phonemes is mainly

concentrated in the static features. The greatest information ex-

ists in the second, third, and fourth coefficients from 30 to

50 ms. The nasal MI plots show only weak information, spread

out over static and first and second derivative features. There ap-

pears to be a minimum of MI at the center of the window and

information is concentrated in the second and fifth coefficients

from 90 to 10 ms and in the first and third coefficients from

20 to 50 ms.

Due to the steady-state nature of vowels, most of the impor-

tant information for discrimination between vowels exists in the

static TF cells. Fricatives and nasals show an increasing trend

of information shifting to the derivative features, with stops

showing the greatest information in dynamic features. All this

is consistent with our preconceptions concerning these BPGs.

Note that in the MI investigation above, the MI was computed

for each TF cell in isolation and the relative MI for all cells is

shown in Fig. 2. For steady-state phonemes such as vowel-like

phonemes it is assumed that correlation is high along the time

axis. This suggests that the immediate neighbors of a TF cell

along the time axis may be omitted from the classifier without

a significant loss of information. Therefore, conditional MI be-

tween the BPG phone labels and two feature variables in the TF

plane was applied to measure the relevance of the feature cells

before and after the current time frame.

Fig. 3 shows the MI between each cell on the TF plane and

the phone label within each BPG (as before), additionally condi-

tioned on the value of the TF cell centered on the labeling instant

for that frequency band, i.e., the additional information provided

by knowing a second cell’s value. Thus, the values are zero for

the 0-ms column, since this is the value already present in the

conditioning. Note that the MI scale is much smaller compared

to Fig. 2. Also note that each row of each spectrogram corre-

sponds to a different experiment, since the conditioning value

moves with the frequency band being measured. It can be seen

in Fig. 3 that for the vowel BPG, the immediate neighboring fea-

tures in time provide the lowest conditional MI with the current

frame for all coefficients. However, for the fricative, stop, and

nasal BPGs, the immediate neighboring coefficients in time do

not always provide the lowest conditional MI.

To compute the conditional MI for more than two features,

multivariate density estimation is required which is difficult to

reliably obtain without an inordinate amount of data and com-

putation time. Therefore, in order to approximate the N-way

joint maximally informative set for the steady state vowel BPG,

the selection masks are multiplied by a vertically striped pat-

tern which reduces the inclusion of possibly redundant neigh-

boring TF cells. An advantage of this method of “striping” the

MI masks to reduce redundancy is that, for a given dimension-

ality, using the striped feature mask includes features spread out

further in time when compared to nonstriped feature masks with

the same dimensionality.

IV. CLASSIFIER ARCHITECTURE

The proposed system first detects which BPG each frame be-

longs to. Once identified, the output for that frame is extracted

from the corresponding BPG expert classifier and “patched”

into the baseline classifier output to reduce the number of mis-

classifications that occur between phonemes within the same

BPG. This system architecture is illustrated in Fig. 4. In this

section, the implementation of the baseline classifier, the BPG

experts, and the proposed modular architecture are described.
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Fig. 3. Conditional MI distribution between each cell on the TF plane and
the phone label within each BPGs. (a) Vowels, (b) Stops, (c) Fricatives, and
(d) Nasals, additionally conditioned on the value of the time-frequency cell at
time zero for that frequency band.

A. Baseline System

The hybrid ANN/HMM speech recognition framework de-

scribed in [2] was used as our baseline system to estimate the

61 TIMIT phone posteriors. The neural network multilayer per-

ceptron (MLP) classifier had an input layer of 351 units to ac-

commodate the 39 PLP plus first and second derivative features

as described in the previous section, over a context window of

nine frames. The network also had a single hidden layer (whose

size was varied in our experiments) and 61 output units, corre-

sponding to each phone class. The network was trained to esti-

mate the posterior probability for each of the 61 TIMIT phone

classes for each frame of input by back-propagation of a min-

imum-cross-entropy error criterion against “one-hot” targets.

The MLP was trained using all 468 speakers from the eight

dialects of the TIMIT database—a total of 4680 utterances, of

which 370 utterances were used for cross-validation. The cross

validation set is used for adjusting the learning rate during MLP

training and also for determining the early stopping point to pre-

vent over-fitting.

These posteriors are scaled using phone priors, and the 61

phones were then mapped to a smaller set of 39 phones prior to

being fed to an HMM decoder to find a single sequence of phone

labels that best combines models and observations. This phone

sequence is compared to the manual ground truth to produce a

phone error rate (PER) that includes all substitutions, deletions,

and insertions.

The 39 PLP plus first and second derivative features were

computed for each frame in both the training and test sets. The

mean and standard deviation was computed across all features

in the training data for normalization. Each feature dimension

in the training set is separately scaled and shifted to have zero

mean and unit variance, which ensures the MLP input units are

operating within their soft saturation limits. The same normal-

ization is applied to the test sets.

The 168 test speakers were divided into two groups: 84

speakers were used in the development set to tune variables,

and the other 84 were used in the final test set for evaluation of

the proposed network.

B. Broad Phonetic Group Expert

The networks used for the BPG experts are similar to that of

the baseline system but the output layers consist of a smaller

number of units, e.g., 25, 8, 10, and 7 units for vowels, stops,

fricatives, and nasals, respectively.

MI indicates which TF cell contain the most information for

discriminating between each of the BPGs. A different feature

set is extracted for each BPG to maximize discrimination capa-

bilities of the expert, but the total number of input units is held

constant across all experts.

C. BPG Detector

In order to determine whether to assign the candidate frame

to the silence group or one of the BPG experts, two different

methods were investigated. The first uses the baseline classifier

output to determine which BPG or the silence group dominates

the posterior distribution, by summing all the posteriors from

each group and assigning the group with the greatest pooled

posterior probability to the candidate frame. This is similar to

the method described in [9]. Note if the silence group is assigned

to the frame no expert is used, and the baseline posteriors are

preserved in the final output stream.

The second method uses one classifier for each BPG and one

for the silence group, each with a binary output (i.e., this group

or not this group). The posterior probabilities from each of these

detectors was combined to determine the inferred BPG or the

silence group of the current frame.

Since these two mechanisms for estimating the current

frame’s group are different, they can give different results. A

third method combines these two approaches and only assigns

a candidate frame to a BPG or silence group once both methods

agree. When the methods disagree the original baseline poste-

riors are maintained.

D. Integration

Given the outputs of several different classifiers (the baseline

plus one or more experts), the question then arises of how to

combine these differing values into a single set of posteriors to

pass on to the decoder. One choice is to simply patch all the

BPG phoneme posteriors in the baseline output with the pos-

teriors of the BPG expert and set all other phoneme posteriors
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Fig. 4. Classifier architecture: Individual classifiers for each BPG are run on group-specific feature masks applied to the entire utterance, then combined with a
general-purpose classifier at the posterior level according to the estimated current BPG.

TABLE II
FRAME PHONE CLASSIFICATION ACCURACIES (%) FOR DIFFERENT METHODS

OF FEATURE SELECTION: PLP RECT, PLP MI-IRREG FOR ALL BPGS USING

100 HIDDEN UNITS. THREE-HUNDRED FIFTY-ONE PLP FEATURES ARE USED

to zero—i.e., fully replacing the outputs of the baseline classi-

fier for frames detected as belonging to a particular BPG. How-

ever, if the BPG classification is in error, this may result in ir-

reparable damage to the posterior stream. Another approach is

to mix the phoneme posteriors in the baseline output with the

posteriors of the BPG expert using fixed mixing weights, so that

even when a particular BPG class has been chosen, the poste-

riors remain a mixture of both expert and baseline classifiers. It

would also be possible to make variable interpolations between

the two sets of posteriors based, e.g., on the degree of confi-

dence of the current BPG label, but in preliminary experiments

a variable-mixing-weight rule that showed any advantage over

hard decisions was not found.

V. CLASSIFIER EXPERIMENTS

A. BPG Experts

Table II illustrates that high-MI feature selection leads to

improved performance. The table compares the accuracies for

frame-level phone classification of each expert individually

for both baseline RECT and MI-IRREG features using 351

features. In all cases, the expert MLP classifiers had 100 hidden

units. It can be seen from Table II that the performance of the

MI-IRREG features are significantly better than the baseline

RECT features for all BPGs except Nasals. Similarly based

on these results, MI-IRREG features are used for Vowel, Stop,

and Fricative experts, and RECT features are used for Nasal

experts. Significance at the 5% level is 0.4%, 0.9%, 0.6%, and

0.9% for Vowel, Stop, Fricative, and Nasal frame accuracies,

respectively; note that the improvements due to MI-IRREG are

at the lower limit of significance in most cases.

Since each BPG has different characteristics, with different

feature selections made according to the MI criteria, it is worth

investigating the variation of accuracy with the size of the fea-

ture vector independently for each expert: it is expected that

increasing the amount of information available for each clas-

sifier will improve performance up to a point, beyond which

the burden of the added complexity fails to outweigh the added

information, and performance actually declines due to over-

training. Fig. 5 shows the frame accuracy across 195, 273, 351,

and 429 features. Fig. 5 also examines the effect of omitting

adjacent feature vectors in time to avoid any possible corre-

lation of the features. A feature vector dimensionality of 273

was found to maximize frame accuracy for the Vowel, Stop, and

Nasal experts while 351 maximized performance for the Frica-

tive expert. Experts for Stops, Fricatives, and Nasals maximized

performance using all features, whereas the Vowel expert per-

formed best when the “striped” MI-IRREG mask was used for

feature selection. Again, the variables which performed best for

each BPG were used for the remainder of the experiments.

As the expert networks have fewer outputs than the baseline

classifier (i.e., 7 to 25 versus 61 in the baseline), the BPG ex-

pert units can afford to have larger hidden layers without in-

creasing the total complexity of the classifiers. The results of

varying the hidden layer sizes to 100, 500, 1000, 2000, 3000,

4000, and 5000 units are shown in Table III. Although the gains

due to the much larger networks are sometimes quite small,

for the Vowels and Stops experts, 4000 hidden units provided
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Fig. 5. Frame accuracy for different feature vector dimensions using all features or “striping.”

TABLE III
PHONE CLASSIFICATION FRAME-LEVEL ACCURACIES (%) FOR DIFFERENT

NETWORK HIDDEN UNITS FOR ALL BROAD PHONETIC GROUPS

TABLE IV
BPG DETECTOR FRAME ACCURACIES (%) FOR DIFFERENT FEATURE

VECTOR DIMENSIONS (MLP INPUT UNITS ). HIDDEN UNITS

ARE HELD CONSTANT AT 100

TABLE V
BPG DETECTOR FRAME ACCURACIES (%) FOR DIFFERENT NUMBER OF MLP

HIDDEN UNITS. THERE ARE 351 INPUT UNITS IN EACH CASE

maximum frame accuracy, while for both Fricatives and Nasals,

3000 hidden units maximized performance.

B. BPG Detector

In this section, three methods of assigning candidate frames

to BPG experts are compared. The first method considered uses

the baseline classifier’s output to determine which BPG or si-

lence group dominates the posterior distribution. This approach

provides a frame-level BPG classification accuracy of 90.8%.

The second method uses a separate network for each BPG and

a silence group with a binary output. The frame is labeled with

the group corresponding to the network with the greatest con-

fidence (largest posterior), given the silence group the baseline

posteriors are maintained for that frame. Table IV provides the

frame accuracies for a number of different feature vector sizes;

best performance is achieved for 351 inputs. In these BPG de-

tector networks, only two output units are required, and since

the number of output units is so small more hidden units can be

used without increasing complexity of the system. The results

of varying the hidden units for 100, 500, 1000, 2000, and 3000

are shown in Table V. In these results, a difference of around

0.2% is significant at the 5% level.

C. Integration With Baseline System

The BPG phoneme posteriors in the baseline output are

merged with the posteriors of the BPG expert using constant

TABLE VI
PERS (%) OBTAINED FROM PATCHING WEIGHTED BPG EXPERT OUTPUTS

INTO BASELINE SYSTEM, USING 100 HIDDEN UNITS IN THE BASELINE

SYSTEM, FOR DIFFERENT METHODS OF BPG DETECTION,
AS A FUNCTION OF THE MIXING WEIGHT

mixing proportions. The PERs in Table VI were obtained by

varying the mixing weights then passing the merged posteriors

to the HMM decoder to obtain a final inferred phoneme se-

quence; when the mixing weight is zero, the baseline classifier

posteriors are unchanged regardless of the detected BPG, and

the baseline PER is achieved.

Both basic methods of BPG detection (“BPG Detector” and

“BPG Posteriors”) perform similarly. The “Combined” method

combines the results of the previous approaches and only as-

signs a candidate frame to a BPG once both methods agree; it

can be seen that this provides improvement in performance—in-

dicating that the two basic methods differ in their errors, and that

combining them avoids some of these errors. The “oracle” re-

sults are obtained by using the the ground-truth BPG label to

control the patching, i.e., using the labels of the database to as-

sign each frame to the silence group or one of the BPG experts.

This gives an idea of the upper bound achievable by the BPG

experts given ideal BPG detection.

The results of Table VI were given using a baseline network

with 100 hidden units. In Table VII, the number of hidden units

in the baseline classifier was varied over 100, 500, 1000, and

2000 hidden units. When the mixing weight is zero, the PER

corresponds to the baseline system without BPG experts. While

baseline performance improves markedly for larger classifier

networks, significant improvements can still be seen over base-

line as the experts are patched in. Significance at the 5% level is

achieved for a difference of 0.7% in these results

The results in the experiments were maximised for the de-

velopment set. Given a baseline PER of 26.5%, using the pro-

posed modular architecture reduces this error to 25.2%. Appli-

cation to the omitted test set of speakers from dialects 4 to 8 in

the TIMIT dataset gives a baseline PER of 27.3%, which is re-

duced to 26.3% using BPG experts. For both the development

and test sets, 5% statistical significance is achieved for a differ-

ence of around 0.7%. Over the entire test set the baseline PER is

reduced from 26.9% to 25.8% using the proposed architecture,
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TABLE VII
PERS (%) OBTAINED FROM PATCHING IN WEIGHTED BPG EXPERT OUTPUTS

INTO BASELINE SYSTEM FOR DIFFERENT NUMBERS OF HIDDEN UNITS,
USING THE “COMBINED” METHOD OF BPG DETECTION FROM TABLE VI,

AS A FUNCTION OF THE MIXING WEIGHT

for the entire test set 5% statistical significance is achieved for

a difference of around 0.5%.

VI. DISCUSSION

The spread of relevant information for each of the BPGs was

illustrated in the MI plots of Fig. 2. These observations rein-

force received wisdom concerning different phone classes based

purely on objective measurements. Of course, the great contrast

shown between the BPGs reinforces the case that BPGs should

benefit from distinct, expert classifiers, structurally adapted to

obtain the most information from the front-end features.

The number of hidden nodes has a strong impact on the per-

formance of a neural network classifier. The more hidden nodes

it contains, the more complex the model it can capture. Good

recognition performance, however, depends on the availability

of sufficient training data.

Training an NN on limited data can lead to over fitting which

is more likely to occur as more hidden nodes are introduced.

To prevent overfitting, training is usually stopped early, using

the performance of the network measured with a cross valida-

tion (CV) dataset held out from the main training data. In our

learning schemes, training is typically stopped when the perfor-

mance of the CV set increases by less than 0.5% after an entire

back-propagation pass through the training set. When training

the single, baseline classifier stopping criteria represents an av-

erage across all phonemes and may not be ideal for each BPG. In

using the expert networks proposed in this paper, not only are the

feature sets specific to each broad phonetic class of phonemes,

but also the early stopping point can specifically prevent over-

fitting of this class.

Given the limited amount of training data available using the

TIMIT database there is a limit to the number of hidden nodes

that can be used to model the complexities of the data without

overfitting the training set. As was seen in the experiments, per-

formance ceases to improve, and in some cases decreases, past

a certain number of hidden nodes. The baseline system perfor-

mance is at maximum with 1000 hidden units, while the smaller

expert system performance is maximized at 3000–4000 nodes.

However, even in these cases, very little improvement is seen

above 1000 units.

Current methods of computing MI and conditional MI use the

histogram approach to obtain the density estimation between

one or two features and the classes of interest, but ideally the

joint MI between the entire feature set selected so far and each

successive candidate could be computed. This approach would

benefit from more sophisticated methods to obtain a multivariate

probability density estimation between a complete set of fea-

tures.

In Table VI, the oracle results illustrate the potential of

the system given an ideal BPG detector. Therefore, crucial

to the performance of the proposed system is the BPG detec-

tion. Based on the confusion matrix in Fig. 1, given division

of phonemes into the BPGs: vowel, semivowels, dipthongs,

stops, fricatives, and nasals, only 50% of misclassified frames

fell within the same BPGs. However, grouping the similar

vowel-like BPGs vowels, semivowels, and dipthongs increased

this percentage to 75%. Therefore, the task of BPG detection is

simplified and improved BPG feature extraction is achieved, by

further increasing the number of misclassified frames that fall

within the same BPG. For this reason, it is hypothesized that

a more rigorous approach to grouping phonemes into BPGs

would improve system performance.

VII. CONCLUSION

In this paper, using the observation that phone-level confu-

sions fall most often into the same BPG as the true target, a

phone recognition system was designed with separate experts

trained to discriminate only within the broad classes of Vowels,

Stops, Fricatives, and Nasals. Since the TF characteristics of

these different speech sounds are so different, the experts were

each given individual, distinct “perspectives” on the input signal

by selecting subsets of the feature dimensions drawn from a

wide time window and choosing the feature dimensions ex-

hibiting the greatest MI with the class-conditional label. It was

shown empirically that this feature selection gave a small but

meaningful improvement in classification accuracy for three of

the four broad classes.

To construct a complete phone recognition system, we needed

to mix the judgments of the experts with the baseline classi-

fier under the guidance of a separate broad-class detector. The

method of simply pooling groups of posteriors from the baseline

classifier was compared with an ensemble of separately trained

detectors, one for each broad class. While both approaches per-

formed similarly, combining them such as to detect a broad class

only when both detectors agreed gave the best overall perfor-

mance.

An elaborate classification scheme must of course prove itself

superior to the simple approach of increasing the complexity of

a single baseline classifier—in our case, adding more hidden

units to the MLP neural network. For both baseline and experts,

the hidden layer sizes were increased to the maximum support-

able by the TIMIT training set used in the. Even with the rather

large networks this implied, the expert-based system continued

to afford significant error rate reductions; for smaller, more com-

putationally efficient systems, the gains possible with the ex-

perts are even larger.
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