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Obtaining near real-time information of travel times is a critical element
of most applications of intelligent transportation systems. The use of
transit vehicles as probe vehicles for collecting travel time data for auto-
mobiles on urban corridors was examined. Because transit vehicles are
increasingly equipped with an automated vehicle locator (AVL) for
reporting the current location of the vehicle, it may be possible to use
the AVL data for travel time purposes. In anticipation of such an appli-
cation of AVL, the relationship between travel times of a transit vehicle
and of an automobile is examined for stability of data and adjustment
needs. Travel times of transit vehicles and automobiles were measured
simultaneously along the same sections on major corridors in Delaware.
The difference in travel times was relatively stable, and, hence, appro-
priate formulas for predicting the travel time of automobiles were devel-
oped. The model coefficients were found to be reasonable and stable for
various traffic conditions. The study suggests that the AVL-equipped
transit vehicle can be used as a probe vehicle to collect travel time data
at regular intervals with minimum cost.

Applications of transportation demand management (TDM) and intel-
ligent transportation systems (ITS) have become the central strategy
for mitigating congestion in many cities. An important element of
such schemes is a system that collects, predicts, and disseminates
traffic information to drivers in real time (1, 2).

Perhaps the most critical information required by the traveler and
managers of ITS is the travel time on the links of the network. The
problem, however, is how to collect the data, predict travel time for
the immediate future, and disseminate the information continuously.
Much research is being conducted into each of these aspects, includ-
ing the device and mechanism with which to collect and transmit
travel times. Figure 1 is a schematic of the state of the art in travel time
prediction, and the figure identifies where the topic of this paper fits
into the scheme of travel time prediction.

This study examines the possibility of using transit vehicles (buses)
as probe vehicles for collecting data for predicting automobile travel
time. This idea is motivated by the introduction by a large number
of transit agencies of the automated vehicle locator (AVL) on their
buses. AVL uses a Global Positioning System (GPS) to report the
current location of the bus as it travels. The original purpose of AVL
was to provide arrival time information to passengers and to report
the current location to transit management. However, the informa-
tion collected by AVL could also become the basis for calculating

the travel time of automobiles. As discussed here, the use of buses
as an information source has several benefits.

Despite the utility of buses as a possible data source on travel
time, little or no work has been done to investigate the validity and
usability of this source and how to convert the data to predict the
average travel time of automobiles. This study determines whether
buses can be used as probe vehicles in an urban traffic stream by
analyzing the nature of the information collected by the buses and
developing formulas to convert the travel time of a bus to that of the
automobile. For this study, a large volume of data on bus and auto-
mobile travel times was collected and analyzed on various sections
of arterials in the northern part of New Castle County, Delaware.

DESCRIPTION OF PROBLEM

The problem analyzed here is to develop a procedure that predicts
the average travel time of the automobile, ATT, as based on the
observed travel time of a bus, BTT, in the same traffic stream. The
procedure should be simple yet accurate. The tasks involved are as
follows:

• To measure the travel time of the bus and of the automobile for
the same section at the same time;

• To analyze the characteristics of the components of BTT and
their variability;

• To develop a model that converts the travel time of the bus to
the average travel time of the automobile; and

• To verify the model by the data collected.

Consider the schematic presentation of the changes in travel time
between two points over time shown in Figure 2. The solid line
shows the average travel time of the automobile from Point A to
Point B for the corresponding departure time on the x-axis; the line
indicates that the vehicle that departs A at time T takes Z minutes to
reach B on the average. The purpose of the travel time prediction
models, in general, is to predict travel times that are close to this
solid line. The figure also shows x, which indicate BTT over the
same section for the corresponding departure times on the x-axis.
These points are expected to be located above the solid line (which
are ATTs).

The problem at hand is to produce the solid line from the observed
BTT points (x). To do this, one would need to convert the observed
BTT points x to points +, which are located close to the square dots
on the solid line. Then, the + points are used to estimate the ATT
that is expected before the next BTT data are updated. This is the
model for predicting ATT in this study. Thus, the output of the model
is the predicted travel times as shown by the dotted line. In this
case, the predicted travel time is assumed to be equal to the estimate
(represented as +) obtained from the last available BTT.
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Obviously, the prediction will be good if the points indicated by
the + are close to the square dots. Further, if the + points are closely
spaced, the predicted travel time should be closer to the actual travel
time. The spacing of the x is solely dependent on the frequency of
buses (or measurement intervals).

Thus, the success of the use of buses as probe vehicles is mea-
sured by how closely one can estimate ATTs from the correspond-
ing BTTs (x). To measure the success, one must understand the
allowable accuracy (error) and the practical distance for which the
travel time is predicted.

Issues of Accuracy

Before proceeding with any estimation or prediction, a pertinent
question is how accurate the predictions (ATT) should be. In the
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context of the potential application, this question translates to, By
how much could the predicted travel time be off from the one expe-
rienced by the driver before these predictions become useless to the
driver? No study so far has addressed this question. Because improved
accuracy invariably complicates the measurement plans and the pro-
cedure of conversion (BTT to ATT), this question is addressed before
the analysis is made.

A reference for answering this question can be how a typical auto-
mobile driver values the difference in travel time between what is pre-
dicted and what takes place. This has been investigated by researchers
in transportation economics. Small presented a survey of estimates
of the value of travel time (3). Calfee and Winston suggested that
the value (in monetary terms) of travel time is between $0.05 and
$0.12 per minute (4). From these studies, it can be concluded that
1 or 2 min of error (in predicted travel time) for a travel time of

FIGURE 1 Architecture of travel time prediction (GIS � geographic 
information system).

FIGURE 2 Problem of estimating average travel time from BTT.
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10 to 15 min is tolerable by the average traveler considering traffic
signals and the usual perturbations in traffic. That is, the tolerable
error of the estimate may be about 10% to 15% of the actual travel
time. In fact, this estimate of allowable error may well be a very con-
servative one. Similar observations on allowable error in travel time
measurements were made by Toppen and Wunderlich (from their
analysis of Los Angeles) (5). Figure 2 shows the definition of errors.
As shown in the figure, the vertical distance between the point rep-
resented by + (denoting estimated ATT) and the corresponding
point represented with a black square (denoting the corresponding
actual value of ATT) is the error in estimation.

Issue of Distance

Another issue of interest concerns over what distances one should
predict travel time. Some studies have considered sections as small
as 0.14 km (about 0.1 mi) (6). It is thought that for travel time pre-
dictions to be useful, the distance over which travel time is predicted
should be long enough so that predicted time is meaningful to the
average driver. For example, if one assumes 55 km/h (about 35 mph)
as the average speed on urban arterials, then the reasonable mini-
mum length of sections (based on a travel time of at least 5 min)
comes out to be about 4.6 km (about 3 mi). Similar calculations can
easily yield a rough rule of thumb on the minimum length of sec-
tions over which travel time should be predicted on different types
of arterials.

LITERATURE REVIEW AND MOTIVATION

The problem of predicting travel time on urban roads (or any road)
has long been a topic of research. The initial motivation for devel-
oping these models was their use in traffic assignment and dial-a-
ride problems, and that travel time is perhaps the most important
performance measure of a transportation system. One of the first
studies on this topic resulted in the Bureau of Public Roads equation
that tried to relate travel time on a link to the volume on that link (7).
Another of the early studies was by Sussman et al. (8), who tried to
develop relations for predicting travel time between two points from
the Cartesian distance between the two points. In recent years, the
interest in predicting travel times has increased with the activities
related to ITS. A large number of studies are being conducted. Some
studies use loop or other static detector data (9–13, 6). Sisiopiku and
Rouphail gave a good review of early work on use of loop detector
data for travel time estimation (14 ). Others have studied the use of
probe vehicles (vehicles equipped with GPS) to estimate travel time
(15, 16 ). Yet others, like Park et al. (17 ), used data from automatic
vehicle identification stations to estimate travel time. The method-
ologies used in these studies fall primarily into two classes for
expressing the measured variables and the variables to be predicted:
statistical estimation techniques, like regression analysis and cross-
correlation, and artificial neural networks. Further, many of the
existing works concentrate on predicting travel time on freeways
and not on urban arterial roads. Zhang rightly pointed out that,
“[T]he interrupted nature of traffic flow on arterial routes and numer-
ous other factors . . . however, make the estimation of travel time on
arterials a much more challenging task” (13). Similar observations
were made by Sisiopiku and Rouphail (14 ).

Although researchers have looked at probe vehicles as possible
sources of data, no one has considered buses as another kind of
probe vehicle. A search of the literature yielded few papers that
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looked at buses as probe vehicles. Hall and Vyas used buses as
probes for detecting incidents (18), and Elango and Dailey (19) and
Cathey and Dailey (20) looked at use of buses as traffic probes for
measuring spot speeds. However, these papers did not give any rela-
tion that can be used to predict average travel time (over a reason-
able section of a road) based on BTT. Use of buses as probe vehicles
adds little or no financial burden to a transit agency, because most
buses are equipped with GPS for predicting bus arrival times. Fur-
ther, a large number of buses run on the most used arterials (the ones
that are of greater importance for average ATT prediction) and gen-
erally have higher frequencies during peak periods. These charac-
teristics of bus routes and schedules make them ideal as probe
vehicles. Even if bus-based prediction systems cannot be used as
stand-alone systems for predicting travel times, buses certainly can
augment travel time information available from various other sources.
Although buses can be used as probe vehicles, they cannot be treated
as ordinary probe vehicles because of various characteristics inher-
ent to the travel pattern of the bus (which are discussed later). This
study tries to analyze the issues involved in use of buses as probe
vehicles and explores whether BTTs can be used effectively to
predict average ATTs.

CHARACTERISTICS OF BTT DATA

When using bus travel as the source of information for predicting
ATT, one needs to be cognizant of the unique aspect of BTT. It is
important to recognize that the difference between ATT and BTT is
a random variable even for the same section of a corridor because of
the following reasons.

Buses stop at bus stops. They leave and join the traffic stream
many times during their travel; therefore, they incur additional time
for merging and diverging as well as deceleration and acceleration
to and from a stop. Buses idle at bus stops to collect and discharge
passengers for a certain amount of time. Because the number of times
that a bus stops and the duration of stop vary randomly, the BTT’s
difference from the average travel time of the stream is a random
variable.

Typically, buses travel in the rightmost lane of an urban corridor.
The average speeds differ among the lanes. That buses travel in the
rightmost lane introduces a bias in the travel time of buses. In addition,
often in suburban operations, buses may leave the urban corridor and
enter large developments—a shopping center or employment center.
In this case, obviously the measured BTT and ATT are significantly
different.

Despite these sources of randomness and bias in the difference
between ATT and BTT, buses are attractive candidates for probe
vehicles because buses typically run on heavily traveled urban cor-
ridors, sites for which information on travel time is in high demand.
Also, it is supposed, buses observe traffic rules and speed limits.
Further, information on ATT is most needed during peak periods; it
is during these periods that buses have a higher frequency and there-
fore a greater sampling rate. For example, on Fifth Avenue in New
York City between 7:00 and 9:00 a.m., on average there is one bus
every minute (21).

COLLECTION OF BTT AND ATT DATA

Data on BTT and ATT were collected on five arterial sections in
northern New Castle County, Delaware. These sections correspond
to the four classes of arterial identified in the 2000 Highway Capacity



Manual (HCM) (22). For the purposes of this study, the sites are
designated Site I through Site V and are described in Table 1 with
the corresponding lengths and general class. The data were collected
at morning and evening peak periods and also during the off-peak
period in the fall of 2002.

At each site, 28 to 30 measurements of BTT and ATT were con-
ducted in the following manner. A vehicle and the bus departed the
same location at the same time. One surveyor traveled on the bus
and recorded the times at which the bus started and stopped for the
entire section, including the stopping time of buses at the bus stops,
and the number of times buses stopped at bus stops and the number
of passengers that boarded and alighted. At the same time, another
surveyor rode as a passenger (not as the driver) of an automobile and
recorded the travel time for the same section, noting any incidents
along the way. The driver of the vehicle was instructed to travel more
or less with the traffic flow. For the sections studied, on average a team
of three surveyors required about 4 to 5 h to obtain seven to eight
measurements. The time required depended on many factors: section
length, average travel speed, bus frequency, schedule adherence of
buses, and road geometry.

ESTIMATING ATT FROM BTT

Determining the functional form that predicts ATT from BTT is the
main analytical effort. In doing so, two general requirements were
considered: the form should be as simple as possible and the pre-
dicted value of ATT (by the function) should be within 10% to 15%
of the measured value of ATT (i.e., within an allowable error of 1 to
1.5 min for a 10-min travel time).

Functional Form of the Model

It is postulated that the difference between ATT and BTT arises
primarily because of the following:

• The stopping time of the bus at the bus stops,
• The time lost by the bus because of repeated accelerations and

decelerations from and to a stop (e.g., bus stops),
• The basic difference between the operating abilities of the bus

and the automobile,
• Adherence (by the bus and the automobile) to the posted speed

limits, and
• The tendency of the bus to use the right lane.
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From these postulates and the requirement to develop a simple
predictive equation, the following form is proposed initially:

where

ATTp = predicted ATT value,
TST = total time bus spends stopping at all bus stops, and
TBS = total number of times bus stops at bus stops.

(BTT − TST − γTBS) is treated as the independent variable because
this variable represents the actual running time of the bus. Note that
the parameter γ has the units of time and represents the time lost
because of acceleration and deceleration from and to a stop.

Equation 1, however, requires the use of nonlinear regression
analysis as the parameters β and γ, whose values are unknown,
appear in the product form. Because the primary purpose of the
model is prediction and not explanation, the following simplified
form of Equation 1 is used next:

Although this equation does not represent the physical interpretation
of Equation 1, it still has all the variables present in Equation 1 and
is now in a form in which linear regression can be used to estimate
the parameters a, b, and c.

Initial analysis, however, showed that for the data collected the
parameter c is not statistically significant. This is because given the
overall average running speeds of buses (which include stopping
times at intersections and bus stops), the effect of time loss due to
acceleration and deceleration on ATTp is not substantial. Therefore,
in line with the idea of a simple expression, the following form of
the equation is selected as the suggested model for predicting ATT
from BTT. A discussion of the meanings of parameters a and b is
provided later; for now, consider a and b as calibration constants.

Results

For Equation 3, the values of a and b were calibrated by using the
linear regression approach with the data on BTT and ATT for the
same section. The results show that for all the cases, at least 91% of
the predicted values had errors less than 15%, and at least 77% had

ATT BTT TSTp a b= + −( ) ( )3

ATT BTT TST TBSp a b c= + −( ) + ( )2

ATT BTT TST TBSp = + − −( )α β γ ( )1

Site Approximate Location Class 
Length  

(km) 
I US Rt. 40 between State Rt. 896 and State Rt. 7 

intersections
I 7.9 

(4.9 miles) 
II Lancaster Pike (State Rt. 48) between Brackenville Rd. and 

State Rt. 100 intersections
I/II 8 

(5.0 miles) 
III Concord Pike (US Rt. 202) between Broom St. and 

Silverside Rd. intersections
II 5.2 

(3.2 miles) 
IV Kirkwood Hwy. (State Rt. 2) between Main St. and Duncan 

Rd. intersections
II 10.8 

(6.7 miles) 
V Newport Pike (State Rt. 4) between State Rt. 7 and Broom 

St. intersections  
III/ 
IV 

7.4 
(4.6 miles) 

TABLE 1 Data Collection Sites
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ATT values. This frame shows two lines. One line corresponds to
the calibrated regression function of the form shown in Equation 3,
and the other corresponds to a modified model to be presented next.

As can be seen from Table 2 and Figures 3 through 5, there is a
reasonably good correlation between the ATT and the explanatory
variable, (BTT − TST), and ATT can be predicted with fairly good
accuracy from the information on BTT and TST. However, the
obtained coefficients are values found to give the best fit for the given
data but they fail to give any insight into the relation between the
variations in the data of BTT and ATT. To look for better insight for
this relation, a modified form of Equation 3 is hypothesized.

The constant a in Equation 3 can represent the average time an
automobile will take to travel over the section when there is little or
no traffic. In this case, the coefficient b represents the effect of traf-
fic congestion (as measured by the running time of buses) on ATT.
Further, to make the models as calibration free as possible, it was
thought that constant a can be determined from the class of the arte-
rial, the suggested free speed in the 2000 HCM (22), and the length
of the section. Thus, the general modified model for ATT prediction
is as shown in Equation 4. The specific models for the five sites are
shown in Table 3.

ATT
length of the section

free flow speed
BTT TSTp b= + −( ) ( )4

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Runs

T
ra

ve
l t

im
e 

(m
in

)

BTT

ATT

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Runs

T
ra

ve
l t

im
e 

(m
in

)

Pre. ATT

ATT

6

8

10

12

8 10 12 14 16 18 20

(BTT - TST)

A
u

to
 t

ra
ve

l t
im

e 
(m

in
)

ATTp*  = 6.53 + 0.14(BTT - TST)

ATTp  = 6.85 + 0.12(BTT - TST)

min

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Runs

T
ra

ve
l t

im
e 

(m
in

)

BTT

ATT

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Runs

T
ra

ve
l t

im
e 

(m
in

)

Pre. ATT

ATT

6

8

10

12

14

6 7 8 9 10 11 12 13 14
(BTT - TST)

A
u

to
 t

ra
ve

l t
im

e 
(m

in
)

ATTp = 3.09 + 0.55(BTT-TST)

ATTp* = 6.67 + 0.16(BTT-TST)

min

(a)

(c)

(e) (f)

(d)

(b)

Site a b
% of points with 
less than 10% error

% of points with 
less than 15% error 

I 6.85 0.12 91
II 3.09 0.55 100
III 6.00 0.00 100
IV 9.82 0.19 100
V 1.38 0.68 

91
100
100

80
77 100

FIGURE 3 Collected data on (a) Site I (Route 40) and (b) Site II (Lancaster Pike). Predicted travel time and ATT for (c) Site I and (d) Site II.
Relation between BTT and ATT for (e) Site I and (f) Site II. (ATTp is predicted on basis of Equation 3. ATTp* is predicted on basis of Equation 4.)

TABLE 2 Values of Parameters and Effectiveness of
Predictions with Equation 3

errors less than 10%. The error is the difference between the measured
and the predicted ATT.

The values of coefficient for each of the sites and the percentage
of points with less than 10% and 15% error (when compared to the
observed ATT values) are shown in Table 2. Because the observed
ATT values were to the nearest minute, the values are compared
after rounding the predicted values to the nearest minute.

The results are also shown in Figures 3 through 5. Figure 3
shows Sites I and II, Figure 4 shows Sites III and IV, and Figure 5
shows Site V. The graphs for each site have three frames. The top-
most shows the observed BTT and the observed ATT for each run
at the site. The middle frame compares the predicted ATT values
and the observed ATT values based on Equation 3. The bottom frame
shows the regression function as well as the plots of the observed



The value bi, which is specific to each site i, is determined by using
linear regression. The values are shown in Table 4. The table also
shows the percentage of time the predicted value is within 10% and
15% of the observed value (i.e., an error of 1 to 1.5 min for a 10-min
travel time). Because the actual ATT values were to the nearest minute,
the comparisons were done after rounding the predicted values to the
nearest minute.

As seen in Table 4, for the modified models (as given in Table 3),
the predicted values are close to the observed values. This can also
be seen by observing the calibrated regression line corresponding to
the modified models in the bottom frame of Figures 3, 4, and 5
(shown as ATTp*).

What is perhaps more important is that the calibrated bi values
show some interesting features. First, all the values lie within a rea-
sonably narrow range (0.14 to 0.19). Second, there appear to be two
distinct groups, Sites I and III with bi = 0.14 and Sites II, IV, and V
with bi in the narrow range of 0.17 to 0.19.

During the surveys, it was noted that although traffic volume var-
ied on all the sites, its effect on travel quality was noticed more in
Sites II, IV, and V than in Sites I and III. This could be because
capacity conditions were reached on these three sites (II, IV, and V)
more often than on the other two sites (I and III). That is, Sites II,
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IV, and V tended to become congested more frequently than the
other two sites. Given this observation, the two groups of bi take on
special meaning because this hints that for roads that become con-
gested less frequently, the appropriate value of bi ≈ 0.14, and for
roads that get congested more frequently, the value of bi ≈ 0.18 is
recommended in Equation 4.

Although five sites may not be considered sufficient for develop-
ing a rule of thumb, one can say that from the results, the following
conclusions can be drawn:

The strength of the result lies in that with this, one can predict the
average travel time of the automobile from the data on the BTT and
the general characteristics of the road section. That is, unlike with

ATT

length of section

free speed of section
BTT –  TST)

for less frequently congested roads

length of section
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FIGURE 4 Collected data based on (a) Site III (Concord Pike) and (b) Site IV (Kirkwood Highway). Predicted travel time and ATT for 
(c) Site III and (d ) Site IV. Relation between BTT and ATT for (e) Site III and (f) Site IV. (ATTp is predicted on basis of Equation 3. ATTp* is
predicted on basis of Equation 4.)
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the model given in Equation 3, one does not have to obtain the con-
stants for each and every arterial section. If nothing else, the result
demonstrates that there is a good chance that such a rule of thumb
can be developed after study of many more arterial sections.

CONCLUSIONS

Predicting travel times on urban arterials is a difficult task, yet it is
the crucial information in today’s ITS applications. In the past,
probe vehicles and loop detector data were used to obtain travel time
estimates. Here, use of transit buses as probe vehicles is suggested,
in addition to other approaches. This paper compared bus travel time
to automobile travel time and suggested a functional form that predicts
the automobile travel time as based on the travel time of the bus.

A relatively simple linear equation is suggested for the conversion.
This equation has two parts. The first part considers the travel time
under free flow, and the second part considers the bus travel time
without stopping. This expression is found to be easy to explain, and
the values of the parameters are stable; it depends only on the general
roadway classification and the pattern of congestion in the area.

Use of AVL-equipped buses as the data source is promising,
because the measurement function is already available by default
and the task of prediction can be performed frequently with mini-
mum manual intervention. However, more work on the following
four issues needs to be done to realize the application of the model
for specific situations: (a) updating of travel time formula by incor-
porating results of continuous measurement, (b) accuracy require-
ments, (c) effects of time of day and other local factors on travel time
estimation, and (d) the appropriate distance of road section for
which the model should be applied.
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FIGURE 5 Site V (Newport Pike): (a) collected data, (b) predicted
travel time and ATT, and (c) relation between BTT and ATT. (ATTp

is predicted based on Equation 3. ATTp* is predicted on basis of
Equation 4.)

Site Class
Length 
(km) 

Free-flow
speed from 
2000 HCM

Value of a (in
min.) Equation form

I 7.9 
(4.9 mi) 

72.4 km/h
(45 mph) 53.660

45

9.4 =  
)(53.6 TSTBTTbATT Ip −+=  

I/II 8 
(5.0 mi) 

72.4 km/h
(45 mph) 67.660

45

9.4 =  
)(67.6 TSTBTTbATT IIp −+=  

II 5.1 
(3.2 mi) 

64.4 km/h
(40 mph) 80.460

40

2.3 =  
)(80.4 TSTBTTbATT IIIp −+=

II 10.8 
(6.7 mi) 

64.4 km/h
(40 mph) 05.1060

40

7.6 =
 

I

II

III

IV

V III/IV 7.4 
(4.6 mi) 

48.3 km/h
(30 mph) 2.960

30

6.4 =  
)(2.9 TSTBTTbATT Vp −+=  

)(05.10 TSTBTTbATT IVp −+=

Site, i bi

% of points with
less than 10% error

% of points with
less than 15% error

I 0.14 90.91 90.91
II 0.17 100.00 100.00
III 0.14 100.00 100.00
IV 0.18 80.00 100.00
V 0.19 65.38 96.00

TABLE 3 Values of a and Equation Forms

TABLE 4 Values of Parameters and Effectiveness of
Predictions with Table 3 Model
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