
Using Caching to Solve Larger Probabilistic Planning Problems

Stephen M. Majercik and Michael L. Littman

Department of Computer Science
Duke University

Durham, NC 27708-0129
{maj er cik, mlittman} ~cs. duke. edu

Abstract

Probabilistic planning algorithms seek effective plans
for large, stochastic domains. MAXPLAN is a recently
developed algorithm that converts a planning prob-
lem into an E-MAJSAT problem, an NPPP-complete
problem that is essentially a probabilistic version of
SAT, and draws on techniques from Boolean satisfiabil-
ity and dynamic programming to solve the E-MAJSAT
problem. This solution method is able to solve plan-
ning problems at state-of-the-art speeds, but it depends
on the ability to store a value for each CNF subformula
encountered in the solution process and is therefore
quite memory intensive; searching for moderate-size
plans even on simple problems can exhaust memory.
This paper presents two techniques, based on caching,
that overcome this problem without significant perfor-
mance degradation. The first technique uses an LRU
cache to store a fixed number of subformula values.
The second technique uses a heuristic based on a mea-
sure of subformula difficulty to selectively save the val-
ues of only those subformulas whose values are suffi-
ciently difficult to compute and are likely to be reused
later in the solution process. We report results for both
techniques on a stochastic test problem.

INTRODUCTION

Classical artificial intelligence planning techniques can
operate in large domains but, traditionally, assume a
deterministic universe. Planning as practiced in opera-
tions research can operate in probabilistic domains, but
classical algorithms for solving Markov decision pro-
cesses (MDPs) and partially observable MDPs are capa-
ble of solving problems only in relatively small domains.
Research in probabilistic planning aims to explore a
middle ground between these two well-studied extremes
with the hope of developing systems that can reason ef-
ficiently about plans in large, uncertain domains.

In this paper we describe MAXPLAN, a new approach
to probabilistic planning. MAXPLAN converts a plan-
ning problem into an E-MAJSAT problem, an NPPP-
complete problem that is essentially a probabilistic ver-
sion of SAT, and draws on techniques from Boolean sat-

Copyright Q1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

isfiability and dynamic programming to solve the re-
sulting E-MAJSAT problem. In the first section, we
discuss complexity results that motivated our research
strategy, and compare MAXPLAN to SATPLAN, a simi-
lar planning technique for deterministic domains. The
next three sections summarize our earlier work on MAX-
PLAN and describe the details of its operation: the
planning domain representation, the conversion of prob-
lems to E-MAJSAT form and the algorithm for solving
these E-MAJSAT problems, and some comparative re-
sults. The next section introduces a framework for us-
ing caching in our solver and shows how good caching
strategies can greatly increase the size of problems the
solver can handle without substantially altering the
scaling properties of the time it takes to solve them.
The final sections discuss future work and conclusions.

COMPLEXITY RESULTS
A probabilistic planning domain is specified by a set
of states, a set of actions, an initial state, and a set of
goal states. The output of a planning algorithm is a
controller for the planning domain whose objective is
to reach a goal state with sufficiently high probability.
In its most general form, a plan is a program that takes
as input observable aspects of the environment and pro-
duces actions as output. We classify plans by their size
(the number of internal states) and horizon (the num-
ber of actions produced en route to a goal state). In
a propositional planning domain, states are specified as
assignments to a set of propositional variables.

If we place reasonable bounds--polynomial in the
size of the planning problem--on both plan size
and plan horizon, the planning problem is NPPP-

complete (Littman, Goldsmith, 8z Mundhenk 1998)
(perhaps easier than PSPACE-complete) and may 
amenable to heuristics. Littman, Goldsmith, & Mund-
henk (1998) provide a survey of relevant results. Mem-
bership in this complexity class suggests a solution
strategy analogous to that of SATPLAN (Kautz & Sel-
man 1996), a successful deterministic planner that con-
verts a planning problem into a satisfiability (SAT)
problem and solves the SAT problem instead. In the
same way that deterministic planning can be expressed
as the NP-complete problem SAT, probabilistic plan-

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



ning can be expressed as the NPPP-complete problem
E-MAJSAT (Littman, Goldsmith, & Mundhenk 1998):

Given a Boolean formula with choice variables
(variables whose truth status can be arbitrarily set)
and chance variables (variables whose truth status
is determined by a set of independent probabili-
ties), find the setting of the choice variables that
maximizes the probability of a satisfying assign-
ment with respect to the chance variables.

As we will discuss below, the choice variables can be
made to correspond to a possible plan, while the chance
variables can be made to correspond to the uncertainty
in the planning domain. Thus, our research strategy is
to show that we can efficiently turn planning problems
into E-MAJSAT problems, and then focus our efforts on
finding algorithms to solve the E-MAJSAT problems.

PROBLEM REPRESENTATION
A planning domain M = (S, So, A, G) is characterized
by a finite set of states ,9, an initial state so E S, a
finite set of actions A, and a set of goal states G C_ ,9.
Executing action a in a state s results in a probabilistic
transition to a new state. The objective is to choose
a sequence of actions to move from the initial state so
to one of the goal states with probability above some
threshold 0. In this work, we assume a completely unob-
servable domain--the effects of previous actions cannot
be used in selecting the current action; thus, optimal
plans are sequences of actions.

MAXPLAN represents planning domains in the
sequential-effects-tree (ST) representation (Littman
1997). For each action, there is an ordered set of deci-
sion trees, one for each proposition, describing how the
propositions change as a function of the state and ac-
tion, perhaps probabilistically. A formal description of
ST is available (Littman 1997); a brief example follows.

SAND-CASTLE-67 is a simple probabilistic planning
domain concerned with building a sand castle at the
beach (Figure 1). The domain has four states, de-
scribed by combinations of two Boolean propositions,
moat and castle (propositions appear in boldface).
The proposition moat signifies that a moat has been
dug; castle signifies that the castle has been built. In
the initial state, both moat and castle are False, and
the goal set is {castle} (a goal state is any state in
which all the propositions in the goal set are True).

There are two actions: dig-moat and erect-castle (ac-
tions appear in sans serif). For brevity, we describe only
the second decision tree (effect on moat) of the erect-
castle action. There is no effect when moat is False
(right branch) since erect-castle cannot dig a moat. But
trying to erect a castle may destroy an existing moat
(left branch). If the castle existed when erect-castle was
selected, the moat remains intact with probability 0.75.
If the castle did not exist, but erect-castle creates a new
castle (castle:new refers to the value of castle after
the first decision tree is evaluated), moat remains True.

dig-moat erect-castle

1: moat 2: castle 1: castle 2: moat
moat castle castle moat

~ moat

~:s~ew

el e2

e4

Figure 1: Sequential-Effects-Tree Representation For
SAND-CASTLE-67

If erect-castle fails to build a castle, moat remains True
with probability 0.5.

CONVERSION AND SOLUTION

MAXPLAN’s conversion unit is a LISP program that
takes a planning problem in ST form and a plan horizon
N and produces an E-MAJSAT CNF formula. This for-
mula has the property that, given an assignment to the
choice variables (an N-step plan), the probability of 
satisfying assignment with respect to the chance vari-
ables is the probability of success for that plan. The
converter operates by time indexing each proposition
and action, and making satisfaction equivalent to the
enforcement of the following conditions:

¯ the initial conditions hold at time 0 and the goal con-
ditions at time N,

¯ actions at time t are mutually exclusive (1 < t < N),

¯ proposition p is True at time t if it was True at time
t-- 1 and the action taken at t does not make it False,
or the action at t makes p True (1 < t < N).

The first two conditions are not probabilistic and can be
encoded in a straightforward manner (Kautz ~c Selman
1996), but the third condition is complicated by the
fact that chance variables sometimes intervene between
actions and their effects on propositions.

The conversion process is detailed elsewhere (Ma-
jercik & Littman 1998); here we summarize some key
facts. The total number of variables in the formula is
V = (A+P+R)N+P, where A, P, and R are the num-
ber of actions, propositions, and random propositions,
respectively. The total number of clauses is bounded
by a low-order polynomial in the size of the problem:

2P+((A) 1) N+2N~A_lL~,whereLiisthenumber
of leaves in the decision trees of action i. The average
clause size is dominated by the average path length of
all the decision trees.

Note that fixing a plan horizon does not prevent MAX-
PLAN from solving planning problems where the horizon
is unknown. By using iterative lengthening, a process



in which successive instances of the planning problem
with increasing horizons are solved, the optimal plan
horizon can be discovered dynamically. This, in fact,
was the process used in the MAXPLAN/BURIDAN com-
parison described later. We have not yet determined the
feasibility of incremental iterative lengthening, a more
sophisticated approach, in which the current instance of
the planning problem with horizon N is incrementally
extended to the instance with horizon N + 1 and earlier
results are reused to help solve the extended problem.

Solver
An algorithm for solving the E-MAJSAT problem pro-
duced by the conversion described above needs to find
the assignment to the choice variables that maximizes
the probability of a satisfying assignment; for plan-
generated formulas, such an assignment is directly in-
terpretable as an optimal straight-line plan. Our al-
gorithm is based on an extension of the Davis-Putnam-
Logemann-Loveland (DPLL) procedure for determining
satisfiability. Essentially, we use DPLL to determine all
possible satisfying assignments, sum the probabilities
of the satisfying assignments for each possible choice-
variable assignment, and then return the choice-variable
assignment (plan) with the highest probability of pro-
ducing a satisfying assignment (goal satisfaction).

Determining all the satisfying assignments can be en-
visioned as constructing a binary tree in which each
node represents a choice (chance) variable, and the two
subtrees represent the two possible remaining subfor-
mulas given the two possible assignments (outcomes)
to the parent choice (chance) variable. At any leaf 
this tree, the chain of variable bindings leading to the
root is sufficient to evaluate the Boolean formula--at
least one literal in each clause is True or all literals in
one clause are False. It is critical to construct an effi-
cient tree to avoid evaluating an exponential number of
assignments. In the process of constructing this tree:
¯ an active variable is one that has not yet been as-

signed a truth value,
¯ an active clause is one that has not yet been satisfied

by assigned variables,
¯ the current CNF subformula is uniquely specified by

the current sets of active clauses and variables, and
¯ the value of a CNF subformula is

max "i t I - zr~)1-tr(vd ,D
v~ n

where D is the set of all possible assignments to the
active choice variables, S is the set of all satisfying
assignments to the active chance variables, CH is the
set of all active chance variables, tr(v~) {0, 1}is the
truth value of v~ (0 = False, 1 = True), and Iri 
the probability that vi is True.

In general, a brute-force computation of a CNF subfor-
mula value is not feasible. To prune the number of as-
signments that must be considered, full DPLL uses sev-
eral variable selection heuristics (Majercik & Littman

1998). Our modified DPLL uses only one of these; we
select, whenever possible, a variable that appears alone
in an active clause and assign the appropriate value
(unit propagation, UNIT). For chance variable i, this
decreases the success probability by a factor of 7ri or
1 - lri. This can be shown to leave the value of the
current CNF formula unchanged.

When there are no more unit clauses, we must split on
an active variable (always preferring choice variables).
If we split on a choice (chance) variable, we return the
maximum (probability weighted average) of assigning
True to the variable and recurring or assigning False
and recurring. The splitting heuristic used is critical
to the algorithm’s efficiency; experiments (Majercik 
Littman 1998) indicate that splitting on the variable
that would appear earliest in the plan--time-ordered
splitting (TIME)--is a very successful heuristic.

The solver still scaled exponentially with plan hori-
zon, however, even on some simple plan-evaluation
computations. The fact that a simple dynamic-
programming plan evaluation algorithm can be created
that scales linearly with plan horizon (see the following
section) led us to incorporate dynamic programming
into the solver in the form of memoization: the algo-
rithm stores the values of solved subformulas for possi-
ble reuse. This greatly extends the size of the plan we
can feasibly evaluate (Majercik & Littman 1998).

We tested modified DPLL (UNIT/TIME) on the
full plan-generation problem in SAND-CASTLE-67 for
plan horizons ranging from 1 to 10. Optimal plans
found by MAXPLAN exhibit a rich structure: beyond a
horizon of 3, the horizon i plan is not a subplan of the
horizon i + 1 plan. The optimal 10-step plan is D-E-D-
E-E-D-E-D-E-E (D = dig-moat, E = erect-castle). This
plan succeeds with near certainty (probability 0.9669)
and MAXPLAN finds it in approximately 8 seconds on a
Sun Ultra-1 Model 140 with 128 Mbytes of memory.

COMPARISONS
We compared MAXPLAN to three other planning tech-
niques (Majercik & Littman 1998):
¯ BURIDAN (Kushmerick, Hanks, & Weld 1995), a clas-

sical AI planning technique that extends partial-order
planning to probabilistic domains,

¯ Plan enumeration with dynamic programming for
plan evaluation (ENUM), and

¯ Dynamic programming (incremental pruning) 
solve the corresponding finite-horizon partially ob-
servable MDP (POMDP).

There are other important comparisons that should be
made; belief networks and influence diagrams (Pearl
1988) are closely related to our work and there are effi-
cient techniques for evaluating them, but their perfor-
mance relative to MAXPLAN is unknown.

Table 1 summarizes the performance of MAXPLAN on
two probabilistic planning problems described by Kush-
merick, Hanks, & Weld (1995). Also shown are the run-
ning times reported for the two versions of BURIDAN



Planning time in CPU secs
MAXPLAN BURIDAN

Modified DPLL Forward Forward-Max
SLIPPERY GRIPPER 0.4 4.5 0.5
BOMB/TOILET 0.3 6.9 7.0

Table 1: Comparison of running times for two probabilistic planning domains

that performed best on these two problems. MAXPLAN
does as well as BURIDAN on SLIPPERY GRIPPER and has
an order of magnitude advantage on BOMB/TOILET.

We also compared the scaling behavior of MAXPLAN
to that of ENUM and POMDP on two problems: SAND-
CASTLE-67 and DISARMING-MULTIPLE-BOMBS (Ma-
jercik & Littman 1998). MAXPLAN scales exponen-
tially (O(2.24N)) as the horizon increases in SAND-
CASTLE-67. ENUM, as expected, also scales exponen-
tially (O(2.05N)). But POMDP, remarkably, scales 
early as the horizon increases. We see much differ-
ent behavior in DISARMING-MULTIPLE-BOMBS, a prob-
lem that allows us to enlarge the state space with-
out increasing the optimal plan horizon. As the state
space increases, both ENUM and POMDP scale expo-
nentially (0(7.50N) and 0(3.50Iv) respectively), while
MAXPLAN’s solution time remains constant (less than
0.1 second) over the same range.

CACHING IN THE SOLVER

Further tests of MAXPLAN, however, uncovered a sig-
nificant problem. Because it stores the value of all
subformulas encountered in the solution process, the
algorithm is very memory intensive and, in fact, is un-
able to find the best plan with horizon greater than 15
due to insufficient memory. The situation is illustrated
in Figure 2, which compares the performance of full
DPLL without memoization to that of modified DPLL
(UNIT/TIME) with memoization. Note that this 
a log plot and that we show the results starting with a
plan horizon of 4 since the asymptotic behavior of the
algorithm does not become clear until this point.

The top plot shows the performance of full DPLL
without memoization. We can extrapolate to estimate
performance on larger problems (dotted line), but so-
lution times become prohibitively long. The lower plot
ending with an "X" shows the performance of modi-
fied DPLL with memoization. The much lower slope
of this line (2.24 compared to 3.82 for full DPLL with-
out memoization) indicates the superior performance of
this algorithm, but the "X" indicates that no extrapo-
lation is possible beyond horizon 15 due to insufficient
memory. In fact, performance data for the horizon 15
plan already indicate memory problems. The wall-clock
time is more than three times the CPU time, indicat-
ing that the computation is I/O-bound. Memoization
allows the algorithm to run orders of magnitude faster
but ultimately limits the size of problems that can be
solved.

10A9

cO

Z
0
0ILl

n
0

q

10A8

10A7

10A6

10A5

10,~

10A3

10A2

10A1

10A0

FULL DPLL WITHOUT MEMO
MODIFIED DPLL WITH MEMO

MODIFIED DPLL WITH MEMO & LRU CACHE

/./
/-

/...--

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
PLAN LENGTH

Figure 2: Full DPLL without memoization v. modi-
fied DPLL with memoization v. modified DPLL with
memoization and LI~U caching for SAND-CASTLE-67

LRU Caching

Our solution is to treat the fixed amount of memory
available as a cache for subformulas and their values.
Given a cache size appropriate for the amount of mem-
ory on the machine running the algorithm, the prob-
lem becomes one of finding the best replacement policy
for this cache. We compared two well-known cache re-
placement policies: first-in-first-out (FIFO) and least-
recently-used (LI~U). Both were implemented through
a linked list of subformulas maintained in the order they
were saved. When the cache is full we merely remove
the subformula at the head of the list. Under an LP~U
policy, however, whenever we use a subformula we move
it to the end of the linked list. As shown in Figure 3,
the LRU cache outperforms the FIFO cache by an av-
erage of approximately 18% across the entire range of
cache sizes for the 10-step SAND-CASTLE-67 plan.

We tested the LR.U caching technique for generating
SAND-CASTLE-67 plans with horizons ranging from 1
to 20. For plan horizons from i to 15, the cache was
made as large as possible without producing significant
I/O problems. For larger problems--with larger sub-
formulas to be saved--we calculated cache size so as to



35

30

25

~9
o 20z
OO

~ 15
o

10

FIFO CACHE
LRU CACHE

0 5000 10000 15000 20000 25000 30000 35000
CACHE SIZE

Figure 3: FIFO v. LI~U v. Smart LRU for the 10-step
plan for SAND-CASTLE-67

keep total cache bytes approximately constant. These
results are shown in Figure 2; the performance plot for
LRU caching is essentially coincident with the modified
DPLL plot up to a plan horizon of 15. For longer plan
horizons, LR.U caching allows us to break through the
memory insufficiency that blocked us before (the "X")
yet retain a significant degree of the improved perfor-
mance that memoization gave us. Solution times for full
DPLL without memoization grow as O(3.82N), where
N is the plan horizon. In contrast, modified DPLL with
memoization scales as only O(2.24N), but can only solve
problems of a bounded size. Modified DPLL with mem-
oization and caching behaves like modified DPLL with
memoization for small N, and then appears to grow as
0(2.96jr) once N is large enough for the cache replace-
ment policy to kick in. Thus, the rate of increase for the
variant with caching exhibits a growth rate comparable
to that of modified DPLL with memoization while elim-
inating that algorithm’s limitation on problem size~it
trades away some performance for the ability to solve
larger problems. As reported above, ENUM scales as
0(2.05N) without any memory problems.

Smart LRU Caching

We can sometimes improve performance by being se-
lective about the subformulas we cache. The hierarchi-
cal relationship among subformulas makes it redundant
to save every subformula, but which ones do we save?
Large subformulas are unlikely to be reused, and small
subformulas, whose value we could quickly recompute,
yield little time advantage. This suggests a strategy of
saving mid-size subformulas, but experiments indicate
that this approach fails for the SAND-CASTLE-67 prob-

10A9

(D
oz
O
,?,

0

o,

10A8

10A7

10,~6

10A5

10A4

10,’.3

10A2

10A1

10,’K)

MODIFIED DPLL WITH MEMO & LRU CACHE
MODIFIED DPLL WITH MEMO & SMART LRU CACHE

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
PLAN LENGTH

Figure 4: Modified DPLL with memoization and LP~U
caching v. modified DPLL with memoization and smart
LRU caching for SAND-CASTLE-67

lem. Another approach is to save subformulas based
on difficulty, defined as the number of recursive func-
tion calls required to solve that subformula. We exper-
imentally determined that the optimal difficulty range
for the SAND-CASTLE-67 problem was 5 to 14. Saving
only those subformulas with a difficulty in this range
allowed us to find the best 10-step plan for the SAND-
CASTLE-67 problem with only an approximate 10% in-
crease in CPU time, and this performance was nearly
constant over a broad range of cache sizes (10,000 up
to the maximum usable cache of 32,000); see Figure 3.

Applying this "smart" LRU caching technique to
plan generation in the SAND-CASTLE-67 domain, we
obtained as much as a 37% decrease in CPU seconds
compared to straight LRU caching (Figure 4). Unfor-
tunately, the advantages of smart caching seem to dis-
appear as plan horizon increases. Also, it is not obvious
how this technique could be exploited in a practical al-
gorithm since we performed extensive tests to determine
the optimal difficulty range~tests with other domains
indicate that this range is problem dependent.

FUTURE WORK

In addition to the problems described above, we have
tested MAXPLAN on several variants of BOMB/TOILET
(with clogging and asymmetric actions). But the scal-
ing behavior of MAXPLAN with respect to the size of the
state space and the number of actions in the planning
domain is largely unexplored. DISARMING-MULTIPLE-
BOMBS shows that MAXPLAN can find simple solutions
efficiently as the state space grows, but we need to test
our planner on more complicated domains.



Although our improvements have increased the effi-
ciency of MAXPLAN by orders of magnitude over our
initial implementation, more work needs to be done be-
fore MAXPLAN can be successfully applied to large-scale
probabilistic planning problems. Efficiency could prob-
ably be improved by using a better CNF encoding of
the planning problem and by using more sophisticated
data structures for storing the CNF formulas.

Another promising area is splitting heuristics. Our
time-ordered splitting heuristic does not specify an or-
dering for variables associated with the same time step.
A heuristic that addresses this issue could provide a sig-
nificant performance gain in real-world problems that
have a large number of variables at each time step.

When we convert a planning problem to an
E-MAJSAT problem, the structure of the planning prob-
lem becomes obscured, making it difficult to use our in-
tuition to develop search control heuristics or to prune
plans. Although the current E-MAJSAT solver uses
heuristics to prune the number of assignments that
must be considered, this does not directly translate into
pruned plans. We would like to be able to use our
knowledge and intuition about the planning process to
develop search control heuristics and plan-pruning cri-
teria. Kautz & Selman (1998), for example, report im-
pressive performance gains resulting from the incorpo-
ration of domain-specific heuristic axioms in the CNF
formula for deterministic planning problems.

Our experiments with caching yielded promising re-
sults, but there are three areas where further work needs
to be done. First, although smart LRU caching yielded
significant performance improvements, it is not practi-
cal unless we can determine the optimal difficulty range
for subformulas to be cached without extensive test-
ing. Second, it appears that we could do even bet-
ter than smart caching. Performance on the 10-step
SAND-CASTLE-67 problem deteriorates significantly if
the cache size is less than approximately 5000 (Fig-
ure 3), yet we know that there are only 1786 distinct
subformulas that are reused in the solution process. A
better heuristic for selecting subformulas to save could
improve the benefits of this technique. Finally, a more
sophisticated cache replacement policy could yield ad-
ditional performance gains.

Approximation techniques need to be explored. Per-
haps we can solve an approximate version of the prob-
lem quickly and then explore plan improvements in
the remaining available time, sacrificing optimality for
"anytime" planning and performance bounds. This
does not improve worst-case complexity, but is likely
to help for typical problems.

Finally, the current planner assumes complete unob-
servability and produces an optimal straight-line plan;
a practical planner must be able to represent and
reason about conditional plans, which can take ad-
vantage of circumstances as they evolve, and loop-
ing plans, which can express repeated actions com-
pactly (Littman, Goldsmith, & Mundhenk 1998).

CONCLUSIONS
We have described an approach to probabilistic plan-
ning that converts the planning problem to an equiv-
alent E-MAJSAT problem--a type of Boolean satisfi-
ability problem--and then solves that problem. The
solution method we have devised uses an adaptation
of a standard systematic satisfiability algorithm to find
all possible satisfying assignments, along with memo-
ization to accelerate the search process. This solution
method solves some standard probabilistic planning
problems at state-of-the-art speeds, but is extremely
memory intensive and exhausts memory searching for
moderate-size plans on simple problems.

We described two techniques, based on caching, for
reducing memory requirements while still preserving
performance to a significant degree. The first tech-
nique, using an LP~U cache to store subformula values,
is generally applicable, regardless of the specific plan-
ning problem being solved. The second technique, selec-
tively saving subformula values in an LP~U cache based
on their computational difficulty, is, at present, prob-
lem dependent. But this technique demonstrates the
significant performance benefits that can be obtained
with smarter LI~U caching.

Acknowledgments
This work was supported in part by grant NSF-IR/-97-
02576-CAREER.

References
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 1194-1201. AAAI Press/The
MIT Press.
Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability
framework. To appear in Proceedings of the Fourth In-
ternational Conference on Artificial Intelligence Plan-
ning.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelli-
gence 76(1-2):239-286.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M.
1998. The computational complexity of probabilistic
plan existence and evaluation. Submitted.
Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity. In Proceedings
of the Fourteenth National Conference on Artificial In-
telligence, 748-754. AAAI Press/The MIT Press.
Majercik, S. M., and Littman, M. L. 1998. MAX-
PLAN: A new approach to probabilistic planning. To
appear in Proceedings of the Fourth International Con-
ference on Artificial Intelligence Planning.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems. San Mateo, CA: Morgan Kaufmann.


