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Summary. The avalanche of newly found protein sequences in the post-

genomic era has motivated and challenged us to develop an automated

method that can rapidly and accurately predict the localization of an un-

characterized protein in cells because the knowledge thus obtained can

greatly speed up the process in finding its biological functions. However, it

is very difficult to establish such a desired predictor by acquiring the key

statistical information buried in a pile of extremely complicated and high-

ly variable sequences. In this paper, based on the concept of the pseudo

amino acid composition (Chou, K. C. PROTEINS: Structure, Function, and

Genetics, 2001, 43: 246–255), the approach of cellular automata image is

introduced to cope with this problem. Many important features, which are

originally hidden in the long amino acid sequences, can be clearly dis-

played through their cellular automata images. One of the remarkable

merits by doing so is that many image recognition tools can be straight-

forwardly applied to the target aimed here. High success rates were ob-

served through the self-consistency, jackknife, and independent dataset

tests, respectively.

Keywords: Cellular automata images – Pseudo amino-acid composition –

Protein subcellular location – Complexity – Covariant-discriminant
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I Introduction

One of the fundamental goals in protein science is to

identify the function of a newly found protein. To truly un-

derstand the biological function of a protein, it is crucially

important to find its localization in a cell. The experimen-

tal determination of protein subcellular location is gen-

erally accomplished by the following three approaches:

cell fractionation, electron microscopy, and fluorescence

microscopy (Boland et al., 1998). They are both time-

consuming and costly. Besides, these methods also bear

some sort of subjectivity (Murphy et al., 2000) and un-

certainty. Therefore, it is in high demand to develop an

automated method that can rapidly and accurately predict

the subcellular localization of a protein just based on the

information of its sequence alone. Actually, many efforts

have been made in this regard during the last decade. The

methods developed in the earlier stage are summarized in

some review papers [see, e.g., (Chou, 2000b, 2002; Nakai,

2000)]. New progresses in this area are reflected by a

series of papers published in recent years (Chou, 2000a,

2001; Chou and Cai, 2003b, 2004b, c, 2005; Pan et al.,

2003; Park and Kanehisa, 2003; Wang et al., 2004a, b;

Xiao et al., 2005a; Zhou and Doctor, 2003).

To improve the quality of protein subcellular location, a

key problem is how to optimally express the statistical

samples for proteins. The following two modes are often

used to express a protein: (1) the sequential mode, and

(2) the discrete mode. The most straightforward sequential

mode is to use the entire sequence of a protein to represent

itself. However, because protein sequences are extremely

complicated with much variation in both sequence order

and length, it is hardly to establish a feasible predictor by

using the sequential mode to represent protein samples, as

elaborated by Chou (Chou and Cai, 2002). The simplest

discrete mode is to use the amino acid composition of a

protein to represent it (Chou and Zhang, 1993, 1994;

Chou, 1995; Zhou, 1998). By doing so, however, all the

information of order and length in an original sequence are

totally lost. To cope with such a dilemma, Chou propose a

new discrete mode, the so-called pseudo amino acid com-

position (Chou, 2001), to represent the protein samples.

The pseudo amino acid composition consists of 20 þ �



discrete numbers: the 1st 20 numbers represent none but

the 20 components of amino acid composition; the num-

bers from 20þ 1 to 20 þ � represent � factors or func-

tions derived from a protein concerned that bear, at least

partially, its sequence order and length information. The

introduction of pseudo amino acid composition has

greatly stimulated the development of protein subcellular

location prediction (Cai and Chou, 2003, 2004a, b; Cai

et al., 2002a; Chou and Cai, 2003b, 2004b; Gao et al.,

2005; Pan et al., 2003) as well as some related areas (Cai

et al., 2002b, 2003, 2005; Chou, 2005; Chou and Cai,

2003a; Wang et al., 2004a, b). The key in successfully

using the pseudo amino acid composition is how to choose

the functions to derive the � factors that can optimally

reflect the sequence order and length effects of a protein

sequence.

In this study, a novel approach – the images of protein

cellular automata – is introduced to derive the pseudo

amino acid components. The bottom line is that the cel-

lular automaton images can reveal many important fea-

tures of protein, which are originally hidden in a long and

complicated amino acid sequence (Xiao et al., 2005c).

First of all, let us give a brief introduction about autom-

aton, whose plural is automata. An automaton is a rule-

following device. A computer is a typical example in this

regard because it operates by following some rules. One

type of automaton that has received a lot of attention is

cellular automata because they can be used to generate

beautiful pictures as well as study very complicated ob-

jects such as artificial life and chaos. A cellular automaton

is a dynamical system in which space, time, and the states

are discrete. Each cell, defined by a point in a regular

spatial lattice, can have any one of a finite number of

states that are updated according to a local rule; i.e., the

state of a cell at a given time depends only on the imme-

diately preceding states of itself and its nearby neighbors.

All cells on the lattice are synchronously updated so as to

realize the development of the dynamic system in discrete

time steps.

The images generated by cellular automata, or in short

the CA images, have been applied to the investigation into

the sequence character of the severe acute respiratory

syndrome coronaviruses (SARS-CoVs), and a remarkable

fingerprint for the SARS-CoVs has been revealed (Wang

et al., 2005). CA images were also used to predict the ef-

fect on the replication ratio by HBV virus gene missense

mutation (Xiao et al., 2005b). There are several param-

eters to evaluate the image feature, such as pseudo zernike

moments (Haddadnia et al., 2002), maximum local entropy

(Zhu et al., 1997), and complex wavelet coefficients

(Portilla and Simoncelli, 2000). Of the known complexity

measure approaches so far, the Ziv-Lempel complexity

measure is the most adequate one in reflecting the repeat

patterns occurring in the character sequence (Gusev et al.,

2001), and hence was adopted in this study. The results of

both self-consistency and jackknife tests indicate that the

protein localization is considerably correlated with its

gene CA image.

II Method

1. Cellular automata image

A protein sequence is generally constituted by 20 native amino acids

whose single character codes are: A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, and Y. It is very difficult to find its characteristic vector

particularly when the sequence is very long. To cope with this situation,

we resort to the images derived from the amino acid sequence through the

space-time evolution of cellular automata. As a first step, the 20 amino

acids are coded in a binary mode as given in Table 1, which can better

reflect the chemical and physical properties of an amino acid, as well as

its structure and degeneracy (Xiao et al., 2005c). Through the above

encoding procedure, a protein sequence is transformed to a serial of digi-

tal signals. For example, the sequence ‘‘MASAAG. . .’’ is transformed to

‘‘1001111001010011100111001. . .’’.
The cellular automaton adopted here is a simple two-state, one-dimen-

sional one, consisting of a line of cells, with the value of 0 or 1 (Wolfram,

2002). The rule is simply implemented as: the nearest cells around the one

on which we focus decide its next state. We adopt the circulating boundary

condition, with the iterative formula given below:

Dði; jÞ ¼ FðDði� 1; j� 1Þ;Dði� 1; jÞ;Dði� 1; jþ 1ÞÞ;
ð2� i�n; 2� j�5N � 1Þ ð1Þ

Dði; 1Þ ¼ FðDði� 1; 5NÞ;Dði� 1; 1Þ;Dði� 1; 2ÞÞ; ð2� i�nÞ ð2Þ

Dði; 5NÞ ¼ FðDði� 1; 5N � 1Þ;Dði� 1; 5NÞ;Dði� 1; 1ÞÞ; ð2� i�nÞ
ð3Þ

where F is the iterative rule, n the iterative time, and N the length of the

amino acid sequence. Data derived by the process with the evolving rule

Table 1. Digital codes of 20 native amino acids

Amino acid P L Q H R S F Y W C

Decimal numbers 1 3 4 5 6 9 11 12 14 15

Binary notation 00001 00011 00100 00101 00110 01001 01011 01100 01110 01111

Amino acid T I M K N A V D E G

Decimal numbers 16 18 19 20 21 25 26 28 29 30

Binary notation 10000 10010 10011 10100 10101 11001 11010 11100 11101 11110
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are saved in the rows starting from the second, and data in each row are

derived from those in its previous row.

The evolution rule for image formation must be able to very obviously

distinguish whether the proteins concerned are similar to each other or not.

We find the 84th is the best one in serving such a purpose among all the

256 kinds of evolving rules. Rule 84 may be described by Fig. 1. The time

that the rule evolves determines the width of the images. It was found that

the image structure is basically steady when the time is 300.

We transform the 2D array (matrix) into an image with visualization

techniques. The basic bitmap format is chosen owing to its easily handled

property. In this way, if the matrix element is zero, the color of the

counterpart pixel bit is black; otherwise, white. For a systematic descrip-

tion of CA images, refer to the paper (Xiao et al., 2005a). Thus, all the

existing tools in the area of image processing can be straightforwardly

used for the current study. Figures 2 and 3 show proteins gene images

based on CA 84th rule, and it can be seen from these figures that different

type protein have completely different texture feature.

2. Predicting algorithm

Image recognition is concerned with the automatic detection and classifi-

cation of image. Its techniques can be divided into two main categories:

(1) those employing geometrical features, and (2) those using gray-level

information. The texture characteristics of these gene images are very

complicated and it is very difficult to characterize these images by using

either deterministic or statistical models. Nevertheless, these protein

images can be saved in 2D arrays. Thus, we can simply regard the Ziv-

Lempel complexity (Ziv and Lempel, 1976) of these sequences as pseudo

amino acid composition. The Ziv-Lempel complexity measure reflects

most adequately repeats occurring in a sequence text (Ziv and Lempel,

1976).

The Ziv-Lempel complexity of a sequence can be measured by the

minimal number of steps required for its synthesis in a certain process

(Gusev et al., 2001). For each step only two operations were allowed in the

process: either generating an additional symbol which ensures the unique-

ness of each component S½ik�1 þ 1 : ik� or copying the longest fragment

from the part of a synthesized sequence. Suppose a string S expressed by

S ¼ a1a2a3 � � � aM ð4Þ

Its substring is expressed by

S½i : j� ¼ aiaiþ1aiþ2 � � � aj ð1� i� j�MÞ ð5Þ

The complexity measure, CLSðSÞ, of a non-empty sequence S synthesized

according to the following procedure is defined by the minimal number of

steps

HðSÞ ¼ S½1 : i1�S½i1 þ 1 : i2� � � � S½ik�1 þ 1 : ik� � � � S½im�1 þ 1 : M� ð6Þ

At each step k the sequence is extended by concatenating a fragment

S½ik�1 þ 1 : ik�. The length of this fragment is equal to 1 if some symbol

at position ik�1 þ 1 occurs for the very first time. Otherwise, a component

of length

ik � ik�1 ¼ max
j� ik�1

flj : S½ik�1 þ 1 : ik�1 þ lj� ¼ S½j : jþ lj � 1�g ð7Þ

is copied from the proper prefix S½1 : ik�1 þ lj � 1� where lj is the length

of the fragment being copied.

We can derive N complexity factors if the image has N rows. These

complexity factors can all be used to serve as the pseudo amino acid

components. However, it was observed that the highest jackknife success

rates were resulted if the first 28 complexity factors were used. Accord-

ingly, by following exactly the same procedure as described by Chou

(Chou, 2001), a protein can be expressed by a vector or a point in a

(20þ 28)D¼ 48D (dimensional) space; i.e.

X ¼ ðx1; x2; x3; . . . ; x48ÞT ð8Þ

xk ¼

fkP20

i¼1
fiþ
P28

j¼1
wjpj

; ð1�k�20Þ

wðk�20Þpðk�20ÞP20

i¼1
fiþ
P28

j¼1
wjpj

; ð21�k�48Þ

8><
>:

ð9Þ

where fi ði ¼ 1; 2; . . . ; 20Þ are the occurrence frequencies of the 20

amino acids in the protein, arranged alphabetically according to their single

letter codes, pj ðj ¼ 1; 2; . . . ; 28Þ are the complexity factors the protein

sequence, wj are the weight factor for the jth complexity factor pj, and T

represents the transpose operator.

Now the augmented covariant-discriminant algorithm (Chou, 2000a,

2001) was used to perform the prediction. For the details of the algo-

rithm, the reader is referred to (Chou, 1995; Chou et al., 1998; Chou and

Zhang, 1994; Zhou, 1998; Zhou and Assa-Munt, 2001). It is instructive to

point out that owing to the normalization condition imposed by Eq. (9), the

48 components in Eq. (8) are not independent. Therefore, a dimension-

reduced operation (Chou and Zhang, 1994) by leaving out one of the

components and making the rest completely independent is needed when

using the augmented covariant discriminant algorithm; i.e., a protein

should be defined in a (48–1)D space instead of 48D space. Otherwise,

a divergence difficulty will occur. However, which one of the 48 com-

ponents should be removed? Anyone. The reason is that according to a

theorem given and proved by Chou (Chou, 1995), which is generally

quoted as ‘‘Chou’s Invariance Theorem’’ (Pan et al., 2003; Zhou and

Fig. 1. Illustration to show a one-dimensional, binary-state, and nearest-

neighbor (r¼ 1) cellular automata with N¼ 10. Both the lattice and the

rule table F for updating the lattice are illustrated. The lattice configura-

tion is shown at two successive time steps. The cellular automaton has

spatially periodic boundary conditions: the lattice is viewed as a circle,

with the leftmost cell being the right neighbor of the rightmost cell, and

vice versa

Fig. 2. Images of ACR1_YEAST, which is located in mitochondria, were generated by Cellular Automata 84th rule. The time of evolving was 300, the

sequence was obtained from NCBI GenBank (P33303). The compression ratio was 2:2

Prediction of protein subcellular location 51



Assa-Munt, 2001; Zhou and Doctor, 2003), the values of the covariant

discriminant function will remain the same regardless of which one of the

48 components is left out.

III Results and discussion

The prediction quality was examined by the standard test-

ing procedure in statistics, which is a combination of the

self-consistency, jackknife, and independent dataset tests.

In the self-consistency test, the subcellular location of

each protein in a given dataset was predicted by using the

parameters derived from the same dataset, the so-called

training dataset. The proteins studied here were taken

from the dataset S12 of Chou (Chou, 2001) which is

slightly different from the dataset originally constructed

by Chou and Elrod (Chou and Elrod, 1999) for the reason

given in (Chou, 2001). The training dataset S12 contains

2191 protein sequences, of which 145 are chloroplast, 571

cytoplasmic, 34 cytoskeletal, 49 endoplasmic reticulum,

224 extracellular, 25 Golgi apparatus, 37 lysosomal, 84

mitochondrial, 272 nuclear, 27 peroxisomal, 699 plasma

membrane and 24 vacuoles (Fig. 4).

In the jackknife test, each of the proteins S12 is in turn

singled out as a tested protein and all the rule-parameters

are calculated based on the remaining proteins without

including the one being identified. Therefore, both the

training data set and testing data set during the jackknifing

process are actually open, and a sample will in turn move

from one to the other.

In the independent dataset test, the prediction is made

for a testing dataset containing only those proteins that do

not occur in the training dataset S12. In the current study,

the independent dataset test, denoted by �SS12, was also taken

from (Chou, 2001). It contains 2,494 protein sequences, of

Fig. 3. Images of ABP1_ARATH, which is located in Endoplasmic re-

ticulum, were generated by Cellular Automata 84th rule. The time of

evolving was 300, the sequence was obtained from NCBI GenBank

(P33487). The compression ratio was 2:2

Fig. 4. Schematic illustration to show the twelve subcellular locations of

proteins: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum,

extracell, Golgi apparatus, lysosome, mitochondria, nucleus, peroxi-

some, plasma membrane, and vacuole. Note that the vacuole and chlor-

oplast proteins exist only in a plant. Reproduced from Fig. 2 of Chou

(Chou, 2001) with permission

Table 2. Overall success rates obtained with different methods by self-consistency, jackknife and independent

dataset tests, respectively

Algorithm Test method

Self-consistencya Jackknife a Independent dataset b

ProtLock (Cedano et al., 1997) 1023

2191
¼ 46:7%

971

2191
¼ 44:3%

1018

2494
¼ 40:8%

Digital signal (Pan et al., 2003) 1785

2191
¼ 81:5%

1483

2191
¼ 67:7%

1842

2494
¼ 73:9%

This paper c 1893

2191
¼ 86:4%

1590

2191
¼ 72:6%

1865

2494
¼ 74:8%

a Using the dataset S12 taken from Chou (Chou, 2001)
b Using the independent dataset �SS12 taken from Chou (Chou, 2001)
c Using the augmented covariant-discriminant algorithm (Chou, 2000a) and the pseudo amino acid composition

approach with 28 pseudo components generated by CA images as described in this paper and their weights are

wj ¼ 1=27000 (j ¼ 1; 2; . . . ; 28)

52 X. Xiao et al.



which 112 are chloroplast proteins, 761 cytoplasm, 19

cytoskeleton, 106 endoplasmic reticulum, 95 extracellu-

lar, 4 Golgi apparatus, 31 lysosome, 163 mitochondria,

418 nucleus proteins, 23 peroxisome, and 762 plasma

membrane.

The overall success rates thus obtained by the self-

consistency test, jackknife test, and independent dataset test

are given in Table 2. For facilitating comparison, the cor-

responding success rates obtained by ProtLoc algorithm

(Cedano et al., 1997) and digital signal algorithm (Pan

et al., 2003) are listed in the same table as well. Among

the above three test methods, the jackknife test is deemed

the most rigorous and objective (Chou and Zhang, 1995),

and thereby the jackknife test has been used by more and

more investigators to examine the power of a statistical

predictor (Cai, 2001; Cai et al., 2003; Chou and Cai,

2004a; Gao et al., 2005; Pan et al., 2003; Wang et al.,

2004a, b; Xiao et al., 2005a, b; Zhou, 1998; Zhou and

Assa-Munt, 2001; Zhou and Doctor, 2003). As we can see

from Table 2, the overall jackknife success rate by the

current method is over 28% higher than that by ProtLoc

(Cedano et al., 1997) and about 5% higher that by the

digital signal approach (Pan et al., 2003).

IV Conclusion

One of the fundamental goals in cell biology and proteo-

mics is to identify the functions of proteins in the context

of compartments that organize them in the cellular envi-

ronment. To realize this, it is indispensable to first identify

the subcellular locations of proteins. However, it is time-

consuming and expensive to determine the localization of

a newly-found protein in cells purely based on experi-

ments. With the explosion of newly found protein se-

quences in the post-genomic, it is in high demand to

develop a fast and powerful method for predicting the

subcellular location of a query protein according to its

sequence. To realize this, one has to first find the key sta-

tistical information from a great pile of protein sequences

that is closely correlated with their subcellular locations.

Unfortunately, this is very difficult owing to the ex-

treme complexity and variety of these sequences. The

introduction of the pseudo amino acid composition (Chou,

2001) represents one step forward in this regard that

has stimulated many follow-up studies to derive various

pseudo amino acid components by different approaches

[see, e.g., (Cai and Chou, 2003, 2004b; Gao et al., 2005;

Pan et al., 2003; Wang et al., 2004a, b; Xiao et al., 2005a)].

The essence of the problem is what kind of pseudo

amino acid components can optimally reflect the statis-

tical features of protein sequences so as to enhance the

prediction quality. It is demonstrated in the present study

that the novel approach by using the cellular automata

images to derive the pseudo amino acid components is a

very intriguing and promising avenue, as reflected by the

informative pictures as well as high success rates via

the self-consistency, jackknife, and independent dataset

tests.
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