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Summary. A novel approach to visualize biological sequences is devel-

oped based on cellular automata (Wolfram, S. Nature 1984, 311, 419–

424), a set of discrete dynamical systems in which space and time are

discrete. By transforming the symbolic sequence codes into the digital

codes, and using some optimal space-time evolvement rules of cellular

automata, a biological sequence can be represented by a unique image, the

so-called cellular automata image. Many important features, which are

originally hidden in a long and complicated biological sequence, can be

clearly revealed thru its cellular automata image. With biological se-

quences entering into databanks rapidly increasing in the post-genomic

era, it is anticipated that the cellular automata image will become a very

useful vehicle for investigation into their key features, identification of

their function, as well as revelation of their ‘‘fingerprint’’. It is anticipated

that by using the concept of the pseudo amino acid composition (Chou,

K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246–255), the

cellular automata image approach can also be used to improve the quality

of predicting protein attributes, such as structural class and subcellular

location.
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I Introduction

The success of human genome project has generated

deluge of sequence information. Sequence databases, such

as GenBank and EMBL, have been growing at an expo-

nential rate (Venter et al., 1996; Chou, 2002; Chou, 2004).

In general, gene sequences are stored in the computer

database system in the form of long character strings. It

would act like a snail’s pace for human beings to read

these sequences with the naked eyes. Also, it is very hard

to extract any key features by directly reading these se-

quences. However, if they can be converted to some

diagrams (see, e.g., Chou and Zhang, 1992; Zhang and

Chou, 1994), some important features can automatically

manifested and become easily visible.

The question of how to visualize gene sequence is an

important topic today (Hu et al., 2003; Kashuk et al.,

2002; Liu et al., 2002; Mayor et al., 2000; Nandy, 1996;

Randic et al., 2000). Previous effort in biological

sequence visualization was focused on single sequence

representations. About 20 years ago, the first 3D (dimen-

sional) H curve was proposed to represent a DNA

sequence (Hamori, 1985; Hamori and Ruskin, 1983). Sub-

sequently, a graphic representation of DNA sequences

was suggested using Barnsley’s iterative function (Jeffrey,

1990). Later, a different method was proposed thru the

iterative function system (Roman-Roldan et al., 1994;

Tino, 1999). By extrapolating the work of Hamori and

Jeffrey, a different iterative method called W-curves was

presented (Wu et al., 1993). Meanwhile, a diagrammatical

approach for codon usage were also proposed (Chou and

Zhang, 1992; Zhang and Chou, 1994). Gates (1985) pro-

posed a 2D graphical representation that is simpler than

the H curve. However, Gates’s graphical representation

has high degeneracy. Guo took an ulterior step and pro-

posed a novel 2D graphical representation of DNA

sequences of low degeneracy (Guo et al., 2001). In

2003, Yau presented a representation without degeneracy

(Yau et al., 2003).

In parallel to the above development, various represen-

tations for protein sequences have also been proposed.



Williams et al. (1995) used five vertical spaces to repre-

sent each amino acid position, with the spaces filled

according to the chemical properties of the residues. This

leads to sequences resembling Morse code, with some

structural features highlighted by the resulting pattern

of dots. The properties of a protein’s amino acids may

also be visualized in the form of a line graph, for

example, protein rhodopsin is showed using the hydro-

pathic scale (Alston et al., 2003). Chou et al. (1997) first

introduced the elegant ‘‘wenxiang’’ diagram to highlight

the typical sequence feature of the amphiphilic helices in

proteins.

There is a common characteristic in the aforementioned

visual methods for the gene representation, i.e., the point

of the special curve corresponding to a certain nucleic

acid is colligated only with the base prior to it, while

the effects of all the bases behind it are totally ignored.

This is inconsistent with the fact that all the bases in a

gene are coupled with each other as an entity in nature. In

view of this, here a completely new and different method

will be introduced to image the gene sequences. The novel

method is based on Cellular Automata, as will be illus-

trated below.

II Methods

Cellular automata

Cellular automata are discrete dynamical systems whose behavior is

completely specified in terms of a local relation. A cellular automaton

can be thought of as a stylised universe consisting of a regular grid of

cells, each of which can be in one of a finite number of k possible

states, updated synchronously in discrete time steps according to a

local, identical interaction rule (Wolfram, 1986). Cellular automata

provide us an access to model complex dynamical phenomena by

reformulating the macroscopic behavior into microscopic and meso-

scopic rules that are discrete in space and time. A set of rules specifies

the time and space evolution of the system, which is discrete in both

variables. These systems have attracted a great deal of interest in recent

years because even with very simple rules cellular automata can show

very complex evolution patterns. It is recognized that repeated applica-

tions of simple rules can lead to extremely complex behavior that can

emulate physical, social and biological systems.

A one-dimensional cellular automata consists a collection of time-

dependent variables Sit, namely the local states, arrayed on a lattice of N

sites (or cells), i ¼ 0; 1; 2; . . . ;N � 1. We take each of these to be a

Boolean variable: Sit ¼ f0; 1g. As visualization is considered in a two-

state automaton, each of the cells can be either black or white. The

collection of all local states is called the configuration: St ¼
S0
t S

1
t � � � SN�1

t , where S0 denotes an initial configuration. The rule F of

cellular automata can be expressed as a lookup table that lists, for each

local neighborhood, the state that is taken on by the neighborhood’s central

cell at the next step. A neighborhood comprises a cell and its r neighbors

on either side, where r is called the cellular automata radius. The course of

state evolving can be represented as: Sitþ1 ¼ FðSi�r
t � � � Sit � � � Siþr

t Þ. If the r

is 1, each cell can be either black or white, then this will allows 23 ¼ 8

possible color combinations along the top three cells. Because each of

these combinations will cause a cell to be either black or white and there

are eight possible upper color combinations then there will be 28 ¼ 256

possibilities in total. In general, if there are K states and if each cell is

taken to have N neighbors (including itself), then there are KN rules. We

can easily utilize a binary byte to encode these rule sets into decimal

numbers between the numbers 0 and 255. For example, rule number 184

would correspond to Fig. 1. The global equation of motion � maps a

configuration at one time step to the next; i.e., Stþ1 ¼ FðStÞ, where the

local function � is applied simultaneously to all lattice sites.

Digital coding for amino acid and ribonucleic acid

Molecular biologists seek to determine the genes in the cells of organ-

isms, the function of the proteins that these genes encode, and how

these proteins are related evolutionarily across organisms. Genes, com-

posed of RNA, is represented by sequences of nucleic acids, also called

bases. The 4 nucleic acids are adenine(A), cytosine(C), guanine(G),

uracil(U). To deal with it in a computer, a nucleotide sequence is coded

as follows:

A ¼ 00; C ¼ 01; G ¼ 10; U ¼ 11 ð1Þ

Proteins are represented by sequences of amino acids, also called

residues. There are 20 native amino acids. By means of the similarity

rule, complementarity rule, molecular recognition theory and information

theory, a set of digital codes are formulated to represent amino acids, as

shown in Table 1. The representation can better reflect the chemical

physical properties of amino acids, as well as their structure and degen-

eracy (Xiao et al., 2004).

Space-time evolution of gene sequence

A gene sequence is always a 1D string regardless it is denoted by bases or

by binary digits. It is very difficult to find its characteristic vector parti-

cularly when it is very long. To cope with this situation, we resort to the

images derived from the 1D sequence thru the space-time evolution of

cellular automata. The cellular automata we adopt here is a simple two-

state, one-dimensional cellular automata, consisting of a line of cells with

the value of 0 or 1. The rule is simply implemented as that the nearest cells

around the one we focus will decide its next state. Because many genes are

circular, we adopt the circulating boundary condition with the iterative

formula given by:

Dði; jÞ ¼ FðDði� 1; j� 1Þ; Dði� 1; jÞ; Dði� 1; jþ 1ÞÞ
ð1� i<n; 1� j<M�N � 1Þ ð2Þ

Dði; 0Þ ¼ FðDði� 1;M�N � 1Þ; Dði� 1; 0Þ; Dði� 1; 1ÞÞ ð1� i<nÞ
ð3Þ

Dði;M�N � 1Þ ¼ FðDði� 1;M�N � 2Þ; Dði� 1;M�N � 1Þ;
Dði� 1; 0ÞÞ ð1� i<nÞ ð4Þ

where, Dði; jÞ is an element of 2D array to present the gene sequence

image, F the iterative rule, n the iterative time, and N the length of the

gene sequence. If the sequence is composed of RNA, the M ¼ 2; if the

sequence composed of amino acids, the M ¼ 5. For example, Rule 84 can

be illustrated by Fig. 2.

Fig. 1. Rule number 184. The string of eight zeros and ones create one

binary byte, which can represent a decimal number between 0 and 255
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Image generation

When transforming the 2D array (matrix) into a binary image with visua-

lization techniques, the basic bitmap format is chosen because its property

is easily handled. In this way, if the matrix element was zero, the color of

the counterpart pixel bit will be black; otherwise, white.

Image compression

The total size thus obtained are too large for some long sequences,

the compression of the image is needed that is actually to highlight

the characteristic of the image concerned the following mathematical

mapping:

x1

y1

� �
¼ fx 0

0 fy

� �
x0

y0

� �
ð5Þ

where (x0; y0) denote the coordinates of the pixel in the original image,

while (x1; y1) the corresponding coordinates for the transformed image, fx
is the scaling along the horizontal axis, and fy the scaling along the vertical

axis. The inverse transformation is given by:

x0

y0

� �
¼ 1=fx 0

0 1=fy

� �
x1

y1

� �
ð6Þ

i.e.,

x0 ¼ x1=fx
y0 ¼ y1=fy

�
ð7Þ

III Results and discussion

The images of real and simulated gene data will be pre-

sented as examples to show how these cellular automata

images provide useful information. The aforementioned

gene sequences are all downloaded from Genbank:

http:==www.ncbi.nlm.nih.gov. To the same sequence, if

the evolving rules are different, the images are different.

That is to say, 256 different images can be created for a

same sequence based on cellular automata. These images

can fall into 4 classes. The first class is named balanced,

the states of cells been quickly resolved into boring con-

figurations, e.g., all 0 or all 1. The second class is peri-

odic. The third class is of chaos. The fourth class is not

disordered, but complex and sometimes long-lived. The

evolution rule of the formulation image that we need must

generate the features that can be easily used to distinguish

whether the gene concerned are homologous to each

Fig. 2. Illustration of a one-dimensional, binary-state, nearest-neighbor

(r¼ 1) cellular automata with N¼ 10. Both the lattice and the rule table

F for updating the lattice are illustrated. The lattice configuration is

shown at two successive time steps. The cellular automaton has spa-

tially periodic boundary conditions: the lattice is viewed as a circle,

with the leftmost cell being the right neighbor of the rightmost cell, and

vice versa

Table 1. Binary notation of amino acid coding language

codon amino acid binary notation codon amino acid binary notation

ccu ccc P 00001 cuu cuc L 00011

cca ccg cua cug

uua uug

caa cag Q 00100 cau cac H 00101

cgu cgc R 00110 ucu ucc S 01001

cga cgg uca ucg

aga agg agu agg

uau uac Y 01100 uuu uuc F 01011

ugg W 01110 ugu ugc C 01111

acu acc T 10000 auu auc I 10010

aca acg aua

aug M 10011 aaa aag K 10100

aau aac N 10101 gcu gcc A 11001

gca gcg

guu guc V 11010 gau gac D 11100

gua gug

gaa gag E 11101 ggu ggc G 11110

gga ggg

uaa uag end 11111

uga
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other. By this way, the bases in a gene or residues in a

protein must be coupled with each other as an entity.

During the process of producing the gene image, the state

of cell corresponding to a certain nucleic acid is colligated

with both the base prior to it and bases behind it. Because

of above-mentioned characteristics, the gene image can

reveal some implicit sequence features, and these features

are difficult to be displayed by other gene visualizations.

We have found that among the 256 evolving rules some is

better than the others in building gene image for a given

gene. For example, Rule 184 is most suitable for corona-

virus, while Rule 84 is the best for building the image of

amino acid sequences.

If the rule and time for the evolution are all changeless,

the gene sequence and image thus produced will be one-

to-one correspondence. Because digital coding for amino

acid and nucleotide are degeneracy, the images will ap-

pear in different cells for the first row at least. Figure 3

shows the comparative image between mouse TGFA gene

(P01134) and its recombine gene. The recombine gene

only has one difference to P01134 in the 61th amino acid,

phenylalanine to lysine. The method of generating com-

parative image is for comparing the corresponding bit

between the previously generated two pieces of images:

if the color is same, the corresponding pixel point on the

comparative image will be drawn in the original color;

otherwise, the counterpart in the comparative image will

be drawn as a red point.

Different rules have been applied to analyze the 90

coronavirus, but only when Rule 184 is used, are the

images of SARS-CoVs different most distinctively from

those of other coronavirus (Wang et al., 2005). The

images obtained directly by the aforementioned proce-

dures are generally too large for analysis. After the images

are zoomed out with the compression ratio 14:2 as showed

in Fig. 4, the images of SARS-CoVs are mainly with the

V-shaped cross-lines pattern, whereas those of non-SARS

virus RNA sequences are mainly with the parallel slash-

lines pattern. By analyzing the different parts of the full-

length RNA sequence visualized images, a remarkable

fingerprint for the SARS-CoV has been found. It is in

some regions of the SARS-CoV sequences near 50-term-

inal (Chou et al., 1996; Zhang and Chou, 1996) that the

occurrence frequencies of repeated character ‘A’ (i.e.,

‘AA’, ‘AAA’, and ‘AAAA’) are obviously greater than

those of repeated character ‘U’ (i.e., ‘UU’, ‘UUU’, and

‘UUUU’), respectively. However, for all other corona-

viruses, the situation is just opposite in the same region;

i.e., the occurrence frequencies of ‘AA’, ‘AAA’, and

‘AAAA’ are obviously less than those of ‘UU’, ‘UUU’,

and ‘UUUU’. Therefore, such a unique feature of SARS-

CoV can be defined as its fingerprint. Actually, it was

found that the number of individual ‘A’ in the V-shape

region of some SARS gene sequences is approximately

equal to the number of individual ‘U’ according to the

statistic result. These segments are from 3232 to 5624 nt,

5703 to 7195 nt, 12128 to 14470 nt, 16444 to 19231 nt,

and 17928 to 21803 nt in the SARS-CoV sequence near

5-terminal. There is no such a feature in non-SARS coro-

naviruses, as will be elaborated elsewhere.

Besides, the gene cellular automata image also has the

following features as illustrated below. Shown in Fig. 5 is

the cellular automata image for a C gene of Hepatitis B

virus (HBV) built by the Rule 84. From the figure we can

see that the image of HBV C gene has its particular pat-

tern and character. Because the circulating boundary con-

dition was used, the image can be a circle when the right

Fig. 3. Comparative image between mouse TGFA gene (P01134) and its

recombine gene. The recombine gene only has one different to P01134 in

61th amino acid, phenylalanine to lysine. The Rule 84 was used for the

evolutive

Fig. 4. Sample images obtained by applying the Rule 184 on the SARS

coronal virus and non-SARS coronavirus: (a) BJ01(AY278488), and (b)

AF208066_Murine. The time of evolving was 2400, the compression

ratio is 14:2. the SARS image is with a V-shaped cross-lines pattern, a

token for SARS coronal viruses; and the non-SARS coronavirus image is

with a parallel slash-lines pattern, a remarkable distinction with the

SARS coronal virus
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and left edges are connected with each other. There are

two big triangular areas and three small triangular areas in

the images of the figure. A lot of small triangles are nested

into big triangle, and these triangles are all inverted.

Therefore, the current method provides a much more

intuitive and easier-to-be-identified feature for the com-

plicated gene sequence than the original symbolic sequen-

tial expression.

Furthermore, it follows by analyzing the Rule 84 that

Dði; jÞ ¼
0; Dði� 1; j� 1ÞDði� 1; jÞ ¼ 00

�xx; Dði� 1; j� 1ÞDði� 1; jÞ 6¼ 00; Dði� 1; jþ 1Þ ¼ x

�

ð8Þ

where x ¼ f0; 1g, and �xx is the inversion of x. Thus,

according to Rule 84 we can derive the image for the

WIAD gene (Fig. 6).

Different types of the gene sequences from the same

organism were used to test the method. The TGFA and

beta-globin major genes are different in their functions.

Figures 7 and 9 show the two mouse genes, respectively.

It can be seen by comparing the two images that both

images are quite different and there is no significant simi-

larity at all. In molecular biology, there are many simila-

rities in their functions and appearances among homology

sequences. The sequences of Transforming Growth

Factor-Alpha (TGFA) genes are examined. They include

homo sapiens (AAA61157, AAH05308, AAH05309,

CAA49806), Capreolus (AAF73229), Danio rerio

(CAE30382), Sheep (P98135), Rhesus monkey (P55244),

Mus musculus (AAB50554), Rabbit (P98138), Chicken

(NP_001001614), Norway rat (NP_036803), and Canis

familiaris (AAR21186). As shown in Figs. 7, 8, two

images of human and mouse are very similar although

they are from three different kinds of organisms. In other

words, they do have some common features in these two

sequences, which are hard to be identified from their

Fig. 5. The cellular automota images of Hepatitis B virus C gene are

generated by cellular automata Rule 84: the time of evolving is 300, and

the sequence is obtained from NCBI GenBank (ab059661). (a) The

original image, and (b) the compressed image from (a). The compression

ratio is 2:2

Fig. 6. The cellular automota image of WIAD gene with some periodic

sections: the time of evolving is 300, and the evolving rule is the Rule 84.

The compression radio is 2:2

Fig. 7. Compressed image of the mouse TGFA gene. The sequence is

obtained from NCBI GenBank (P01134), its length is 159 amino acids,

the compression ratio is 2:2, and the time of evolving is 300

Fig. 8. Compressed image of the human TGFA gene. The sequence was

obtained from NCBI GenBank (AAH05308), its length is 159 amino

acids, the compression ratio is 2:2, and the time of evolving is 300

Fig. 9. Compressed image of the mouse beta-globin major gene. The

sequence was obtained from NCBI GenBank (J00413), the compression

ratio is 2:2, and the time of evolving is 300
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symbolic sequences. These compelling results indicate

that the current cellular automat approach is indeed very

useful in distinguishing a special gene sequences by pro-

viding an inductive image.

Finally, it has not escaped our notice that, with the

concept of the pseudo amino acid composition as origin-

ally introduced by Chou (Chou, 2001), the current cellular

automata image approach can also be used to improve

protein structural class prediction [see, e.g., (Chou and

Zhang, 1993; Chou, 1993; Chou, 1995; Chou, 2000; Chou

and Cai, 2004a; Chou and Maggiora, 1998; Chou and

Zhang, 1994; Chou, 1989; Luo et al., 2002; Nakashima

et al., 1986; Zhou, 1998)], protein subcellular location

prediction [see, e.g., Chou and Cai, 2002; Chou and Cai,

2004b; Chou and Elrod, 1999b; Pan et al., 2003; Zhou

and Doctor, 2003)], and membrane protein type predic-

tion [see, e,g., (Cai et al., 2003; Chou and Elrod, 1999a;

Wang et al., 2004a, b)], as demonstrated elsewhere (Xiao

et al., 2004).

IV Conclusions

It is demonstrated thru this study that the novel method

developed on the basis of cellular automata is very useful

for investigating complicated biological sequences.
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