
Using Character Recognition and Segmentation to Tell Computer from Humans

Patrice Y. Simard, Richard Szeliski, Josh Benaloh, Julien Couvreur, and Iulian Calinov
One Microsoft Way, Redmond, WA 98052

{patrice,szeliski,benaloh, jcouv, iulianc}@microsoft.com

Abstract

How do you tell a computer from a human? The
situation arises often on the Internet, when online polls
are conducted, accounts are requested, undesired email is
received, and chat-rooms are spammed. The approach
we use is to create a visual challenge that is easy for
humans but difficult for a computer. More specifically,
our challenge is to recognize a string of random
distorted characters. To pass the challenge, the subject
must type in the correct corresponding ASCII string.
From an OCR point of view, this problem is interesting
because our goal is to use the vast amount of
accumulated knowledge to defeat the state of the art OCR
algorithms. This is a role reversal from traditional OCR
research.

Unlike many other systems, our algorithm is based on
the assumption that segmentation is much more difficult
than recognition. Our image challenges present hard
segmentation problems that humans are particularly apt
at solving. The technology is currently being used in
MSN’s Hotmail registration system, where it has
significantly reduced daily registration rate with minimal
Consumer Support impact.

1. Introduction

Work on distinguishing computers from humans traces
back to the original Turing Test [1] which asks that a
human distinguish between another human and a machine
by asking questions of both. Recent interest has turned to
developing systems that allow a computer to distinguish
between another computer and a human to enable the
construction of automatic filters to prevent automated
scripts from utilizing services intended for humans [2].
Such systems have been termed Human Interactive Proofs
(HIPs) [3] or Completely Automated Public Turing Tests
to Tell Computers and Humans Apart (CAPTCHAs) [4].
An overview of the work in this area can be found in [5].

The CMU CAPTCHA project and the work at PARC
[6] are presently the most advanced of these efforts and
include various text recognition, visual pattern
recognition, image processing, and audio recognition
challenges.

Construction of HIPs that are of practical value is
difficult because it is not sufficient to develop challenges

at which humans are somewhat more successful than
machines. This is because there is little cost in having an
automatic attacker that fails most of the time. In practice,
if one wants to block automated scripts, a challenge at
which humans are 99% successful and machines are 1%
successful is still not sufficient if the cost of failures and
repetitions is low for a machine. Thus, to be useful, a HIP
must make the cost of an automated attack high enough to
discourage repeated guessing. In a strong sense, a HIP is
successful if the cost of answering challenges with a
machine is higher than the cost of soliciting humans to
perform the same task.

1.1. Synthesis and analysis

One important advantage of the HIP approach is that
generating a HIP is a “synthesis” task while breaking it is
an “analysis” task. Computationally, Synthesis is usually
orders of magnitude easier than analysis, especially when
synthesis is lossy. For instance, computing a 2D
projection of a 3D object, merging the projection into a
larger image, and occluding it with other objects are all
trivial image synthesis tasks. Locating and reconstructing
the original object is much more difficult and is still an
unsolved vision problem.
 Fortunately, the task for generating a HIP is usually a
synthesis one, while breaking the HIP can be made an
analysis task. This generally makes it easier to modify a
HIP paradigm than a system that has been constructed to
analyze it. Even if analysis techniques catch up with a
particular HIP system on one axis, a simple modification
can often create a new design that is beyond the reach of
analysis tools on some other axis. This has the potential
to place an enormous burden on adversaries who seek to
defeat a HIP system. For instance, if a HIP required
counting how many instances of chairs appear in an
image, and if an adversarial party had painstakingly built a
chair detector, the HIP paradigm could easily change to
counting butterflies, and the adversary might have to build
a butterfly detector from scratch. This is an arms race
stacked in favor of HIPs.
 It is interesting to note that other races can be stacked
differently. For instance SPAM filtering put the burden of
analysis on the filtering while the spammer has the much
easier task of synthesis. This is also an arm’s race, but it
is stacked in the favor of the spammer which does the

synthesis. When the filter blocks the spam, the spammer
can very cheaply generate different forms of email.
Because analysis is so much harder than synthesis, it may
eventually become difficult even for the human to sort the
SPAM from genuine email based on content alone. An
interesting strategy is to turn the tables around and
challenge the spammers with a HIP.

1.2. Character recognition versus other visual
HIPs

There are many synthesis tasks which might be
appropriate as HIPs. Among visual challenges, we have
chosen character recognition for several reasons. First,
the task must be extremely simple and universal. Humans
may have to solve lots of HIPs in different situations. If
they have to read and understand different instructions for
each HIP, it puts an important cognitive burden on the
subject who is likely to eventually refuse to do it. For
instance, recognizing random objects in a scene may be a
good challenge, but it requires instructions as to which
objects must be recognized, and a description of the
dictionary of the object names. Universality is unlikely to
happen as different and competing entities are likely to
generate HIPs with incompatible instructions. Counting
objects in a scene also requires instructions and
potentially large images since we need to count several
different entities to maintain a less than one in a thousand
chance of an adversary being successful by random
guessing. This then also becomes a fairly complex
cognitive task for human subjects.

Identifying letters, on the other hand, has several
advantages. The dictionary is obvious and each class has
an assigned button on the keyboard. Letters/digits have
less ambiguity and are more language independent than
other object names, and every computer has primitives to
draw them on a bitmap. Optical character recognition
(OCR) is a very well understood problem for both printed
and cursive text, and we know the strengths, weaknesses,
and complexity of the state of the art algorithms [7].
Arguably, if any visual HIP has a chance of becoming
universal, character recognition HIPs are probably it.

1.3. Pure classification tasks

Pure classification tasks, however, can be solved in a
fairly automatic way. Since the ‘P’ in “CAPTCHA”
stands for public, it is possible to generate a large
database of challenges with their labels. We can then
train state of the art learning algorithms, such as neural
networks or Support Vector Machines (SVM), on this
database and expect fairly good results. Since this
procedure is automatic, every time the HIP paradigm
changes, a new database can be generated and fed to the

learning algorithm to break the new paradigm. A large
number of analysis problems are solved is such a way.
Indeed, many in the field consider that at least for printed
characters, OCR is a solved problem. Even for cursive
and highly distorted characters, the state of the art OCRs
are remarkably robust and can recognize letters under
extreme conditions of distortion and noise [7].

We therefore propose to augment the classification task
with a segmentation task. In section 2, we argue that
segmentation is intrinsically harder than classification and
still presents an insurmountable challenge for the current
state of the art algorithms.

This is not equivalent to saying that the problem will
never be solved. Clearly, if humans can do it, we have no
way to assert that machines cannot. However, humans
benefit from massive parallel visual processing and yet-to-
be-understood multi-scale reasoning algorithms. When
computer algorithms approach human segmentation
abilities, many important vision tasks will be resolved as
well. In the meantime, segmentation HIPs can provide
useful services.

2. Recognition versus segmentation

Is pattern recognition fundamentally different from pattern
segmentation and detection? Can segmentation be cast as
a recognition problem?

2.1. The “everything else” space

One might argue that it is possible to build a segmenter
out of a recognizer by running the recognizer over the
entire image, and training it to only fire when valid
patterns are encountered. Despite the fact that this
approach may not be practical at test time (for
computational reasons), the main problem is that training
such a recognizer might be prohibitively expensive. The
recognizer needs to distinguish valid characters from bad
input. This is potentially very difficult because the class
boundary between a given class and everything else is
typically much more complex than the class boundary
between two classes, which is often linear for all practical
purposes. The intrinsic dimensionality of the everything-
else space can be much larger than the intrinsic
dimensionality of the space generated by valid examples.
Depending on the problem, the space of “sampled”
everything-else can be zero (every sample is a valid
pattern), large (e.g. mis-aligned or cropped valid patterns)
or hopelessly huge (purposefully designed “garbage”
patterns). Therefore, to train a classifier to recognize
everything-else can be a much harder task than regular
classification between given classes.

2.2. Segmentation successes

There are a few cases where classifiers are trained for
detection and segmentation. For instance neural networks
have been successfully used for the segmentation of
cursive handwriting [8]. However, this success relies on
three contributing factors. The cursive segmentation
problem is 1-dimentional, the everything-else space is
limited to transition from valid classes to valid classes
(mis-alignment), and classification is helped by a language
model. If the segmentation was 2 dimensional, the
dynamic programming algorithm provided by Viterbi
would not work and would be prohibitively expensive [9].
Because the everything-else space is relatively small, it
can be sampled and learned. Even so, the performance
would not be satisfactory if a language model was not
used to filter out mis-classification of “everything-else as
valid characters.
 Another example is the use of a boosting classifier for
face detection [10]. In this case, boosting is used to select
features to detect faces in an image, with a remarkably
low rate of false positives. The success of human face
detection is due to the presence of very characteristic
features around faces, e.g. darker regions around the eyes,
nose and mouth, with a fixed relationship between them,
which can be detected by a clever algorithm, and used for
localization. If a set of low level features can be linked
with the presence of an object, localization is a much
easier task. Of course, in an adversarial case, extra care is
taken to ensure that valid and invalid patterns created by
distortions have similar features.

2.3. Making segmentation difficult

Unlike cursive handwriting and face detection where the
segmentation task is fixed, we have the freedom to set our
problem to make segmentation difficult. In particular, we
can choose a 2D setting, generate a very high dimensional
space for everything-else, and remove many features that
could distinguish valid characters from random patterns.
We also do not limit our selection of strings to those that
appear in a dictionary. Figure 1 is a simple illustration of
the difference between classification and segmentation.

Figure 1. Top: No distortions. Bottom: Random
placements and arcs drawn with foreground (2
per letter) and background (1 per letter) colors.

The top portion of the figure contains the unaltered letters
‘ABCDE’. The same letters at the bottom have been
randomly moved and covered with arcs of both
foreground and background color. Even with such simple
processing, off the shelf OCRs fail to recognize these
letters. For instance, when the Scansoft OCR was fed the
tiff images from figure 2,

Figure 2. Top: No distortions. Middle: image
warping. Bottom: Random positions, and 1
foreground arc per letter.

it produced respectively “THE QUICK BROWN FOX
JUMPS”, “TIlE QUICK BkOWN FOX iUMPS”, and
“YaJ _oJJI – YMMP”. Distortions such as warping
(which will be described in the next section) clearly affect
recognition but not nearly as much as arcs and random
positioning. One reason is that letter placement is not
known a-priori in the last example and random positions
yield fictitious characters that are as valid to the OCR as
the true characters. Yet this task remains fairly easy for
humans.
 It should be noted that in this example, a clever
programmer could easily distinguish the added strokes
from the letters by looking for constant thickness,
horizontal and vertical alignments, serifs, etc. and solve
this problem. The algorithm, however, would have to be
custom for this particular alteration. We will show in later
sections much more challenging images that even
intensive custom programming might not break.

3. Distortions

The simplest distortions are random rotations and
translations of the characters, but most good OCR
software is insensitive to such distortions. We therefore
add a general warping function. First, we compute a pair
of warp fields by generating random (white) noise and
then use a separable recursive low-pass filter [11]. Two
parameters control this step: the cut-off frequency of the
low-pass filter and a scaling factor that multiplies the
whole (normalized) field. The first parameter controls the
smoothness of the deformation while the second
parameter controls its intensity. These warp fields are
then used to re-sample the originally rendered character
bitmap using an inverse warping algorithm [12].

Figure 3. Image after applying warp field.

Figure 3 shows the resulting image after the original
image has been deformed with a low-frequency random
warp field.

4. Arcs

In order to make the character segmentation task more
difficult, we draw random arcs over the generated letters.
Arcs are drawn in both the foreground and background
color, in order to potentially link or break apart letter
features.
 Each arc is drawn as a Cardinal spline [13] with three
control points. The end points of each arc are chosen
(with random perturbations) to roughly bridge the space
between adjacent characters. The midpoint is chosen as a
random deflection of the average position of the
endpoints, in order to give each arc some random
curvature. Figure 4 shows the resulting image after some
random arcs have been superimposed.

Figure 4. Image after adding random arcs.

5. Thickness Variations

Arcs and letters might be distinguishable because of their
thickness. If this was the case, an effective adversarial
attack could be to identify arcs and remove them, or
identify the corresponding pixels as “don’t care”. Once
the letters are identified, segmentation and therefore
classification becomes much easier. (We believe that
warping alone does not prevent breaking the challenges.)
It is therefore imperative to make the segmentation of the
added arcs from the letters extremely difficult.

5.1. Morphological transformations

Our first attempt was to use morphological
transformations, such as dilation and erosion on the
characters and arcs to vary their thickness. To do this,
compute the distance transform [14] on the binary image,
and set the pixels to foreground if the transform distance
is less than a random value taken from a smoothed
random scalar field (obtained using a similar algorithm as
for warping). We then do the same on the negative
images for the erosion. To prevent characters from
disappearing in places, we also estimate the zero partial
derivatives of the distance transform (which correspond to
medial axes) and prevent the corresponding pixels from

being changed by the erosion and dilation. An example of
the resulting image is shown in Figure 5.

Figure 5. Thickness variations from dilations and
erosions.

Unfortunately, this approach is not visually appealing
because it makes the characters appear to be dirty. The
erosion can also sometimes eat too much of a character
(e.g. left leg of first ‘M’ or top of ‘T’ in the figure). We
only implemented dilation for binary images, which has
the drawback of loosing aliasing information on the letters
(which is also less appealing). Oversampling or
implementing dilation for gray level images makes this
method computationally expensive.

5.2. Local warping

A better alternative to dilation is to subject the whole
image to a local warping. This step is similar to the
previous warping step described in the distortion section.
The difference is that the cut-off frequency of the low pass
filter is higher, while the intensity is lower. The result is
that warping is more localized and gives the visual
appearance of changes in thickness. This process makes
distinguishing arcs from pieces of letters more difficult
but is still esthetically pleasing and computationally
cheap. The result of local warping on the image and arcs
(with no other distortion) is shown in Figure 6.

Figure 6. Thickness variations from local
warping.

6. Deployment

 Many combinations of alterations can be used to make
the challenge more difficult to computers. We can
increase the size of the image (make it truly 2D), the
number of arcs, the number of letters, and even make the
challenge a “find k out of n” at very high difficulty
settings.

Using the above methods, a single distortion parameter
can be introduced to adjust the complexity of the image.
Initially, the setting could be a low or no distortion. When
the adversarial party starts breaking the challenges, the
knob can be turned up to make the challenges harder.
Figure 7 shows, for example, the effect of various settings
ranging from no distortion to high distortion.

Figure 7. Images with increasing amount of
distortions.

Our HIP was deployed in MSN’s hotmail registration
system (www.hotmail.com) on December 12th 2002. A
19% drop in daily registration was immediately observed.
At the time of this publication, the Customer Support
inquiries related to this implementation have been
minimal, indicating that the HIP has been readily accepted
by hotmail users.

7. Conclusion

Effective Human Interactive Proof systems are
becoming an important component for many on-line
services. By making the cost prohibitive for a machine to
gain access without the expenditure of human capital, one
can protect many services from unwanted automated
intrusions. Gating services such as electronic mail,
admission to chat rooms, and on-line polling can help
preserve the integrity of these services.

The techniques described in this paper leverage the
human advantage over machines at segmenting text into
its constituent characters. By exploiting these advantages,
text-based challenges can be generated that are fairly
easily read by humans but are well beyond the current
capabilities of automated text recognizers.

Challenges can be generated efficiently, and their
difficulty can be easily adjusted in response to user
feedback or technological advances.

While we believe that these methods provide a high
degree of assurance, further work is likely to be necessary
to stay ahead of developments in hardware and software
that may better mimic the parallel processes utilized by
humans for text recognition.

References

[1] A. M. Turing, Computing Machinery and Intelligence,
Mind, vol. 59, no. 236, pp. 433-460. 1950.

[2] L. von Ahn, M. Blum, and J. Langford, “Telling
Computers and Humans Apart (Automatically) or How
Lazy Cryptographers do AI”. To appear in
Communications of the ACM.

[3] First Workshop on Human Interactive Proofs, Palo
Alto, CA, January 2002.

[4] L. von Ahn, M. Blum, and J. Langford, The Captcha
Project. http://www.captcha.net.

[5] H. S. Baird and K. Popat, “Human Interactive Proofs
and Document Image Analysis”, Proc. IAPR 2002
Workshop on Document Analysis Systerms, Princeton, NJ,
2002.

[6] H. S. Baird, A. L. Coates, R. Fateman, “PessimalPrint:
a Reverse Turing Test” , Int’l J. on Document Analysis
and Recognition, vol. 5, pp-158-163, 2003.

 [7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
"Gradient-Based Learning Applied to Document
Recognition," Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

[8] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges,
"LeRec: A NN/HMM Hybrid for On-Line Handwriting
Recognition," Neural Computation, vol. 7, no. 6, pp.
1289--1303, 1995.

[9] E. Levin and R. Pieraccini. Dynamic planar warping
for optical character recognition. Proceedings of
ICASSP'92, III:149-152, 1992.

[10] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. In Proc. Computer
Vision and Pattern Recognition, I:511-518, Kauai, 2001.

[11] R. Deriche, “Fast Algorithms for Low-Level Vision”,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(1), January 1990, pp. 78-87.

[12] Wolberg, G., Digital Image Warping, IEEE
Computer Society Press, Los Alamitos, 1990.

[13] Bartels, R. H., Beatty, J. C., and Barsky, B. A., An
Introduction to Splines for use in Computer Graphics
and Geeometric Modeling, Morgan Kaufmann Publishers,
Los Altos, 1987.

[14] P. Danielsson. Euclidean distance mapping.
Computer Graphics and Image Processing, 14:227--248,
1980.

