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Abstract
The program monitoring and control mechanisms of virtualization tools are becoming in-

creasingly standardized and advanced. Together with checkpointing, these can be used for gen-
eral program analysis tools. We explore this idea with an architecture we call Checkpoint-based
Fault Injection (CFI), and two concrete implementations using different existing virtualization
tools: DMTCP and SBUML. The implementations show interesting trade-offs in versatility and
performance as well as the generality of the architecture.

Keywords: Fault Injection, Checkpointing, Virtualization, Software Validation, Quality Assur-
ance

1 Introduction
Software testing is a widely used and effective quality assurance technique [1]. However, testing has
its limitations; in particular, non-determinism in a system means that even with a specific input,
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the behavior of a system is not always fully reproducible.
Non-determinism may come from several sources. A particular source of non-determinism is

input/output, where the system under test interacts with other components. These interactions
may not be fully reliable or repeatable for several reasons. Sensitivity to communication latency can
cause timeout conditions to happen only sometimes. Faults from hardware and software, such as
full disks and dropped network connections, can also affect the execution of a system.

Fault injection [2] analyzes the outcome of such non-deterministic input/output operations. In
particular, we focus on how the application software handles such faults, which are signaled by the
system library as error codes or exceptions.

In principle, any input/output operation may either succeed or fail. Network operations are par-
ticularly likely to fail, especially on mobile networks. Fault injection investigates these two possible
outcomes, either using random simulation or a more comprehensive analysis where both outcomes
are investigated. This makes fault injection useful to analyze the robustness of communicating
systems in the presence of network problems.

Fault injection typically focuses on simulating (non-deterministic) input/output errors, whose
occurrence depends solely on the environment such as the underlying network. In principle, fault
injection can be applied to other operations, including faults that are caused by malformed input.
However, such faults are deterministic and can be tested through traditional means, if the right input
can be found. Furthermore, simulating faults with correct data but a forced control flow through a
branch that assumes faulty data, may produce results that are not consistent with actually possible
program executions.

We show a generic tool architecture, checkpoint-based fault injection (CFI), that adapts virtu-
alization and checkpointing for fault injection. We see that the scope of checkpointing operations
influences their size and the performance of fault injection greatly. Our contributions are:

1. We introduce CFI, a generic architecture that reuses existing checkpointing tools (commonly
based on virtualization) for fault injection. CFI controls input/output operations through
virtualization and uses checkpointing to manage different outcomes.

2. We introduce two concrete implementations of fault injection tools based on CFI, using the
DMTCP [3] and SBUML [4] platforms. The former uses process-level virtualization, while
the latter uses OS-level virtualization. This fundamental difference has ramifications for the
implementation and use of each tool.

3. Our experiments demonstrate how different virtualization platforms offer trade-offs in appli-
cability against performance and scalability. We also investigate how well checkpointing scales
with different types of virtualization.

This paper is an extended version from an earlier conference paper [5]. The conference paper
was very limited in space, so we can greatly expand on background information, the description of
each tool, the experiments, and related work in this paper. Furthermore, we provide a qualitative
evaluation of the scalability of each checkpointing tool, which was not included in the previous paper.

This paper is organized as follows: Section 2 gives more background on fault injection. Section 3
introduces the architecture of CFI, from which we describe concrete implementations in Section 4.
Experiments using our tools are described in Section 5, while Section 6 covers related work. Section 7
concludes this paper.

2 Background
Software testing can detect faults. However, even if a system under test (SUT) passes a certain
test, this may not mean that the SUT always will pass that test. Sources of non-determinism in
the system may change its behavior so that a test sometimes passes and sometimes fails. For this
paper, we use the term choice point to refer to locations of such non-deterministic choices. If the
outcome at a given choice point cannot be controlled by the user, a developer may not discover
certain software defects even after running a test many times. This problem gives rise to several
program analysis tools and techniques.
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OK fail
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Figure 1: The state space of a system using functions that may fail.

Table 1: Common C network library functions and possible faults.

Function Purpose Possible faults
socket Initialization of socket Permission denied

Protocol not supported
Internal tables or memory full

inet_pton Host name lookup Wrong address type
Buffer too small

connect Connect to server Connection refused
Host unreachable
Local network interface down

accept Accept connection from client Connection aborted
Internal table full
Client does not accept connection

read/write Read from/write to connection Connection reset by peer
Timeout
Socket is not connected

2.1 Fault injection

In fault injection [2], faults may come from a wide range of sources, from hardware production defects
and physical effects affecting the hardware itself, to implementation defects that result in incorrect
code. In this paper, we focus on the effects of network input/output (I/O) at run-time, because this
link is likely to fail in practice. If a failure occurs, the system library that communicates with the
hardware typically returns an error code or exception to the application. We focus on testing code
that handles connection problems, and elide effects of network latency and multi-threading in this
work, because these issues require more heavy-weight techniques [6, 7, 8]. Our goal is to increase
branch coverage in C programs, so branches that handle network connection problems are covered.
In programming languages that use exceptions (such as Java), we want to increase the coverage of
exception handling code, according to the e-deacts criterion [9].

Fault injection treats I/O as non-deterministic operations: each call either succeeds or fails, for
reasons outside the control of the application. To explore the impact of failures in I/O operations,
faults are simulated (injected) by modifying the code of the system under test (SUT) or the library
it uses. The combination of all possible non-deterministic executions creates a tree-like state space
(see Fig. 1).1

To show how faults can be injected in code, let us consider a simple client example, which is a
slightly abbreviated version from an online tutorial [10] (see Figure 2). The program first creates
a new socket (a connection handle), converts a given host name to an IP address, connects to the
server, and reads from it until the server closes the connection.

1Note that while a program often terminates when an external component fails, this is not necessarily always the
case. For example, retrying an operation would result in a loop in the state space.
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 1 int sockfd = 0, n = 0;

   char recvBuff[1024];

   struct sockaddr_in serv_addr; 

   

 5 memset(recvBuff, ’0’,sizeof(recvBuff));

   if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

       printf("\n Error: Could not create socket \n");

       return 1;

   } 

10 

   memset(&serv_addr, ’0’, sizeof(serv_addr)); 

   

   serv_addr.sin_family = AF_INET;

   serv_addr.sin_port = htons(5000); 

15 

   if (inet_pton(AF_INET, argv[1], &serv_addr.sin_addr)<=0) {

       printf("\n inet_pton error occured\n");

       return 1;

   } 

20 

   if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {

      printf("\n Error: Connect Failed \n");

      return 1;

   } 

25 

   while ((n = read(sockfd, recvBuff, sizeof(recvBuff)-1)) > 0) {

       recvBuff[n] = 0;

       fputs(recvBuff, stdout); 

   } 

30 

   if (n < 0) {

       printf("\n Read error \n");

   } 

   

35 return 0;

Figure 2: An example program that connects to a server and reads from it [10].
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Table 1 shows the most important C library functions for network I/O, including all functions
used by the example in Figure 2, and a non-exhaustive list of possible faults that may occur. As
can be seen, fault for the first two operations can be reproduced by restricting permissions in the
execution environment (so a call to socket automatically fails) or by supplying an invalid host
address (which causes the host name lookup to fail). For fault injection on I/O operations, the other
types of faults are more interesting, as they are harder to test. For example, an unreachable host or
connection timeout is commonly a sign of a network connectivity or routing problem; it would be
cumbersome to simulate this on an actual network.

We therefore simulate such network problems on the software layer, by replacing the standard C
library functions with functions that may return an error code instead of executing the actual library
function. When returning an error code, the real library function is not executed, which results in
a system state that mimics a failed execution of the library function. In the example (Figure 2), it
is difficult to produce the third and forth error messages that related to a failed connection and a
read error on the network. The code that handles the connection problems is therefore likely to be
untested. By injecting a fault in the C library call, we can achieve 100% branch coverage for the
example.

2.2 Virtualization and checkpointing

Virtualization entails the transformation of a concrete resource into a set of abstract (virtual) re-
sources of the same kind. A virtual resource can be used in a transparent manner, as if it was
the concrete resource. Resources can be hardware components, such as memory, CPU, storage,
or a network; as well as software components, such as operating systems or applications. Com-
mon virtualization and related technologies are KVM [11], Xen [12], VMware [13], the Java Virtual
Machine [14], and Java WebStart [15].

The virtual resource is often called the “host”, while the user of the virtual resource is the “guest”.
The concept of “cloud computing” relies on virtualization to provide both hardware and software
resources as commodities: Typically a set of physical servers host virtualized operating systems that
share the physical resources transparently.

Various degrees and scopes of virtualization are possible. Degrees range from full virtualization
(the virtual resource provides the same service as the concrete one) to partial virtualization (using
the virtual resource may require adaptations or additional libraries), to para-virtualization (the
virtual resource exposes also an API to guests to negotiate and optimize performance). The scope
of virtualization ranges from simple resource (e. g., CPU or a simple application process) to full
systems (e. g., an entire hardware system or an operating system). Our work targets the verification
of distributed applications, so we focus on virtualization at the process level, and the virtualization
of network interfaces.

Virtualization enables a number of operations that are not possible with concrete resources. For
example, live migration allows a guest system to be migrated to a different host while executing. In
addition to fault injection on the level of the system library that interacts with a network device,
our work is centered around checkpointing, which is usually used to provide migration capabilities
in a virtualized environment.

A snapshot represents system information in a summarized way. A checkpoint is a snapshot from
which a system can be restored to resume execution—on the same host or after migration. Most
virtualization solutions like Xen or VMware provide checkpoints of entire operating systems. More
granular solutions exist at the process level. A simple example is the GNU debugger: gdb can create
memory dumps that can serve to restore a process state [16] (note that this is not a property of any
debugger). More capable checkpointing tools can create snapshots of multiple processes [17]. Our
work relies on two of these tools: DMTCP [3] and SBUML [4].

DMTCP (Distributed Multi-Threaded Checkpointing) virtualizes processes [3]. It can checkpoint
several multi-threaded processes at once and controls I/O resources by overloading system libraries.
DMTCP is lightweight: processes that are not of interest do not have to be virtualized. However,
certain aspects of the OS, such as process IDs, are not retained when restoring a checkpoint.

SBUML (Scrapbook for User-Mode Linux) [4] is an extension of UML (User-Mode Linux), which
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is a Linux kernel that runs as a user mode process on the host. Communication channels between
guest processes, such as network connections, are entirely represented in user-mode data structures.
SBUML snapshots capture the full OS and represent all its aspects faithfully.

2.3 Replay vs checkpointing
We call each location where a fault may be injected a choice point. An exhaustive analysis needs
to cover all outcomes at each choice point. This requires a way to restore a program to a previous
state, to investigate alternative outcomes of a choice, which can be done in two ways:

1. Replay: For each state, the history of inputs to reach that state is recorded. Inputs include
user inputs and the outcome of each non-deterministic operation at a choice point. To restore
a given state, the history of inputs (up to the desired target state) is replayed during a new
test execution of the SUT.

2. Checkpointing: If a checkpoint was taken previously at a given state, that checkpoint can be
restored directly.

A replay-based approach requires that all non-determinism from concurrency be controlled
(through code instrumentation, wrapping, or by other means). When used on concurrent software,
the thread schedule also needs to be reproduced when replaying an execution [18].

In contrast, checkpointing stores the full system state when reaching a choice point. To restore a
given state, the checkpointed state can be directly restored. Checkpointing may introduce overhead,
but it works reliably even when certain aspects of program execution, such as concurrency or the
usage of external resources, may produce results that are not entirely repeatable. Checkpointing
also avoids potential problems from replaying I/O operations on persistent data. For these reasons,
we adopted checkpointing for our project.

Hybrid approaches are possible in that checkpoints may be created for some system states while
replay is used to reach given states from the closest ancestor checkpoint [19]. Both checkpointing
and replay have in common that those non-deterministic functions that are subject to fault injection
need to be controlled. To achieve this, we modify the virtualized execution environment, as discussed
in Section 3.

In any case, both approaches incur some overhead: replaying requires restarting a program, and
checkpointing incurs overhead in duplicating a process image. The performance trade-off between
checkpointing and replay [20] is outside the scope of this paper, but it should be noted that both
approaches are only useful if the number of choice points is not very high. For I/O operations,
this is the case; however, more fine-grained operations cannot be treated in this way. For example,
Exhaustive fault injection for memory faults due to radiation (on space missions) is currently not
feasible on actual system executions due to the very large number of memory accesses during program
execution.

3 Architecture of Our Fault Injector
In our setting, the system under test (SUT) communicates with peers during execution. In the SUT,
a choice point is any location in the code where an input/output (I/O) operation takes place. In
each choice point, I/O may potentially fail. Faults are injected in the SUT using virtualized I/O
operations. Peers are not subject to program analysis. Any choice point in the SUT, defined as a
non-deterministic operation where faults may occur, requires that all possible outcomes be tested
by fault injection.

3.1 Overview
Our approach, which we call checkpoint-based fault injection (CFI) systematically explores all given
choice points, using checkpointing to restore previously visited states (see Fig. 3).2

2Both the SUT and the peer may consist of multiple processes, but only one process is shown for simplicity.
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Figure 3: Architecture of checkpoint-based fault injection.

Our architecture, CFI, is independent of the actual tool used. In our design, a controller assumes
the two key tasks:

1. Control of the decision at each choice point, by interacting with a system library wrapper that
virtualizes I/O. This wrapper [21] translates generic decisions by our controller into specific
actions on the virtualized resource, and vice versa for the returned result.

2. Creation and restoration of each SUT checkpoint, by controlling the checkpointing/virtualization
tool within which the SUT and peer processes execute.

The controller executes as its own process, outside the checkpointing tool. It maintains two
communication channels, one with the checkpointing tool, and one with the wrapper for the system
libraries. Wrappers inject faults and manage the outcome of the I/O operations; see below.3

3.2 Controller

The controller explores all states of the SUT and all possible outcomes of I/O operation (in our
case, ok and fail). System states are managed alongside with the choice taken at a given checkpoint;
each choice point results in the creation of two choices ({c, ok} and {c, fail} where c denotes the
checkpoint, followed by the choice taken.

3.2.1 Outline of algorithm

We first describe a simplified version of the algorithm to make it easier to understand. The procedure
is outlined in Algorithm 1, depicted graphically in Fig. 4.

The outline uses an operation step(SUT ) to advance the SUT by one instruction. We furthermore
use depth-first exploration to simplify the discussion of the algorithm. After initializing both the
SUT and its peers, the controller steps into the SUT execution until termination (“loop forever” in
Algorithm 1). At each step, if the SUT state is a choice point (an I/O operation), the controller
memorizes the state and resumes execution under successful choice condition. While the algorithm
is running, The controller builds a set of states where execution will have to be resumed to explore
new choices. All these memorized states represent unexplored failures at choice points.

Upon termination of the SUT, the controller restores the SUT to one of the memorized states,
and executes again until termination. This procedure is repeated until there is no memorized state.
Along the run, the controller reports any error encountered (reports are not represented in this
overview algorithm).

3.2.2 Implemented algorithm

The actual algorithm also memorizes the set of visited states, to avoid redundancy in the state space
search, and is shown in a version where the search strategy is not fixed (so depth-first search but
also other search algorithms are possible).

The state space of the SUT comprises the set of all visited program states at choice points. The
controller virtualizes I/O operations and decides their outcome during test execution (see Algo-
rithm 2). The algorithm takes the SUT and its peers, along with a set of choice points. It explores

3Communication between the controller and the checkpointing tool is exempt from fault injection.
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Algorithm 1 Outline of algorithm for exploring the SUT.
1 S ← ∅ // States to visit

2 init SUT and peers

3 loop forever {

4 s← step(SUT ) // Get next SUT state

5 if (s is a choice point) {

6 S ← S ∪ {s, fail}
7 continue with {s, ok}
8 } else if (s is end and S 6= ∅) {
9 pick choice c from S

10 S ← S \ {c}
11 restore checkpoint from c and continue with given choice

12 } else {

13 break loop // end of exploration

14 }

15 }

the SUT until either the SUT terminates or a choice point is hit. At each choice point, a checkpoint
of the current system state (which includes the SUT and its peers) is created, and is stored with
the set of all possible choices (ok or fail). From this set, a new state and choice is taken each time
a choice presents itself or the current SUT run terminates. The algorithm runs until the SUT has
terminated and no checkpoints are left to be explored. An error found along the way is reported.
Visited choices are remembered throughout the analysis so the same state is only analyzed once.
Non-termination is handled by imposing a CPU time limit on the SUT.

Different search strategies employ a different choice of 〈c′, γ〉 when a new checkpoint is chosen
(line 16). We choose depth-first search, as the SUT and peer states do not have to be changed when
the current execution has not terminated yet. In other words, the operation “restore SUT state”
is redundant in that particular case, where c′ = c and the SUT it still running. Visited states are
tracked by set V .

As Algorithm 2 does not control concurrency inside the SUT, or between the SUT and its peers,
some outcomes from different interleavings between messages or memory accesses may be missed.
An exhaustive concurrency analysis would increase the analysis time exponentially in the number
of thread interleavings. Furthermore, Algorithm 2 does not limit the number of faults injected for a
given execution. We can easily bound this by limiting the search depth at line 6.

In many cases, the user is interested in finding the first error that the tool detects; this is why
the search terminates at line 13. If all errors in the SUT should be found, then the search should
continue. Error states are recognized by abnormal termination of the SUT; see Section 4 for details.

3.3 Wrappers to control choice points

Fault injection at choice points is implemented by virtualizing I/O operations so the outcome of such
operations can be controlled by our tool. We use wrapper functions [21] for each library function
that is fault injected. The wrappers are called instead of the original function. They either inject a
fault (to simulate a failure) or call the original function (to simulate success).4 The controller (see
Fig. 3) determines the outcome of the wrapped function (see Algorithm 3).

4The original function may of course also fail, but in practice non-deterministic failures in a test bed that uses a
wired network are extremely rare and often point to a hardware defect. In cases where actual_function fails, successful
execution cannot be simulated as the correct system state entails updates in internal buffers after a successful I/O
operation.
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Figure 4: State-transition diagram of the controller.

The call to the wrapped function occurs inside the SUT; at this point, execution is transferred to
the controller by helper function controller_choice (see Alg. 3, line 1). This function suspends the
execution of the SUT, transfers information about the current choice point location to the controller,
and waits for the result that the wrapped function should take. When the controller returns the
result, either a fault is simulated, or the actual library function is called.5

3.4 Summary

The controller uses a custom runtime environment to manage the execution of the SUT and its
peers. The custom environment uses I/O library wrappers to allow the controller to simulate failed
executions of I/O operations. The locations where these operations occur are defined as choice points
in the execution of the SUT; choice points are instrumented with code that uses the virtualization
environment to transfer control of the execution from the SUT back to the controller.

4 Implementation Using DMTCP or SBUML

We present two fault injection tools based on CFI, using on DMTCP [3] and SBUML [4]. The first
tool uses process-level checkpointing while the second one uses OS-level virtualization. Therefore,
the tools differ in certain technical aspects even though their architecture is similar. Both tools
use checkpointing to analyze all possible application states where faults can be injected, but do not
cover other sources of non-determinism such as concurrency. The different level of virtualization

5Note that the controller may, based on its search strategy, choose to suspend the current system (saving it to a
checkpoint) and resume the new system from a different checkpoint, possibly affecting the result of a different choice
point than the one where execution was suspended at.
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Algorithm 2 Algorithm for exploring the SUT.
1 C := ∅ // set of choices to explore

2 V := ∅ // set of visited choice points/choices

3 start SUT and peers from initial state

4 loop forever {

5 execute SUT till choice is hit or SUT terminates

6 if (hit choice point) {

7 create checkpt c from current state (SUT + peers)

8 C := C ∪ {〈c, ok〉} ∪ {〈c, fail〉}
9 // add choices for new checkpoint to C

10 } else { // SUT terminated

11 if (error state) {

12 report error

13 exit

14 } // else normal termination

15 } // end if (hit choice point)

16 repeat

17 if (C = ∅) exit // last state explored

18 choose 〈c′, γ〉 ∈ C
19 C := C\〈c′, γ〉 // remove current choice from C

20 until 〈c′, γ〉 /∈ V
21 V := V ∪ 〈c′, γ〉 // mark choice as visited

22 restore SUT state from 〈c′, γ〉
23 } // end loop

Algorithm 3 Pseudo-code outlining fault injection.
1 result := controller_choice(cp)

2 if (result = fail)

3 return ERROR; // return −1, or throw exception

4 return actual_function(...) // else (result = ok)

has consequences for the implementation of fault injection, control of the virtualized resources, and,
more subtly, communication between the virtualization tool and the controller.

4.1 DMTCP-based fault injector

DMTCP virtualizes a group of processes [3] and controls both process execution and communication
between processes it manages. A DMTCP-controlled program execution uses a coordinator, hence-
forth called DMTCP coordinator, to control all processes attached to it. The coordinator virtualizes
I/O operations internally (for checkpointing) and is part of DMTCP.

A checkpoint in DMTCP includes communication links between all captured processes that are
managed by the DMTCP coordinator. However, communication to processes outside DMTCP is
not managed. For this reason, our setup executes both the SUT and its peers inside DMTCP, to
ensure that their state is consistent before and after checkpointing (see Fig. 5).
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Figure 5: DMTCP-based fault injection tool.

#!/bin/bash

# Execute the specified command.
IS_SUT=1 "$@"
RV=$?

# Notify the controller.
echo "${DONE} ${RV}" > /dev/tcp/localhost/${PORT}
exit ${RV}

Figure 6: The SUT wrapper script for DMTCP.

4.1.1 Controller

Our controller is separate from the DMTCP coordinator and determines program correctness by the
exit status of the SUT: In Unix-like operating systems, some exit statuses indicate severe failures
such as an assertion error (134), a segmentation violation (139), etc.; these are displayed as an error
report by our controller.

Communication between the controller, the SUT, and the DMTCP coordinator is implemented
using TCP/IP sockets, on a fixed port for each channel. The wrapper functions of the SUT send a
notification message to the controller, to check if a fault should be injected or not. The controller
responds accordingly. After the SUT has terminated, a “done” message is sent to the controller to
signal termination, followed by the exit status of the SUT.

A shell script wraps the execution of the SUT (setting IS_SUT to denote if fault injection is
enabled) and handles the message signaling program termination (see Fig. 6). Note that we use a
bash-specific feature which treats /dev/tcp like a device connecting to a given host and port. We
use this because DMTCP showed problems when using the more portable netcat (nc) command,
causing some of our tests to fail.

The state space of the search (checkpoints to be explored, and visited choices) is managed by
keeping copies of checkpoints as files.6 The performance of fault injection therefore depends on the
file size of all snapshots. If the disk cache can contain them all, then the entire analysis can execute
in RAM, allowing it to finish quickly (see Section 5).

4.1.2 Library function wrappers

DMTCP does not directly call C library functions related to I/O, but instead virtualizes all these
functions to keep track of file descriptors and other data. This is necessary for its internal checkpoint-
ing mechanism. Our fault injection therefore operates at the level of the wrapper function used by
DMTCP (see Fig. 5). With DMTCP, the system library wrapper is separated into two components:
Our fault injection wrapper, and DMTCP’s library wrapper that is called when no fault is injected.
The fault injection function shown in Algorithm 3 therefore calls DMTCP’s wrapper function as

6Our current implementation uses depth-first search; therefore, one choice is always immediately taken when a
choice point is hit, eliminating the need for remembering a set of remaining choices per checkpoint.
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Figure 7: SBUML-based fault injection tool.

actual_function (line 4), which in turn calls the original C library function after keeping track of
file descriptors and other internal data.

With DMTCP, the SUT and peer processes share the same environment. Hence an environment
variable, IS_SUT, tracks whether fault injection is enabled. We support fault injection on connect,
accept, send, and recv. A fault is injected by returning −1 in these functions, and setting an
appropriate error code, such as ECONNREFUSED in connect. At this point our tool injects a typical
(representative) error code for each type of operation, but it is easy to generalize this to a user-defined
error code if needed. For I/O on file descriptors, we check the result of fstat to limit fault injection
to sockets. If all file operations were fault injected, then loading the dynamic libraries at program
start-up would also be fault injected and possibly fail. These special cases therefore require that
fault injection be conditionally suppressed, for example, for system-specific code executing before
main is executed. Internal control messages used by DMTCP are also exempt from fault injection.

4.1.3 Communication

The controller acts as a server and listens on a given port for notifications from the socket wrapper
functions executing in the SUT. Communication is implemented to be short-lived so no active channel
between the controller and DMTCP exists when checkpointing operations are used. This is necessary
because DMTCP assumes full control of all communication channels, which is only possible for
processes managed by it. Communication between the controller and the DMTCP coordinator is
therefore terminated before each checkpointing operation, and re-established afterwards.

4.2 SBUML-based fault injector

Our second implementation uses SBUML, which virtualizes an entire operating system [4]. This
has the advantage that all resources used by the SUT and peers are included in a checkpoint, down
to details such as process IDs that are not virtualized by DMTCP. Disadvantages are the fact that
system processes are also included, and that communication between the controller and SBUML
cannot be easily done via sockets, as the guest kernel is frozen between snapshots.

4.2.1 Controller

The controller needs to communicate with SBUML to control system execution (see Fig. 7). Our
fault injection builds on already existing debugging interfaces in SBUML, so that no additional
kernel modifications are needed. The main such debugging feature is the ability to inspect and set
global variables in the kernel, by directly modifying the SBUML kernel memory that is memory
mapped to files on the host. Communication by writing to files is flexible because it can be done
while the guest kernel is frozen. A higher-level inspection feature exists to walk through kernel data
structures, list all guest processes and determine which process is currently executing. Because the
inspection features already existed, only 69 lines of the kernel source were modified to introduce the
wait-loop choice point and few global variables for controlling it.

The controller needs a way to determine the exit code of the SUT, which is running as a guest
process that is controlled by the SBUML kernel. SBUML’s debugging features cannot inspect
guest processes running inside SBUML, so another technique must be used. We use hostfs, a fea-
ture inherited from UML that allows guest processes to write to files on the host, at for example
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./vfi-sbuml.sh -explore snapshotname \
"processname" /tmp/SUT-exit-code

Figure 8: The SUT wrapper script for SBUML.

Table 2: Comparison between both tools.

Code size (lines of code)
Tool Existing platform CFI wrapper CFI controller
DMTCP-based fault injector 32,000 (C/C++) 600 (C/C++) 700 (Java)
SBUML-based fault injector 7,000 (C) + 8,000 (bash) 70 (C) 390 (bash)

/tmp/SUT-exit-code. Higher-level scripts running on the host can then easily poll and read such
files.

A 350-line higher-level script performs fault injection based on these SBUML interfaces. It uses
a manually prepared snapshot as a starting point. Preparation of that snapshot requires that the
SUT and peer processes be installed into an SBUML guest file system, networking I/O choice points
manually turned on, and then the SUT manually started. The SBUML kernel soon freezes on the
first socket call, which could have been called by the SUT or any other guest process. The next step
is to save this frozen kernel into a snapshot. Once this initial-state snapshot has been created, the
script can be started (see Fig. 8).

The script then inspects every choice point and identifies those that happen inside the SUT, as
identified by "processname". The OS states that contain the choice points of interest are saved
into snapshots. The SBUML kernel is allowed to continue normally, stopping at later choice points
of interest. The exit code file(s) are checked after each iteration. If the SUT (or a peer, if desired)
exits, a new search path is started by restoring one of the previously saved snapshots. Therefore,
like with the DMTCP-based tool, we use depth-first search in this implementation.

4.2.2 Kernel I/O function wrappers

SBUML is based on Linux 2.4.24 and compiled as a modified Linux kernel. We introduce network I/O
choice points into SBUML by modifying the Linux kernel source for the system call interface named
socketcall, which handles all socket-related calls (accept, connect, etc.) for Linux 2.4 series
kernels. The key part of the modification sleeps at the start of socketcall, effectively freezing the
guest kernel and the processes inside it. Read and write calls in the kernel are changed in a similar
way, to handle I/O using file descriptors.

Inserting the choice point into the kernel has the advantage that it is automatically applied to
all network I/O for any SUT. The disadvantage is that it is too general and will cause networking
from any process to block and even prevent the guest kernel and OS from booting. Therefore by
default the network I/O choice point is turned off, and extra functionality is added to the kernel
to control the choice points. This design shifts the key functionality to higher-level scripts so that
harder-to-debug kernel modifications are minimized. These control scripts turn a choice point on
and off, continue from a frozen choice point, set error codes to be applied upon continuation, and
query about system call parameters and which process is currently executing. Fig. 7 shows how the
communication connects the components.

4.2.3 Communication

In this tool, the controller manages SBUML via files that are memory-mapped to the kernel running
inside SBUML. This avoids problems (time-outs or full buffers) when the guest kernel is frozen. The
file system of the guest system is made visible to the host using hostfs.
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Table 3: List of benchmark applications used.

Name LOC Description
darkhttpd 1.8 2,488 Web server
frox 0.7.18 7,847 Transparent FTP proxy server
netcat 1.1.0 2,102 Arbitrary connections and listens
prtunnel 0.2.7 2,685 HTTP tunnel server
alphabet server 153 Example server returning nth character in the alphabet
alphabet client 158 Client for alphabet server

4.3 Comparison
DMTCP is written in C and C++, with about 32,000 lines of code in total. SBUML adds about
7,000 source lines of C code to UML to provide checkpointing. The higher-level interfaces for the
user and for debugging are written mostly in bash, and consist of about 8,000 source lines of shell
script [22].

Reusing checkpointing tools greatly reduces the development effort for a fault injection tool. Our
implementation uses only about 1,300 additional lines of C, C++, and Java code for DMTCP, and
460 extra lines of C and bash code for SBUML. This is about 3–4 % of the size of the checkpointing
software used (see Table 2). The CFI controller for DMTCP is implemented in Java, and we could
have shared much of the Java code for the SBUML-based fault injector. However, because process
control works differently in both systems, it was more expedient to write the second tool mostly
in bash. Because bash has many built-in operators for process control, its code is shorter than the
Java-based controller.

5 Experiments and Discussion
Our implementations are reliant on DMTCP and SBUML, which have some restrictions: DMTCP
does not virtualize certain OS-level features such as process IDs, and SBUML uses an older kernel
version. However, common types of server software (HTTP, FTP) are supported, and both tools
inject the same types of faults on network I/O. We have chosen three representative server programs
for our experiments, along with netcat and an artificial benchmark that implements a minimalist
server (see Table 3).

We furthermore present a benchmarking of DMTCP and SBUML itself, outside their use in CFI,
to explain their performance differences.

5.1 Selection of examples
In order to be useful for our experiments, applications have to be supported by the platforms and
compilers on our system, without dependencies on obscure third-party libraries, and with sufficient
documentation so we can actually execute the system in our experiments. Furthermore, programs
have to run without a graphical user interface or other user intervention. They have to be config-
urable or modifiable such that they would terminate after one connection, deviating from the typical
behavior of running indefinitely, to avoid producing an infinite state space.7

We used a brute-force method to find enough interesting programs: First, we used http://
www.freecode.com/ to find a number of C programs that implement servers but do not require a
graphical user interface or other features that make them unsuitable for automatic testing. A total
of 79 positive and negative filter criteria were used, yielding 207 matching projects.8

Out of these projects, 175 contained a link that could be directly followed by a shell script (i. e.,
a link leading directly to an archive or a download page on http://sourceforge.net/). 134 of

7We compare checkpoints to avoid infinite loops when possible, but even slight changes in the program state such
as incrementing a counter can easily produce an “infinite” state space, regardless of whether the change is important
for program behavior.

8Unfortunately, the site has meanwhile been archived so a detailed search is no longer possible.
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Table 4: Experimental results. Shown are the total analysis time taken, the total amount of disk
space used by all checkpoints, and the number of checkpoints generated by fault injection. The
search was configured to abort after 50 checkpoints.

SUT DMTCP SBUML
Time Memory # chkpts Time Memory #chkpts

darkhttpd 1.8
no error 16.02 s 47.40MB 5 60.42 s 616.11MB 5
seeded fault 8.46 s 47.40MB 5 60.34 s 616.92MB 5

frox 0.7.18 not compatible 481.95 s 5362.08MB 50
netcat 1.1.0 not compatible 285.09 s 3156.18MB 50
prtunnel 0.2.7 4.30 s 10.36MB 1 36.57 s 298.08MB 2
alphabet server 13.51 s 19.11MB 4 54.28 s 490.44MB 4
alphabet client

no error 17.06 s 15.29MB 3 70.96 s 784.79MB 7
assertion error 3.39 s 10.18MB 3 65.07 s 784.86MB 7
segfault 6.30 s 15.29MB 3 69.58 s 784.76MB 7

these links were valid and usable, allowing access by a download script, requiring no browser cookies
or user registration. 111 downloads yielded a working archive of a known archive type, containing
C source code.

To test fault injection on a socket level, we looked for programs that use recv; we found 34 such
programs, out of which seven compiled without any changes. The reason for this low yield is mainly
that many less commonly used open-source programs are maintained infrequently and require small
changes to work on newer systems, or at least special configuration options to compile. Indeed, out
of the seven programs, only five contained sufficient documentation and complete configuration files
to work on our system. We chose three representative programs (darkhttpd, frox, and prtunnel) for
our experiments, along with netcat and an artificial benchmark that implements a minimalist server
(see Table 3).

5.2 Tool comparison

We inject faults in five server programs (see Table 3) as the SUT, against a peer that is not fault
injected, and also analyze the two components of the alphabet client/server pair in reversed roles,
with the client being fault injected. Three variations of the client were tested in this experiment.
One client produces no error. The other two produce an assertion error and cause a segmentation
fault after a fault-injected function returns an error. We also seeded a similar fault in darkhttpd to
confirm that our tools work as expected.

Table 4 shows the experimental results of the fault injection tool. The memory usage column
shows the total amount of disk space taken by all checkpoints; since that amount is smaller than the
disk cache, the checkpoints are effectively stored in memory. If the disk cache could not contain all
checkpoints, though, then our analysis would require search pruning to remain useful in practice.

In those cases where it supports the application, DMTCP is a lot faster and uses much less
memory than SBUML. This is mainly because DMTCP virtualizes only the processes of interest
(the client/server processes of the SUT and peers), while SBUML virtualizes the entire operating
system, including all daemon processes that are typically present on a system. In our case, 16 extra
processes are included in each checkpoint, increasing both the size of a checkpoint and the time
required to store and load it.

Unfortunately, DMTCP cannot handle every case, partially because some features of the C
library are not yet fully supported by DMTCP, which is still under development. Furthermore, due
to its approach, certain features are not faithfully restored from a checkpoint. Because DMTCP
works on a process group rather than OS level, it is fundamentally very difficult to handle certain
advanced features. In particular, we identify the following (non-exhaustive) list of features that
caused problems or may cause problems when using DMTCP:
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Table 5: Comparison of virtualization tools, when applied to one process.

Properties Virtualization tool
SBUML DMTCP

Virtualization level OS group of processes
Networking emulated on OS auto connection recovery
Disk image reversible irreversible
Support for process IDs, special files yes no
Checkpoint save time (ms) 1990 308
Checkpoint load time (ms) 1830 82
Checkpoint size (MB) 93 1.6

• Process IDs. DMTCP recreates a process when restoring a checkpoint. This causes restored
processes to have a different process ID each time they are restored from a checkpoint. In par-
ticular, this causes programs that rely on on their process ID for inter-process communication,
to fail. Many programs store their process ID in /var/*.pid, such as schedulers atd, crond,
DHCP clients and servers, the network time daemon ntpd, the system log daemon syslogd,
the secure shell server sshd, and many others. DMTCP is therefore not suitable to verify
system daemons that are closely integrated into the server configuration.

• Special files. Such files include /var/shm (shared memory between processes with an interface
to the file system) and the /proc file system. The latter gives access to information on other
processes (via their process ID, which leads to the above-mentioned problems), and other
statistics. Information can be read as if accessing a file, but the contents of these pseudo-files
can change at any time, which may lead to inconsistencies after restoring a program from a
checkpoint.

• We had issues with the select system call, where a connection was not correctly restored by
DMTCP [23]. This is an implementation problem and not fundamentally related to process-
level checkpointing. However, it highlights the fact that OS-level checkpointing works at
a “natural” boundary by replacing a hardware execution environment with software, while
process-level checkpointing interfaces with the SUT at the boundary between the priviledged
kernel and the unpriviledged user-space SUT. Functionality that is embedded in the kernel
or closely related to it, is more difficult or sometimes even impossible to emulate faithfully at
that level.

OS-level checkpointing may not only produce overhead due to larger checkpoints, but sometimes
produce more checkpoints as such, too. In our experiments, the SBUML-based fault injector some-
times produces more checkpoints, because the system calls are intercepted globally for any network
operation, whereas on DMTCP, the network is virtualized at the C library level.

We found that for the given server programs, the lack of concurrency control did not affect the
reliability of our analysis. The number of checkpoints depends on the number of connections and
messages used, and the seeded defects are thread-local. Because of this, the outcome of the analysis
is consistent across multiple executions.

5.3 Comparison of checkpointing platforms
Our experiments have shown that checkpointing performance has a significant impact on fault in-
jection using checkpointing. The question therefore arises how much different scenarios impact the
performance of checkpointing. To the best of our knowledge, there are many benchmarks measuring
the performance of the execution performance of virtual environments [24, 25] but none measuring
the checkpointing performance. Our comparison of checkpointing tools aims to find out how the
design of a checkpointing tool affects its checkpoint time and size.

Table 5 compares the tools by key properties and gives an overview of the performance of each
tool. We use the alphabet server application to measure the performance of checkpointing with
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256 MB of RAM being reserved for the guest kernel in SBUML.
SBUML virtualizes a system at the OS level and saves file system changes in a disk image, which

results in a heavy load during saving. Checkpoints contain the blocks read or written since the
last cloned snapshot (SBUML). Table 5 only shows the size of VM state information, excluding the
disk image. DMTCP does not keep track of file contents in a checkpoint, so the contents do not
revert by checkpoint restart. It is not difficult to add a function to take a snapshot of a certain disk
area into the coordinator, though. Indeed, the fact that checkpointing file contents is optional is
an advantage, because it is not needed for many types of server programs that only read from disk.
As can be seen from an initial test in Table 5, the performance of different tools varies greatly; in
the case of OS-level checkpointing, it is also heavily affected by tuning the configuration, something
which constitutes future work.9

Our benchmark of checkpointing tools examines their performance when checkpointing an SUT
containing a certain number of processes. Figure 9 shows plots by three quantities: checkpoint size,
save time, and restart time (using an average over nine runs). We also run the experiments for the
case where each process allocates 2 MB of memory to see the change in performance (see Fig. 10).
The extra memory is filled with random values so that checkpoint compression has minimal effect.

In case of the minimal server, process-level checkpointing performs best. However, OS-level
checkpointing shows better scalability in all measures as the number of processes increases. The
size of the checkpoints created by DMTCP grows linearly, since DMTCP creates one checkpoint file
for each process. DMTCP recovers multiple processes by forking a number of child processes. The
memory image of each newly created process is restored one by one. This explains why the overhead
of this recovery process is proportional to the number of processes.

Overall, the performance of the two tools converges at about 50 processes. This is a rather
large number and unlikely to be necessary for the purpose of fault injection, where the behavior of
unreliable network connections is closely monitored on a small number of processes (usually a single
target program and its child processes). If a program uses a main process to accept connections
and a child process for each active connection, then n+ 1 processes suffice to handle n connections.
Even in a densely connected test setup, the number of 50 processes is usually not reached, which
means that the more light-weight process-level checkpointing offers superior performance under
normal circumstances. In fact, a test setup with two connections is often sufficient to find defects
in connection handling [6]. It is therefore more important to know exactly what features a program
uses, and choose DMTCP only if these features are all supported (see Section 5.2 above).

5.4 Discussion

We have evaluated two fault injection tools based on I/O virtualization and checkpointing. One tool
is based on DMTCP and uses process-level checkpointing, the other one is based on SBUML and
uses OS-level checkpointing. Process-level checkpointing is more lightweight and easier to use for
all but very large programs (up to about 20–50 processes). It provides a better performance in our
benchmarks but does not virtualize certain low-level resources such as process IDs faithfully; these
may be needed for certain applications.

OS-level checkpointing handles complex applications but requires that a system image be pre-
pared; in our experience, it is more difficult to configure a system image that is suitable for testing
and also has the right parameters for good performance. Because OS-level virtualization includes
many system processes in each checkpoint, checkpointing operations incur a significant overhead for
fault injection.

This overhead drew our attention to the performance of checkpointing tools. Experiments con-
firm that OS-level virtualization suffers from the relatively large size of a default operating system
system that provides the necessary resources for tests to execute. In normal usage of virtualization,

9We were able to get a better performance using OS-level checkpointing on smaller systems, when using less
memory for the guest kernel. However, for a larger number of processes, 256 MB are needed. We therefore chose to
run all experiments with the same setting. Process-level checkpointing does not require pre-setting the amount of
memory needed, and is not affected by this issue.
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checkpointing is rarely used; however, for fault injection, it makes sense to consider configurations
of virtualization tools that can provide speedy checkpoint operations.

6 Related Work

Our work on checkpoint-based fault injection (CFI) is inspired by Java PathFinder (JPF) [26]. JPF
targets non-determinism from concurrency and optionally from undetermined input and possible
exceptions [26]. It defines choice points internally to represent when during program execution
non-deterministic decisions are taken. By default, choice points are implemented for thread schedul-
ing. Extensions of JPF define additional choice points for non-deterministic input, represented by
symbolic values [27] or for faults on a network [6, 28].

6.1 Overview

CFI uses virtualization tools to apply the checkpoint-based fault injection to binaries. This is similar
to other fault injection tools for networked systems [29, 30, 31]. CFI differs in that we use an existing
tool to control all processes in a distributed system, instead of creating the whole platform from
scratch.

Other such work combines inputs (workload) generation with fault injection [32]. It covers a
wider range of problems than CFI, at a higher computational cost and generates an entire test suite
under given constraints, in addition to injecting faults. Our work assumes a fixed input (given by a
user-defined test suite) and injects only I/O related faults.

CFI is also related to other tools that inject faults on one given process. In many existing tools
that target network I/O, the application code or execution is modified to return an error code or
exception at random or for user-defined events; each execution covers one possible outcome [29, 30,
31, 34, 36, 37]. This means that only a subset of all possibilities is explored. Heuristics can improve
the odds of finding a defect but there is no guarantee that all relevant system behaviors are covered.

A complete coverage of the state space can be achieved by systematically enumerating all pos-
sible faults (or combinations thereof). This has been implemented by either replaying, executing a
system repeatedly [18, 33], sometimes combined with event workload generation [32]; or by using a
platform that provides checkpointing internally [6, 7, 28, 35]. In the latter case, fault injection has
been implemented for TCP/IP, where a fault from a dropped (unusable) connection results in an
exception [6, 7, 28], and on UDP, where a packet may be dropped silently [35]. CFI is currently
adapted to the case where a fault results an error code or exception but can in principle be modified
to also support different non-deterministic outcomes, such as pocket loss and duplication.

Our key contribution is a general architecture that can be adapted to various checkpointing tools,
making the approach less dependent on a given execution platform.

6.2 Classification of known approaches and tools

The combination of either randomized or exhaustive fault injection, with search approaches, gives
rise to a classification of existing tools that inject faults on interactions of the SUT with external
components (see Table 6).

When looking at the state space analysis capabilities of each tool, and how they are implemented,
it is possible to classify the tools into six categories: by how the state space is explored, and whether
replay or checkpointing is used. The state space can be explored exhaustively, by a user-defined
search (in this case an exhaustive exploration is possible but may require state space management
code by the user) or at random. In this classification, even though the sample size of 13 tools is
not large, it is noteworthy that the checkpointing approach is not used for a randomized exploration
of the search space (see Table 7). Most of exhaustive tools allow for a user-defined customization
(pruning) of the search, so the cluster “checkpointing/user-defined” is only empty because we count
tools that have a built-in capability of an exhaustive search in that category. However, while it is
theoretically possible to build a checkpointing-based tools for randomized search, no such tool exists
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to our knowledge, probably because of the overhead of checkpointing that makes it less attractive
in the context of a randomized search, which is normally light-weight and scalable.

Another way to look at the tools is by looking at which platforms lend themselves to replay-
based or checkpoint-based tools (see Table 8). It can be seen that all checkpoint-based tools use an
existing facility to manage copies of a program state: Java-based tools use Java PathFinder [26],
while tools that analyze binary code other use checkpointing (as presented in this paper) or fork
(which internally creates a copy of the process image). Indeed, Java PathFinder is designed to be
easily extensible and lends itself to creating specialized tools based on it; without it, probably fewer
fault injection tools for Java would exist. Tools that use replay are more commonly developed from
scratch. Our collection lists only one Java-based tool using replay, which is specialized for fault
injection in unit tests [33]. In principle, there is no binary-specific technical hurdle for developing
such a tool for binary code, which explains why many such tools exist.

Fault injection tools have in common that they generate faults, by simulating possible behaviors
of the environment; however, the correctness of the test output is under modified conditions not
verified. This has to be done by code inside the system under test (for example, using assertions to
check safety properties). Outside such existing properties, fault injection tools are limited to crash
testing. If it is desirable to model both possible faults and the required behavior under exceptional
circumstances, model-based techniques can be used [38]. However, in this case full automation is no
longer possible, as the output model has to be derived from the specification of the system.

7 Conclusions and Future Work

Input/output operations may fail unexpectedly due to hardware problems or network failures. Fault
injection can simulate such failures at the software level. An exhaustive search of the impact of
all possible faults requires that many possible paths be tested. Checkpointing provides a robust
mechanism to achieve this goal.

We have shown a generic architecture for a fault injection tool based on checkpointing, and im-
plemented such a tool using two checkpointing/virtualization tools: DMTCP and SBUML. DMTCP
is a light-weight multi-process checkpointing tool, which offers excellent performance. SBUML vir-
tualizes an entire OS, which incurs a higher overhead but models low-level features more faithfully.
Our experiments have shown that it makes sense to choose the checkpointing tool based on the
characteristics of the software to be tested.

Future work includes more options such search heuristics to find defects faster in larger test
scenarios. A feature that replays a detected defect without running the full analysis again, will
make CFI easier to use for debugging. We will also consider other checkpointing platforms [39].

In the long-term, we hope that checkpointing tools will also be developed with program anal-
ysis in mind, allowing them to be generalized further, under a common application programming
interface (API). In the context of virtualization tools, our work has shown that the performance of
checkpointing operations (and the size of checkpoints) matters when such tools are used for program
analysis.
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Figure 9: Performance for a given number of processes per checkpoint.
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Figure 10: Performance for a given number of processes per checkpoint (each process uses 2 MB of
random data).
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Table 7: Classification of tools based on their state space generation (exhaustive, user-defined, or
randomized) and implementation approach (replay or checkpointing).

exhaustive user-defined randomized

replay Enforcer [33]
Workload generator [32]

D-Cloud [29]
FIG [30]
Xception [31]

FTAPE [34]
LFI [36]
Murphy [37]

checkpointing

CFI (this work) [5]
Explode [18] (using fork)
JPF + centralizer [6]
JPF net-iocache [7, 35]
JPF-based [28]

Table 8: Classification of tools based on their implementation approach (replay or checkpointing)
and platforms supported (Java or C++/binaries).

Java C++ or binaries

replay Enforcer [33]

D-Cloud [29]
FIG [30]
FTAPE [34]
LFI [36]
Murphy [37]
Workload generator [32]
Xception [31]

checkpointing
JPF + centralizer [6]
JPF net-iocache [7, 35]
JPF-based [28]

CFI (this work) [5]
Explode [18] (using fork)
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