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Abstract 

 

Chitosan was added to PVA aqueous solutions as a thickener to improve the 

electrospinning process. The presence of a small amount of chitosan considerably 

improved the uniformity of as-spun nanofibres. This improvement is attributed to its 

significant effect on the solution viscosity and conductivity, with only a slight impact on 

the surface tension. The concentration of the PVA required to produce bead-free and 

uniform nanofibres was reduced with the increase in chitosan concentration. The chitosan 

thickener suppressed the jet break-up and facilitated the jet stretching so that fine and 

uniform fibres could be electrospun even from a dilute PVA solution. 
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1. Introduction  

 

Electrospinning can produce polymeric nanofibres for diverse applications in biomedical 

engineering
[1, 2]

, filtration
[3-5]

, protective clothing
[6]

, catalysis reaction
[7]

, chemical 

sensors
[8, 9]

 and nano-composites
[10-12]

. It typically involves a solution spinning process,  

in which the polymer solution driven by a strong electric field is quickly stretched into 

dry or semi-dry filaments and directly deposited on the collector, usually in the form of 

non-woven fibre mats.  An improved electrospinning process is able to create oriented 

nanofibre arrays
[13-15]

 or to produce multi-component nanofibres, such as core-sheath 

nanofibres 
[16, 17]

 and side-by-side bicomponent nanofibres
[18]

.  

 

The electrospinning process and the resultant fibre morphology are dependent on the 

operating parameters (e.g. applied voltage, flow rate and collecting distance) and material 

properties (e.g. the type of polymer, molecular weight, solvent used, polymer 

concentration, viscosity, conductivity, and surface tension)
[19, 20]

. For a given polymer-

solvent system, the polymer concentration plays a major role in determining the fibre 

morphology because it affects other solution properties such as viscosity, conductivity 

and surface tension. Although finer fibres can be electrospun by reducing the polymer 

concentration, beads or beaded fibres are usually formed. Uniform fibres cannot be 

obtained unless the polymer coils are highly entangled in solution, which requires a 

polymer concentration far larger than its “overlap concentration”
[21]

.  

 

To stop the formation of beads, ionic additives, such as salts
[22]

, surfactants
[23]

 and 

polyelectrolytes
[24]

, have been used. The addition of these additives effectively increases 

the solution conductivity and the net charge density
[25]

. Beads are reduced or eliminated 

due to the increase in fibre stretching. However, these ionic additives are not always 

effective. When the polymer concentration is low, beads are constantly generated even if 

ionic additives are present in the solution
[26]

.  
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Thickener, a polymer showing high viscosity in dilute solution, has been used widely in 

industry as a rheology modifier to improve processibility or product performance. The 

addition of a small amount of thickener to a solution could significantly increase the 

solution viscosity, but does not alter the solution functionality. However, it is not yet 

established if the use of a small amount of a thickener can modify the solution properties 

sufficiently so that fine and uniform fibres can be electrospun. 

 

Chitosan is a linear polysaccharide consisting of β-1, 4 linked 2-amino-2-deoxy-D-

glucopyranose. It has been used as a thickener in the food industry
[27]

. At acidic pH, 

chitosan behaves like a linear cationic polyelectrolyte and shows high charge density 

because of the protonation of its amino function groups
[28, 29]

. Due to its high viscosity in 

dilute aqueous solution and good compatibility with many water soluble polymers such 

as poly(vinyl alcohol)(PVA)
[30, 31]

, poly(ethylene oxide)(PEO)
[32]

 and poly(vinyl 

pyrrolidone)(PVP)
[33]

, chitosan is particularly suitable for use as a thickener to improve 

the rheological properties of an aqueous polymer solution for electrospinning. 

Electrospinning of chitosan blended with a water-soluble polymer, such as PVA
[34]

, 

PEO
[35]

 and silk fibroin
[36]

, has been found to improve the fibre fineness. However, the 

use of chitosan as a thickener for improving the nanofibre uniformity, especially for 

electrospinning a dilute polymer solution, has not been reported.  

 

In this paper, we used chitosan and PVA as model compounds to demonstrate the concept 

of using chitosan as a thickener to improve the fibre uniformity in electrospinning. We 

have found that the addition of 1% wt chitosan to a dilute PVA solution is able to 

electrospin bead-free, uniform and fine nanofibres, even when the PVA concentration is 

very close to its overlap concentration. 
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2. Experimental details 

 

 Materials and instrument 

PVA (Mw 146, 000-186, 000, 98-99% hydrolysed), chitosan (low molecular weight, 

75~85% deacetylated) and acetic acid were obtained from Aldrich and used as received. 

All polymer solutions were made using deionised water.  As chitosan is only soluble in 

acidic aqueous solution, 2% (wt) of aqueous acetic acid solution was used as a solvent for 

making the PVA/chitosan solutions. In order to eliminate the effect of acetic acid on the 

electrospinning process, the same solvent was also used to prepare the PVA solution. The 

PVA/chitosan solutions were prepared by dissolving PVA in a dilute aqueous chitosan 

solution containing 2% acetic acid at 80
O
C.  

 

The solution viscosity and conductivity were measured with a digital rotational 

viscometer (D443 Rheology International) and a conductivity meter (LF330 Merck), 

respectively. This viscometer has a 5% experimental error and good sensitivity. The 

surface tension was determined by the Du Nouy Ring method, using a platinum ring 

(Cole Parmer) and a precision electronic balance (AEA 160 DA ADAM). The fibre 

morphology was observed under a scanning electron microscope (SEM, LEO1530 

microscope). The average fibre diameter and bead density were calculated from the SEM 

pictures with the aid of a computer software (ImagePro plus 4.5). 

 

 Electrospinning  

A purpose-built electrospinning apparatus
[23]

 was used for this work. A polymer solution 

was put into a plastic syringe and connected through a metal syringe needle (20 Gauge) to 

a high DC voltage power supply (ES30P, from Gamma High Voltage Research). A 

grounded aluminum sheet, 15cm away from the tip of the syringe needle, was used to 

collect the as-spun fibres. The flow rate of the PVA solution was controlled by a syringe 

pump (KD Scientific). All electrospinning processes were conducted at 22kV of applied 

voltage with the flow rate in 0.6ml/hr.   
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3. Results and discussion 

 

Electrospinning an aqueous PVA solution could result in individual beads, beaded-fibres 

or uniform fibres, depending on the PVA concentration. Koski et al
[37]

 indicated that a 

fibrous structure could be electrospun when the concentration was beyond C[η] ~4, where 

[η] is the intrinsic viscosity and C is the PVA concentration. C[η] ~4 corresponds to the 

overlap concentration of polymer, above which the polymer motion will be dominated by 

the presence of direct polymer-polymer interactions and coil entanglement
[38]

. However, 

if the PVA concentration C[η] exceeds 10, a pseudo matrix-gel will be formed. 

 

Based on the molecular weight value and the Mark-Houwink relation
[39]

, the intrinsic 

viscosity of the PVA used can be estimated as: 

628.041051.6][ wM                      (1) 

The concentration of PVA corresponding to C[η]4~10 should be in the range of 

3.25~8.14% (wt). Although our experiment has confirmed that fibrous products were 

produced when the PVA concentration was in the range of 4~8% (wt), beads-on-string 

structures were formed for the whole concentration range. The addition of 2% acetic acid 

to these PVA solutions slightly improved the fibre morphology, but the as-spun fibres 

still had a beads-on-string fibre morphology (Figure 1).  

 

The addition of a small amount of chitosan in these PVA solutions led to a considerable 

change in the fibre morphology. Non-beaded and uniform fibres were electrospun from 

7wt% and 8wt% PVA solutions when they contained 0.5 wt % chitosan. Though beaded-

fibres still resulted from more dilute PVA solutions (4~6%), the bead number decreased 

apparently. Higher concentrations of chitosan in PVA solutions would further improve 

the fibre uniformity. As shown in Figure 2, when the PVA solutions contained 1% 

chitosan, uniform fibres were produced from solutions with a PVA concentration in the 

range of 5~8wt% and beaded fibres appeared only when the concentration was below  

4wt%. It is reasonable to expect that higher chitosan concentration in PVA solution 

would lead to further improvement in the fibre uniformity.    
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From the SEM images, the bead density and the average fibre diameter of as-spun 

nanofibres can be calculated. The bead density, the number of perceived beads in every 

100 micron square of sample, can be used to characterize the beads generated in 

electrospun fibre mats. The dependence of the bead density on the PVA concentration is 

shown in Figure 3a. Larger bead density occurred when lower concentrations of PVA 

solutions were electrospun, and the bead density value decreased as the PVA 

concentration increased for all studied electrospinning PVA systems. However, the 

addition of chitosan to PVA solution affected the bead density considerably. When there 

was no chitosan in the solution, the bead density varied from 62 to 5 (per 100 µm
2
) when 

the PVA concentration was increased from 4wt% to 8wt%. However, the addition of 

0.5wt% chitosan to the PVA solutions reduced the bead density to 43 for 4wt% PVA 

solution, and the density value was very close to zero when the PVA concentration was 

larger than 7wt%. The addition of 1wt% chitosan to the PVA solution resulted in lower 

bead density values; the bead density was 22 for the 4% PVA solution, while the value 

became zero for other higher PVA concentrations in the solutions.  

 

Like other electrospinning polymer systems, the average fibre diameter increased with an 

increase in the PVA concentration. The relationship between average fibre diameter and 

PVA concentrations is shown in Figure 3b. When compared to those from the chitosan-

containing PVA solution, the fibres electrospun from the PVA-only solutions, containing 

acetic acid, had a lower average fibre diameter, although they had a beads-on-string 

structure. The average fibre diameter increased with an increase in the chitosan 

concentration. This can be attributed to a higher overall polymer concentration of the 

chitosan-containing PVA solutions and the better fibre uniformity of the as-spun fibres.    

 

As the electrospinning process was conducted under the same operating conditions and 

using the same polymer system, the fibre morphology changes should be derived from 

the effect of chitosan on the solution properties. As shown in Figure 4a, the solution 

viscosity increased with an increase in the PVA concentration and this was observed for 

all the PVA solution systems. The addition of chitosan to the PVA solution increased the 
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solution viscosity. At the same PVA concentration, the viscosity increased with an 

increase in the concentration of chitosan. However, the increase in viscosity was not 

linear with the concentration of chitosan. The viscosity increase for a PVA solution 

having higher PVA concentration was larger than that in a solution having a lower PVA 

concentration. For example, the viscosity of a 6wt% PVA solution was 299cP. When the 

solution contained 0.5wt% chitosan, the viscosity was 506cP, an increase of 69%. But 

when the solution contained 1 wt% chitosan, the solution viscosity increased to 917cP, a 

further increase of 81%.  

 

The effects of PVA concentrations and chitosan on the surface tension are shown in 

Figure 4b. As the PVA concentration increases, the surface tension increases slightly. 

Such a slight increase in surface tension with PVA concentration could be attributed to 

the existence of acetic acid increasing the ionic interaction in the polymer solution
[40]

. 

The addition of chitosan to the PVA solution also leads to a slight increase in the surface 

tension. However, the variation of the surface tension due to the addition of chitosan was 

within 2 dyn/cm. In contrast to the viscosity change, this difference is very small.    

 

The solution conductivity shows a linear dependence on the PVA concentration. As 

shown in Figure 4c, the solution conductivity increased with an increase in the PVA 

concentration. Even for the PVA solution without any acetic acid and chitosan, the 

solution conductivity increased by about 30% when the PVA concentration increased 

from 4wt% to 8wt%. A similar result was also found in a previous study
[41]

, and the 

reason has been attributed to a hydrogen-bond network forming in the PVA solution. 

With the addition of acetic acid to the PVA solution, the solution conductivity increased 

due to the existence of acetate ions and higher concentration of free hydrogen proton. 

Further addition of chitosan to the PVA solution increased the solution conductivity 

significantly. Larger increases in the conductivity were observed in solutions having a 

lower PVA concentration. When the solution contained 1% chitosan, the solutions with 

PVA concentration in the range 5~8wt% had very high conductivity and the conductivity 

was little influenced by the PVA concentration. Only 4% PVA solution was found to 

result in a slight decrease in the conductivity.  
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During the electrospinning process, the charged jet interacts with the external electrical 

field, and charge induced repulsion occurs within the jet. The jet undergoes a bending 

instability
[42]

, also called “whipping instability”
[43, 44]

, and stretches into fine filaments. 

Under the action of surface tension, the jet tends to minimise its surface area. The 

capability for a jet to maintain its uniform fibre morphology is highly dependent on the 

viscosity. If the fluid has low viscosity, the jet cannot maintain its fibrous structure, thus  

breaking up into interconnected sections. These sections can then further split into 

smaller sections and tend towards a spherical shape, while the inter-connected parts are 

stretched into ultra-fine filaments. As a result, a beads-on-string structure forms. With an 

increase in viscosity, the jet break-up will be suppressed, thus reducing the bead number 

and increasing the fibre diameter. When the viscosity is larger than a critical value, the jet 

overcomes the surface tension to form uniform filaments.  

 

High solution viscosity reflects strong polymer-polymer interaction occurring in the 

solution. Polymer-polymer interaction within the PVA solutions comes from polymer coil 

entanglement and hydrogen-bond interaction. As the PVA concentration is larger than the 

overlap concentration, coil entanglement and hydrogen bond interaction among the PVA 

macromolecules should take place. However, the formation of beaded fibres suggests that 

the entanglement and polymer-polymer interaction are not sufficient to maintain uniform 

fibre morphology. The increase in the solution viscosity due to the addition of chitosan 

indicates an enhancement in the polymer-polymer interaction due to extra chitosan 

polymer coils and their hydrogen-bond interaction with PVA macromolecules. High 

solution viscosity and strong polymer interaction between chitosan and PVA 

considerably suppress the effect of the surface tension, thus resulting in uniform fibres.  

 

In acetic acid solution, the amino groups of chitosan react with acetic acid forming 

ammonium cationic ions. Charge repulsion causes the chitosan chains to expand in the 

solution and further enhances the interaction between PVA and chitosan. The multi-ionic 

characteristic and the strong interactions would make the two polymers associate with an 

ionic complex
[45]

. With such high solution conductivity, the solution has a high net charge 
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density
[25]

. Jet and filaments would be stretched under stronger forces. The bead could be 

eliminated due to this enhanced stretching process,  and also fibre diameter would tend to 

reduce, just like the case with the addition of ionic surfactant
[23]

.  

 

All these effects on the solution properties tend to result in finer and more uniform fibres. 

The 7wt% PVA solution containing 0.5wt% chitosan was able to produce uniform fibres 

about 220nm in diameter. Finer and more uniform fibres were electrospun from 5wt% 

PVA solution containing 1wt% chitosan, with a diameter of 160±38nm. Other researchers 

have confirmed
[34]

 that the finer fibres can be further electrospun if the PVA solution 

contains a higher concentration of chitosan.  
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4. Conclusion  

 

This study has shown that using a cationic polyelectrolyte chitosan as a thickener for 

electrospinning aqueous PVA solution can effectively improve fibre uniformity and 

reduce fibre diameter. Non-beaded and uniform fibres can be electrospun from PVA 

solution of a low concentration that usually produces beaded fibres in the absence of a 

suitable thickener. The improvement in the fibre uniformity due to the addition of 

chitosan is attributed to increased solution viscosity and conductivity, because the 

chitosan functions like a thickener and an ionic additive. At high solution viscosity, the 

jet break-up is effectively suppressed and the increased solution charge density enhances 

the fibre stretching. As a result, uniform nanofibres can be electrospun even if the 

solution concentration is close to its “overlap concentration”.  

 

It is expected that this concept will be suitable for electrospinning other polymer systems. 

Uniform and fine nanofibres will be produced if the polymer solution is augmented with 

a small amount of compatible thickener, which is able to improve both the solution 

viscosity and conductivity, yet have little effect on the solution surface tension. 
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Captions 

 

Figure 1: SEM images of PVA nanofibres electrospun from PVA solution containing 2% 

acetic acid, PVA concentration (a) 4wt%, (b) 5wt% (c) 6wt% (d) 7wt% (e) 8wt%.   

 

Figure 2: SEM images of PVA nanofibres electrospun from PVA solution containing 1% 

chitosan and 2% acetic acid, PVA concentration (a) 4wt%, (b) 5wt% (c) 6wt% (d) 7wt% 

(e) 8wt%.  

 

Figure 3: Dependence of bead density and average fibre diameter on the PVA 

concentration. Symbol (*) indicates the formation of uniform electrospun fibres. 

 

Figure 4: Dependence of solution viscosity, conductivity, and surface tension on PVA 

concentrations. The standard deviations are included in the brackets. 

 

  



 14 

O O

O O

o

OH

OH

NH2

OH

NH2

OH

NH2

HO

HO

HO

n

  

(Chitosan) 



 15 

 

    

    

 

Figure 1: SEM images of PVA nanofibres electrospun from PVA solution containing 2% 

acetic acid, PVA concentration (a) 4wt%, (b) 5wt% (c) 6wt% (d) 7wt% (e) 8wt%.   
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PVA 8wt% 

Figure 2: SEM images of PVA nanofibres electrospun from PVA solution containing 1% 

chitosan and 2% acetic acid, PVA concentration (a) 4wt%, (b) 5wt% (c) 6wt% (d) 7wt% 

(e) 8wt%.  
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Figure 3: Dependence of bead density and average fibre diameter on the PVA 

concentration.  Symbol (*) indicates the formation of uniform electrospun fibres.  
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Figure 4: Dependence of solution viscosity, conductivity, and surface tension on PVA 

concentrations.  

 


