
IEEE TRANSACTIONS ON RELIABILITY 1

Using Class Imbalance Learning for Software
Defect Prediction

Shuo Wang, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—To facilitate software testing and save testing cost,
a wide range of machine learning methods have been stud-
ied to predict defects in software modules. Unfortunately, the
imbalanced nature of this type of data increases the learning
difficulty of such a task. Class imbalance learning specializes in
tackling classification problems with imbalanced distributions,
which could be helpful for defect prediction but has not been
investigated in depth so far. In this paper, we study the issue of if
and how class imbalance learning methods can benefit software
defect prediction with the aim of finding better solutions. We
investigate different types of class imbalance learning methods,
including resampling techniques, threshold moving and ensemble
algorithms. Among those we studied, AdaBoost.NC shows the
best overall performance in terms of the measures including bal-
ance, G-mean and AUC. To further improve the performance of
the algorithm and facilitate its use in software defect prediction,
we propose a dynamic version of AdaBoost.NC, which adjusts
its parameter automatically during training. Without the need to
pre-define any parameters, it is shown to be more effective and
efficient than the original AdaBoost.NC.

Index Terms—Software defect prediction, class imbalance
learning, ensemble learning, negative correlation learning.

ACRONYMS

SDP Software defect prediction
RUS Random undersampling
RUS-bal Balanced version of random undersampling
THM Threshold-moving
BNC AdaBoost.NC
SMOTE Synthetic minority oversampling technique
SMB SMOTEBoost
ROC Receiver operating characteristic
AUC Area under the curve
SVM Support vector machine
NB Naive Bayes with the log filter
RF Random Forest
CV Cross validation
PD Probability of detection
PF Probability of false alarm
DNC Dynamic version of AdaBoost.NC

The authors are with the Centre of Excellence for Research in Computa-
tional Intelligence and Applications (CERCIA), School of Computer Science,
The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
E-mail: {S.Wang, X.Yao}@cs.bham.ac.uk

NOTATIONS

Z Data set to be learnt
Zmin Minority-class examples in Z (defect class)
Zmaj Majority-class examples in Z (non-defect class)
N Size of data set Z
Nmin Number of minority-class examples in Z
Nmaj Number of majority-class examples in Z
θ Size ratio between majority and minority

classes Nmaj/Nmin
Omin Output of the classifier for the minority class
Omaj Output of the classifier for the majority class
α Decrement value used in the parameter

searching strategy for RUS and RUS-bal
c Cost coefficient used in the parameter

searching strategy for THM
k Number of nearest neighbors used in SMB
λ Penalty strength for encouraging ensemble

diversity in BNC and DNC
amb Ambiguity term that assesses the ensemble

diversity and is used in BNC and DNC
Acc A chosen accuracy performance criterion for

adjusting the parameter in DNC

I. INTRODUCTION

SOFTWARE DEFECT PREDICTION (SDP) can be formu-
lated as a learning problem in software engineering, which

has drawn growing interest from both academia and industry.
Static code attributes are extracted from previous releases of
software with the logs of defects and used to build models to
predict defective modules for the next release. It helps to locate
parts of software that are more likely to contain defects. This
is particularly useful when the project budget is limited or the
whole software system is too large to be tested exhaustively.
A good defect predictor can guide software engineers to focus
the testing on defect-prone parts of software.

For a high-performance defect predictor, researchers have
been working on the choice of static attributes and effective
learning algorithms since 1990s. The McCabe [1] and Hal-
stead [2] metrics are widely used to describe the attributes of
each software module (i.e. the unit of functionality of source
code). In addition to seeking a better subset of attributes,



IEEE TRANSACTIONS ON RELIABILITY 2

choosing a good learning algorithm was shown to be at
least equally important to the final performance [3]. Various
statistical and machine learning methods have been investi-
gated for SDP, among which Naive Bayes [3] and Random
Forest [4] [5] were shown to have relatively high and stable
performance [6] [4]. AdaBoost based on C4.5 decision trees
was also found to be effective in some studies [7] [8].

However, none of these studies have taken into consid-
eration an important feature of the SDP problem, i.e., the
highly imbalanced nature between the defect and non-defect
classes of the data set. In most cases, the collected training
data contains much more non-defective modules (majority)
than defective ones (minority). The imbalanced distribution
is a main factor accounting for the poor performance of
certain machine learning methods especially on the minority
class [6] [7]. Class imbalance learning is a growing research
area in machine learning that aims to better deal with this
kind of problems [9]. It includes a number of data-level and
algorithm-level techniques. Several researchers noticed the
negative effect of class imbalance on SDP and considered
using class imbalance learning techniques to improve the
performance of their predictors recently [10] [11] [12] [13] [8].
However, it is still unclear to what extent class imbalance
learning can contribute to SDP and how to make better use of
it to improve SDP.

As the first effort of an in-depth study of class imbalance
learning methods in SDP, this paper explores their potential
by focusing on the following research questions: can class
imbalance learning methods be good solutions to SDP prob-
lems in comparison with the existing methods? What are their
advantages and disadvantages? Can we make better use of
them for different software projects efficiently? The answers
will provide guidance and valuable information for choosing
and designing good predictors for SDP.

For the first two questions, we conduct a systematic and
comparative study of five class imbalance learning methods
and two high-performance defect predictors on ten public
data sets from real-world software projects. The five class
imbalance learning methods are random undersampling (RUS),
the balanced version of random undersampling (RUS-bal),
threshold-moving (THM), AdaBoost.NC (BNC) [14] [15] and
SMOTEBoost (SMB) [16], covering three major types of
solutions to learning from imbalanced data. A parameter
searching strategy is applied to these methods for deciding
how much degree the minority class should be emphasized.
They are then compared with Naive Bayes with the log filter
and Random Forest, the two top-ranked methods in the SDP
literature [3] [4]. Our results show that AdaBoost.NC and
Naive Bayes are better choices among the seven algorithms.
AdaBoost.NC has the best overall performance in terms of
the measures – balance, G-mean and AUC. Naive Bayes
has the best defect detection rate among all. Particularly,
the performance evaluation metric “balance” is discussed in
this paper as it is commonly used by software engineers in
real SDP applications. One major challenge of using class
imbalance learning methods is how to choose appropriate
parameters, such as the sampling rate and misclassification
cost of classes, which are crucial to their generalization on

the minority class and can be time-consuming and problem-
dependent to tune. Different SDP problems are shown to have
their own best parameters.

To contribute to a wider range of SDP problems and sim-
plify the training procedure, our next objective is to develop
a better solution that combines the strength of AdaBoost.NC
and Naive Bayes without the parameter setting issue as the
answer to the third question. We propose a dynamic version of
AdaBoost.NC that adjusts its parameter automatically during
training based on a performance criterion. It is shown to be
more effective and efficient than the original AdaBoost.NC in
predicting defects and improving the overall performance. It
offers the advantage of reduced training time, as no pre-defined
parameters of emphasizing the minority class are required.

The rest of this paper is organized as follows. Section II
gives the background knowledge about class imbalance learn-
ing and software defect prediction. Section III explains the
experimental methodology, including the SDP data sets, the
algorithms used in the experiments and our training strategy.
Section IV discusses the experimental results, and addresses
the parameter setting issue of class imbalance learning meth-
ods by proposing a better solution. Section V draws the
conclusions and points out our future work.

II. RELATED WORK

This section introduces the two focal points of this paper.
First, we describe what problems class imbalance learning
aims to solve and the state-of-the-art methods in this area.
Subsequently, we briefly review the current research progress
in software defect prediction.

A. Class Imbalance Learning

Class imbalance learning refers to learning from data sets
that exhibit significant imbalance among or within classes. The
common understanding about “imbalance” in the literature is
concerned with the situation, in which some classes of data
are highly under-represented compared to other classes [9].
By convention, we call the classes having more examples
the majority classes, and the ones having fewer examples the
minority classes. Misclassifying an example from the minority
class is usually more costly. For SDP, due to the nature of the
problem, the defect case is much less likely to happen than
the non-defect case. The defect class is thus the minority. The
recognition of this class is more important, because the failure
of finding a defect could degrade software quality greatly.

The challenge of learning from imbalanced data is that the
relatively or absolutely underrepresented class cannot draw
equal attention to the learning algorithm compared to the
majority class, which often leads to very specific classification
rules or missing rules for the minority class without much
generalization ability for future prediction [17]. How to better
recognize data from the minority class is a major research
question in class imbalance learning. Its learning objective
can be generally described as “obtaining a classifier that will
provide high accuracy for the minority class without severely
jeopardizing the accuracy of the majority class” [9].



IEEE TRANSACTIONS ON RELIABILITY 3

Numerous methods have been proposed to tackle class
imbalance problems at data and algorithm levels. Data-level
methods include a variety of resampling techniques, manipu-
lating training data to rectify the skewed class distributions,
such as random over/under-sampling and SMOTE [18]. They
are simple and efficient, but their effectiveness depends greatly
on the problem and training algorithms [19]. Algorithm-
level methods address class imbalance by modifying their
training mechanism directly with the goal of better accuracy
on the minority class, including one-class learning [20] and
cost-sensitive learning algorithms [21] [9]. Algorithm-level
methods require specific treatments for different kinds of
learning algorithms, which hinders their use in many appli-
cations, since we do not know in advance which algorithm
would be the best choice in most cases. In addition to
the aforementioned data-level and algorithm-level solutions,
ensemble learning [22] [23] has become another major cat-
egory of approaches to handling imbalanced data by com-
bining multiple classifiers, such as SMOTEBoost [16] and
AdaBoost.NC [14] [24]. Ensemble learning algorithms have
been shown to be able to combine strength from individual
learners and enhance the overall performance [25] [26]. They
also offer additional opportunities to handle class imbalance
at both the individual and ensemble levels.

This paper investigates two undersampling strategies [3] and
two ensemble methods [16] [24] because of their simplicity, ef-
fectiveness and popularity in the literature. Threshold-moving
is also considered in our study as a frequently used cost-
sensitive technique [21]. Algorithm descriptions and settings
will be given in the next section.

B. Software Defect Prediction

Defect predictors are expected to help to improve software
quality and reduce costs of delivering those software systems.
There is a rapid growth of SDP research after the PROMISE
repository [27] was created in 2005. It includes a collection
of defect prediction data sets from real-world projects for
the public use and allows researchers to build repeatable
and comparable models across studies. So far, great research
efforts have been devoted to metrics describing code modules
and learning algorithms to build predictive models for SDP.

For describing the attributes of a module, which is usually
the smallest unit of functionality, static code metrics defined
by McCabe [1] and Halstead [2] have been widely used and
commonly accepted by most papers. McCabe metrics collect
information of the complexity of pathways contained in the
module through a flow graph. Halstead metrics estimate the
reading complexity based on the number of operators and
operands in the module. A more complex module is believed
to be more likely to be fault-prone. Menzies et al. [3] showed
the usefulness of these metrics for building defect predictors
and suggested that the choice of learning method is far more
important than seeking the best subsets of attributes for good
performance.

A variety of machine learning methods have been proposed
and compared for SDP problems, such as decision trees [28],
neural networks [10] [29], Naive Bayes [30] [3], support vector

machines [31] and Artificial Immune Systems [4]. It is discour-
aging but not surprising that no single method is found to be
the best, due to different types of software projects, different
algorithm settings and different performance evaluation criteria
of assessing the models. Among all, Random Forest [32]
appears to be a good choice for large data sets and Naive
Bayes performs well for small data sets [33] [4]. However,
they didn’t consider the data characteristic of class imbalance.

Some researchers have noticed that the imbalanced distri-
bution between defect and non-defect classes could degrade
a predictor’s performance greatly and attempted to use class
imbalance learning techniques to reduce this negative effect.
Menzies et al. [8] undersampled the non-defect class to
balance training data and checked how little information was
required to learn a defect predictor. They found that throwing
away data does not degrade the performance of Naive Bayes
and C4.5 decision trees and instead improves the performance
of C4.5. Some other papers also showed the usefulness of
resampling based on different learners [34] [13] [35]. Ensem-
ble algorithms and their cost-sensitive variants were studied
and shown to be beneficial if a proper cost ratio can be
set [10] [36]. However, none of these studies have performed
a comprehensive comparison among different class imbalance
learning algorithms for SDP. It is still unclear in which aspect
and to what extent class imbalance learning can benefit SDP
problems, and which class imbalance learning methods are
more effective. Such information would help us to understand
the potential of class imbalance learning methods in this
specific learning task and develop better solutions. Motivated
by aforementioned studies, we will investigate class imbalance
learning in terms of how it facilitates SDP and how it can
be harnessed better to solve SDP more effectively through
extensive experiments and comprehensive analyses next.

III. EXPERIMENTAL METHODOLOGY

This section describes the data sets, learning algorithms
and evaluation criteria used in this study. The data sets we
chose vary in imbalance rates, data sizes and programming
languages. The chosen learning algorithms cover different
types of methods in class imbalance learning.

A. Data Sets

All ten SDP data sets listed in Table I come from practi-
cal projects, which are available from the public PROMISE
repository [27] to make sure that our predictive models are
reproducible and verifiable and to provide an easy comparison
to other papers. They are sorted in the order of the imbalance
rate, i.e. the percentage of defective modules in the data set,
varying from 6.94% to 32.29%. Each data sample describes
the attributes of one “module/method”, plus the class label of
whether this module contains defects. The module attributes
include McCabe metrics, Halstead metrics, lines of code, and
some other attributes. It is worth mentioning that a repeated
pattern of exponential distribution in the numeric attributes is
observed in these data sets, formed by many small values and a
few much larger values. Some work thus applied a logarithmic
filter to all numeric values as a preprocessor, which appeared



IEEE TRANSACTIONS ON RELIABILITY 4

to be useful for some types of learners [3]. For examples,
the log filter was shown to improve the performance of
Naive Bayes significantly but contribute very little to decision
trees [37]. The data sets cover three programming languages.
Data set jm1 contains a few missing values, which are removed
before our experiment starts. Missing data handling techniques
could be used instead in future work.

TABLE I: PROMISE data sets, sorted in order of the imbal-
ance rate (defect%: the percentage of defective modules).

data language examples attributes defect%
mc2 C++ 161 39 32.29
kc2 C++ 522 21 20.49
jm1 C 10885 21 19.35
kc1 C++ 2109 21 15.45
pc4 C 1458 37 12.20
pc3 C 1563 37 10.23
cm1 C 498 21 9.83
kc3 Java 458 39 9.38

mw1 C 403 37 7.69
pc1 C 1109 21 6.94

B. Learning Algorithms

In the following experiments, we will examine five class im-
balance learning methods in comparison with two top-ranked
learners in SDP. The two SDP predictors are Naive Bayes with
the log filter (NB) [3] and Random Forest (RF) [5]. The five
class imbalance learning methods are random undersampling
(RUS), balanced random undersampling (RUS-bal, also called
micro-sampling in [8]), threshold-moving (THM) [21] [38],
SMOTEBoost (SMB) [16] and AdaBoost.NC (BNC) [14].
RUS and RUS-bal belong to data resampling techniques,
shown to be effective in dealing with SDP [8] and outperform
other resampling techniques such as SMOTE and random
oversampling [34] [39]. RUS only undersamples the majority
class, while RUS-bal undersamples both classes to keep them
having the same size. THM is a simple and effective cost-
sensitive method in class imbalance learning. It moves the
output threshold of the classifier toward the inexpensive class
based on the misclassification costs of classes such that
defective modules become more costly to be misclassified.
SMB is a popular ensemble learning method that integrates
oversampling into Boosting [40]. It creates new minority-class
examples by using SMOTE to emphasize the minority class
at each round of training. Based on our previous finding that
ensemble diversity (i.e. the disagreement degree among the
learners in the ensemble) has a positive role in recognizing
rare cases [41], BNC combined with random oversampling
makes use of diversity to improve the generalization on the
minority class successfully through a penalty term [24] [42].

Most class imbalance learning methods require careful
parameter settings to control the strength of emphasizing the
minority class prior to learning. The undersampling rate needs
to be set for RUS and RUS-bal. THM requires misclassifica-
tion costs of both classes. SMB needs to set the amount of

new generated data and the number of nearest neighbors. BNC
needs to set the strength of encouraging the ensemble diversity.
Since the best parameter is always problem- and algorithm-
dependent [19] [43], we apply a parameter searching strategy
to each of the methods here, as shown in Fig. 1.

Historical 
Data

Training 
Data

Testing 
Data

Training 
Data'

Validation 
Data

Learning

Learning

10-fold split

9 folds 1 fold

8 folds 1 fold optimal parameter

Performance 
Report

Fig. 1: Framework of our experimental studies.

Concretely, we employ 10-fold cross-validation (CV). At
each time of building models using nine of the ten partitions,
the nine data partitions are further split into a training set
with eight partitions and a validation set with the remaining
partition first. The learning method is repeated with different
parameters on the same training set and evaluated on the
validation set. The optimal parameter that results in the best
performance on the validation set is then obtained. Using the
best parameter, a model is trained based on data composed
of the initial nine partitions and tested on the remaining one.
The above procedure is repeated 100 times (10 folds * 10
independent runs) in total for each method. All methods and
their parameter settings are described as follows.

Assuming a data set Z with N examples, Zmin is com-
posed of the examples belonging to the defect class with
size Nmin, which is the minority. Likewise, Zmaj include
examples belonging to the majority class with size Nmaj . We
define the size ratio between classes θ = Nmaj/Nmin. Let
Omin and Omaj denote the outputs of any classifier, which
is capable of producing real-valued numbers as the estimation
of the posterior probabilities of examples for the minority and
majority classes respectively (Omin +Omaj = 1).
• RUS: it removes examples from Zmaj randomly. Con-

cretely, we divide the difference between Nmaj and
Nmin by 10 and use this value as a decrement α.
After undersampling, the new size of the majority class
N ′maj = Nmaj − nα (n = 0, 1, . . . , 20).

• RUS-bal: it removes examples from both classes ran-
domly at different sampling rates until they reach the
same pre-defined size. We choose the decrement of
undersampling α = (Nmin − 25) /10 based on the find-
ings in [8]. The new size of each class is Nmin − nα
(n = 0, 1, . . . , 10) after undersampling.

• THM: we define a cost value c. The class returned by
the classifier is the label with the larger output between



IEEE TRANSACTIONS ON RELIABILITY 5

cOmin and Omaj . c is varied from 1 to 2θ with the
increment of θ/10.

• SMB: 51 classifiers are constructed based on the training
data with SMOTE applied at each round of Boosting. The
number of nearest neighbors k is 5 as recommended by
the original paper [16]. The amount of new data at each
round is set to n×Nmin (n = 1, 2, . . . , 5) respectively.

• BNC: as a prerequisite, random oversampling is applied
to the minority class first to make sure both classes
have the same size. Then 51 classifiers are constructed
sequentially by AdaBoost.NC. The penalty strength λ for
encouraging the ensemble diversity is varied from 1 to 20
with the increment of 1.

We use the well-known C4.5 decision tree learner [44] in the
above methods in our experiment, as it is the most commonly
discussed technique in the SDP literature. C4.5 models are
built using the Weka software [45]. Default parameters are
used except that we disable the tree pruning, because pruning
may remove leaves describing the minority concept when data
is imbalanced [46].

Regarding the two additional SDP techniques, the Naive
Bayes classifier is built based on data preprocessed by the log
filter. The Random Forest model is formed by 51 unpruned
trees.

C. Evaluation Criteria

Due to the imbalanced distribution of SDP data sets and var-
ious requirements of software systems, multiple performance
measures are usually adopted to evaluate different aspects
of constructed predictors. There is a trade-off between the
defect detection rate and the overall performance, and both
are important.

To measure the performance on the defect class, the
Probability of Detection (PD) and the Probability of False
Alarm (PF) are usually used. PD, also called recall, is the
percentage of defective modules that are classified correctly
within the defect class. PF is the proportion of non-defective
modules misclassified within the non-defect class. Menzies et
al. claimed that a high-PD predictor is still useful in practice
even if the other measures may not be good enough [47] [37].

For more comprehensive evaluation of predictors in the
imbalanced context, G-mean [48] and AUC [49] are frequently
used to measure how well the predictor can balance the
performance between two classes. By convention, we treat the
defect class as the positive class and the non-defect class as
the negative class. A common form of G-mean is expressed
as the geometric mean of recall values of the positive and
negative classes. A good predictor should have high accuracies
on both classes, and thus a high G-mean. In the SDP context,
G-mean =

√
PD (1− PF ). It reflects the change in PD

efficiently [50].
AUC estimates the area under the ROC curve, formed by a

set of (PF, PD) pairs. The ROC curve illustrates the trade-off
between detection and false alarm rates – the performance of a
classifier across all possible decision thresholds. AUC provides
a single numeric for performance comparison, varying in [0, 1].
A better classifier should produce a higher AUC. AUC is

equivalent to the probability that a randomly chosen example
of the positive class will have a smaller estimated probability
of belonging to the negative class than a randomly chosen
example of the negative class.

Since the point (PF=0, PD=1) is the ideal position on the
ROC curve, where all defects are recognized without mistakes,
the measure balance is introduced by calculating the Euclidean
distance from the real (PF, PD) point to (0, 1) and frequently
used by software engineers in practice [3]. By definition,

balance = 1−

√
(0− PF )2 + (1− PD)2

√
2

.

In our experiment, we compute PD and PF for the defect
class. Higher PDs and lower PFs are desired. We use AUC,
G-mean and balance to assess the overall performance, which
are expected to be high for a good predictor. The advantage of
these five measures is their insensitivity to class distributions
in data [51] [9].

IV. CLASS IMBALANCE LEARNING FOR SDP

In this section, we first compare the performance of the
five class imbalance learning methods based on the parameter
searching strategy and the two existing SDP methods. The
results will show their advantages and disadvantages. Based
on the observations, we then improve them further.

A. Comparative Study

For each data set, we build seven predictive models follow-
ing the algorithm settings described in the previous section. We
use balance, G-mean and AUC, respectively, as the criterion
for determining the best parameter of class imbalance learning
methods under our training scheme. We use the Student T-test
at confidence level of 95% for the statistical significance test.

For the defect class, Fig. 2 presents the scatter plots of
(PD, PF) points from the seven training methods on the ten
SDP data sets. Each plot has a different parameter searching
criterion applied to the class imbalance learning methods. Each
point is the average of 100 independent runs. Classifiers with
more points distributed at the bottom right corner indicate
better performance of higher defect detection rate and lower
performance sacrifice on the non-defect class. We can gain the
following results from Fig. 2. In terms of the defect detection
rate (PD), NB outperforms all the five class imbalance learning
models, which shows its effectiveness in finding defects.
Although RUS-bal appears to be better at PD than other class
imbalance learning models, it is still not as good as NB in
most cases. In terms of the false alarm rate (PF), although
RF is the best, it performs the worst in PD, which makes
it hardly useful in practice. THM and SMB show better PD
than RF, but their advantage is rather limited. BNC presents
generally higher PD than RUS, THM and SMB, and lower PF
than RUS-bal and NB.

To understand which measure is better to be the criterion for
choosing parameters of class imbalance learning methods for
SDP, we produce bar graphs in Fig. 3, displaying the average
performance values of PD, balance, G-mean and AUC in the



IEEE TRANSACTIONS ON RELIABILITY 6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PD:defect detection rate

P
F

:fa
ls

e 
al

ar
m

balance

 

 
RUS
RUS−bal
THM
SMB
BNC
NB
RF

(a) balance criterion

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PD:defect detection rate

P
F

:fa
ls

e 
al

ar
m

G−mean

 

 
RUS
RUS−bal
THM
SMB
BNC
NB
RF

(b) G-mean criterion

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PD:defect detection rate

P
F

:fa
ls

e 
al

ar
m

AUC

 

 
RUS
RUS−bal
THM
SMB
BNC
NB
RF

(c) AUC criterion

Fig. 2: Scatter plots of (PD, PF) points of the seven training methods on the ten SDP data sets. Each point is the average from
100 independent runs. The five class imbalance learning methods use balance, G-mean and AUC as the parameter searching
criterion respectively.

four sub-plots respectively (indicated on the Y-axis) over the
ten data sets of each method with the corresponding standard
deviation under the three chosen criteria. Every bar cluster
in each plot compares the performance of the corresponding
method (denoted on the X-axis) with different criteria. The
results illustrate that balance and G-mean are better choices
than AUC for deciding training parameters. In most cases,
the models with the best parameters chosen based on balance
and G-mean produce better PD, balance and G-mean than the
ones trained based on AUC (Fig. 3(a)-(c)). Only the RUS-
bal method seems to be robust to the chosen criterion. In its
bar clusters, the three bars present very close results. Besides,
AUC does not seem to be affected much by the chosen
criterion. In Fig. 3(d), the three bars in all clusters have very
similar height. There is evidence, showing that AUC is a more
stable metric than the others [52]. Hence, different settings do
not change AUC significantly. Using balance or G-mean would
be more appropriate for the choice of training parameters.

Furthermore, among the five class imbalance learning meth-
ods, the bar plots show that BNC performs the best according
to the three overall performance measures (Fig. 3(b)-(d));
RUS-bal performs the best and BNC comes to the second in
terms of PD (Fig. 3(a)), which are consistent with our earlier
observations from the scatter plots.

For more details about the overall performance, Tables II
- IV show the mean and standard deviation values of balance,
G-mean and AUC, respectively, produced by the seven training
methods using balance as the parameter searching criterion. In
each row, values in boldface are significantly better than the
rest; there is no significant difference between the boldface
ones. The significance test is based on Student T-test at
confidence level of 95%. We can make following observations.
BNC achieves the significantly best balance in 8 out of
10 cases, the significantly best G-mean in 6 cases and the
significantly best AUC in 8 cases. More specifically, BNC
achieves 3.2% improvement over NB and 19.7% improvement
over RF in terms of balance on average. This is due to a
33.9% rise in PD over RF and a 22.3% reduction in PF over
NB. Similar observations can be obtained for G-mean and
AUC. Their improvement implies that BNC achieves a better

balance between PD and PF. In other words, more defects are
found without hurting the performance on the non-defect class
much. For highly imbalanced data, such as kc3, mw1 and pc1,
RUS-bal and NB present quite good balance and G-mean. It
suggests that more aggressive techniques of emphasizing the
minority class are more desirable for more imbalanced data
and less likely to sacrifice the performance on the majority
class, i.e. the non-defect class.

Finally, we show the optimal parameters obtained for the
class imbalance learning methods based on the balance mea-
sure in Table V. The numbers in the “RUS” column indicate
the percentage of the majority class that remains for training.
Similarly, the numbers in brackets in the “RUS-bal” column
indicate the percentages of the minority and majority classes
kept for training after undersampling. The “THM” column
includes the best misclassification cost for the minority class,
when the cost for the majority class is fixed to one. The
“SMB” column includes the best ratio of size of newly
generated examples to the minority class size. The “BNC”
column includes the best λ. We can see that the optimal
values for each method varies greatly among different data
sets, as expected. For the best performance, it is necessary to
seek the optimal setting for every data domain. Our parameter
searching strategy, as described in Fig. 1, can be adopted
for tackling different problems. A general trend is that more
imbalanced data sets need the algorithm to focus on the
minority class more aggressively. For instance, in RUS, the
percentage of the majority-class examples left for training in
pc1 (the most imbalanced data) is much lower than that in mc2
(the least imbalanced data); in THM, the best misclassification
cost of the minority class in pc1 is much higher than that in
mc2.

To sum up, among the seven SDP and class imbalance learn-
ing methods, Naive Bayes is the winner according to PD and
AdaBoost.NC is the winner based on the overall performance.
From the viewpoint of the problem nature, the robustness
of Naive Bayes to class imbalance in SDP implies that the
extracted features are appropriate for describing the attributes
of software code modules. Although the prior probability of
the defect class is low, the statistical distribution of this class



IEEE TRANSACTIONS ON RELIABILITY 7

RUS RUS−bal THM SMB BNC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training methods

P
D

 

 

balance
G−mean
AUC

(a) mean PD

RUS RUS−bal THM SMB BNC
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Training methods

ba
la

nc
e

 

 

balance
G−mean
AUC

(b) mean balance

RUS RUS−bal THM SMB BNC
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Training methods

G
−

m
ea

n

 

 

balance
G−mean
AUC

(c) mean G-mean

RUS RUS−bal THM SMB BNC
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Training methods

A
U

C

 

 

balance
G−mean
AUC

(d) mean AUC

Fig. 3: Bar plots of average PD, balance, G-mean and AUC with the corresponding standard deviation over the ten SDP data
sets of the five class imbalance learning methods based on the parameter searching criteria of balance, G-mean and AUC.

TABLE II: Means and standard deviations of balance on the ten SDP data sets. Values in boldface are significantly better than
the rest; there is no significant difference between the boldface ones from the same row.

balance RUS RUS-bal THM SMB BNC NB RF
mc2 0.571±0.125 0.574±0.122 0.570±0.135 0.620±0.146 0.588±0.128 0.595±0.128 0.538±0.130
kc2 0.705±0.086 0.709±0.078 0.660±0.117 0.618±0.101 0.753±0.084 0.719±0.062 0.617±0.101
jm1 0.646±0.023 0.642±0.019 0.643±0.020 0.518±0.021 0.678±0.017 0.584±0.020 0.474±0.019
kc1 0.659±0.073 0.677±0.052 0.627±0.067 0.551±0.063 0.718±0.050 0.663±0.026 0.529±0.060
pc4 0.784±0.086 0.808±0.050 0.721±0.104 0.682±0.080 0.854±0.049 0.753±0.031 0.593±0.083
pc3 0.659±0.093 0.683±0.052 0.571±0.100 0.487±0.071 0.749±0.078 0.651±0.031 0.432±0.064
cm1 0.526±0.146 0.577±0.112 0.502±0.145 0.407±0.122 0.607±0.118 0.663±0.284 0.345±0.225
kc3 0.581±0.164 0.669±0.114 0.483±0.151 0.472±0.132 0.655±0.144 0.693±0.129 0.389±0.110

mw1 0.566±0.161 0.619±0.126 0.450±0.165 0.470±0.159 0.567±0.193 0.636±0.137 0.444±0.157
pc1 0.636±0.085 0.688±0.078 0.596±0.149 0.541±0.128 0.665±0.126 0.553±0.037 0.496±0.108

TABLE III: Means and standard deviations of G-mean on the ten SDP data sets. Values in boldface are significantly better
than the rest; there is no significant difference between the boldface ones from the same row.

G-mean RUS RUS-bal THM SMB BNC NB RF
mc2 0.571±0.150 0.578±0.140 0.566±0.173 0.627±0.169 0.597±0.135 0.607±0.137 0.535±0.191
kc2 0.720±0.081 0.720±0.080 0.675±0.120 0.642±0.108 0.762±0.083 0.734±0.070 0.647±0.105
jm1 0.649±0.022 0.645±0.018 0.647±0.019 0.541±0.025 0.679±0.016 0.594±0.020 0.494±0.025
kc1 0.670±0.071 0.686±0.050 0.643±0.064 0.582±0.072 0.723±0.046 0.694±0.031 0.562±0.072
pc4 0.799±0.076 0.816±0.053 0.747±0.097 0.723±0.077 0.865±0.048 0.780±0.036 0.638±0.089
pc3 0.669±0.095 0.690±0.057 0.588±0.110 0.504±0.099 0.757±0.073 0.680±0.039 0.423±0.122
cm1 0.485±0.254 0.584±0.143 0.452±0.250 0.301±0.257 0.597±0.216 0.681±0.084 0.152±0.225
kc3 0.563±0.247 0.682±0.123 0.430±0.268 0.422±0.262 0.665±0.175 0.724±0.082 0.252±0.265

mw1 0.540±0.253 0.631±0.160 0.336±0.315 0.388±0.304 0.525±0.306 0.637±0.191 0.334±0.313
pc1 0.645±0.157 0.711±0.089 0.601±0.195 0.553±0.191 0.691±0.130 0.576±0.050 0.505±0.167



IEEE TRANSACTIONS ON RELIABILITY 8

TABLE IV: Means and standard deviations of AUC on the ten SDP data sets. Values in boldface are significantly better than
the rest; there is no significant difference between the boldface ones from the same row.

AUC RUS RUS-bal THM SMB BNC NB RF
mc2 0.615±0.133 0.623±0.135 0.639±0.116 0.750±0.128 0.690±0.130 0.700±0.150 0.722±0.118
kc2 0.730±0.087 0.726±0.092 0.687±0.092 0.742±0.092 0.803±0.085 0.820±0.071 0.823±0.077
jm1 0.665±0.023 0.658±0.020 0.661±0.024 0.691±0.017 0.733±0.017 0.679±0.019 0.748±0.019
kc1 0.710±0.063 0.713±0.059 0.670±0.058 0.755±0.046 0.802±0.035 0.785±0.038 0.802±0.035
pc4 0.823±0.069 0.827±0.063 0.791±0.068 0.923±0.023 0.938±0.025 0.863±0.035 0.937±0.019
pc3 0.689±0.087 0.694±0.073 0.664±0.071 0.813±0.052 0.836±0.050 0.777±0.054 0.848±0.045
cm1 0.622±0.126 0.622±0.129 0.595±0.139 0.704±0.112 0.785±0.080 0.748±0.091 0.742±0.105
kc3 0.643±0.183 0.686±0.157 0.590±0.151 0.740±0.133 0.806±0.104 0.815±0.082 0.827±0.105

mw1 0.647±0.145 0.681±0.131 0.584±0.142 0.758±0.145 0.777±0.137 0.780±0.142 0.756±0.138
pc1 0.726±0.129 0.739±0.098 0.735±0.116 0.851±0.080 0.871±0.057 0.700±0.096 0.847±0.067

TABLE V: The optimal parameter obtained from the training
scheme based on balance on the ten SDP data sets, sorted in
order of data imbalance rate.

Optimal RUS(%) RUS-bal(%) THM SMB BNC
mc2 68 (71,34) 1.2 2.7 9
kc2 48 (55,14) 2.1 2.8 10
jm1 29 (62,15) 5.7 3.1 15
kc1 31 (52,10) 5.7 3.0 14
pc4 40 (56,8) 2.2 2.9 10
pc3 25 (54,6) 4.7 3.0 15
cm1 31 (63,8) 4.8 2.6 11
kc3 40 (75,8) 2.2 2.5 10

mw1 43 (80,7) 2.2 2.4 7
pc1 28 (63,5) 7.7 2.7 13

can be represented quite well by those features. Its posterior
probability is thus rectified by summing the information from
multiple features. Moreover, as claimed in [3], the defects
may be actually associated in some log-normal way to the
features. AdaBoost.NC is less aggressive in finding defects, as
it tries to maintain the performance balance between classes.
For highly imbalanced data, RUS-bal and Naive Bayes tend
to be good choices. Random Forest is shown to be ineffective,
as the bootstrapping training strategy and the tree learner
are sensitive to class imbalance [53] [9]. The other class
imbalance learning methods, RUS, THM and SMB, are all
better than Random Forest. Based on the above results, Naive
Bayes is recommended when a high hit rate of defects is
more important (even at the cost of higher false alarm rates);
otherwise, AdaBoost.NC could be a good choice.

B. Dynamic AdaBoost.NC

Given complementary strength of Naive Bayes and Ad-
aBoost.NC, it would be ideal if we can find a predictor that
combines their advantages. For practical algorithm application,
it is also desirable to reduce the number of pre-defined
parameters. In section IV-A, we applied a parameter searching
strategy to each method in order to obtain an appropriate
setting. In this section, we propose a dynamic version of Ad-
aBoost.NC that can adjust its parameter automatically during
training, with the goal of improving or at least maintaining the
effectiveness of AdaBoost.NC without the exhaustive search
for the best parameter.

Similarly to the parameter searching strategy we described
before, we still split data into three parts: a training set, a
validation set and a testing set. We make use of the sequential

training framework of AdaBoost.NC to adjust its main parame-
ter λ at each time of building the individual classifier, based on
a chosen accuracy performance criterion (we use the “balance”
measure in this section). We set an initial value of λ, such as
9, before the training starts. If the next classifier has a better
balance on the validation set, we increase λ by 1 to emphasize
the minority class further. Otherwise, we reduce λ by 1. By
doing so, the minority class performance can be boosted as
much as possible without hurting the overall performance.

TABLE VI: Dynamic AdaBoost.NC algorithm for binary
classification.

Given data set {(x1, y1) , . . . , (xi, yi) , . . . , (xm, ym)}
and a chosen performance criterion Acc, initialize data
weights D1 (xi) = 1/m; penalty term p1 (xi) = 1;
penalty strength λ.

For training epoch t = 1, 2, . . . , T :
Step 1. Train weak classifier ft using distribution Dt.
Step 2. Get weak classifier ft: X → R.
Step 3. Calculate the penalty value for every example xi:

pt (xi) = 1− |ambt (xi)|.
Step 4. Calculate ft’s weight αt by error and penalty

αt = 1
2 log

∑
i
Dt(xi)(pt(xi))

λ(1+ht(xi)yi)∑
i
Dt(xi)(pt(xi))

λ(1−ht(xi)yi)
,

which is equivalent to

αt = 1
2 log

(∑
i,yi=ht(xi)

Dt(xi)(pt(xi))
λ∑

i,yi 6=ht(xi)
Dt(xi)(pt(xi))

λ

)
for discrete label outcome.

Step 5. If Acc (ft) ≥ Acc (ft−1), then λ = λ+ 1;
else λ = λ− 1.

Step 6. Update data weights Dt and obtain new weights
Dt+1 by error and penalty:

Dt+1 (xi) = (pt(xi))
λDt(xi)exp(−αtft(xi)yi)

Zt
,

where Zt is a normalization factor.

Output the final ensemble:

H (x) = sign
(∑T

t=1 αtft (x)
)

.

The algorithm is described in Table VI. An “ambiguity”
term (amb in step 3) decomposed from the classification
error function is introduced into the weight-updating rule of



IEEE TRANSACTIONS ON RELIABILITY 9

TABLE VII: Means and standard deviations of the five performance measures produced by DNC on the ten SDP data sets.
Significantly better/worse values than BNC and NB are denoted by ‘b’ and ‘n’ superscripts/subscripts.

data PD PF balance G-mean AUC
mc2 0.521±0.222n 0.313±0.175n 0.569±0.134 0.571±0.152 0.649±0.142b,n
kc2 0.771±0.124n

b 0.216±0.079b
n 0.777±0.071b,n 0.777±0.071n 0.828±0.074b

jm1 0.660±0.034n 0.314±0.018b,n 0.672±0.027n 0.672±0.017b
n 0.766±0.016b,n

kc1 0.710±0.083n
b 0.241±0.032 0.733±0.042b,n 0.734±0.040n 0.818±0.034b,n

pc4 0.887±0.087n
b 0.165±0.036b

n 0.850±0.043n 0.859±0.047n 0.917±0.031b
n

pc3 0.703±0.113n 0.205±0.037b
n 0.739±0.064n 0.745±0.061n 0.816±0.056b

n

cm1 0.590±0.210n
b 0.226±0.066b

n 0.653±0.117b 0.659±0.133b 0.787±0.097n

kc3 0.579±0.237n 0.197±0.082b
n 0.655±0.143 0.662±0.160n 0.797±0.102

mw1 0.486±0.273n
b 0.138±0.057b

n 0.623±0.177b 0.647±0.272b 0.714±0.139b,n
pc1 0.570±0.201n 0.107±0.041b

n 0.682±0.133n 0.698±0.145n 0.866±0.081n

Boosting (in step 6). It assesses the average difference between
ensemble and its individuals, and is used to penalize training
examples causing low diversity. The parameter λ controls the
strength of applying the penalty, which is given an initial value
before the algorithm start and then adjusted according to the
measure “Acc” (step 5). Both accuracy and ensemble diversity
are taken into account through the sequential training.

The improved AdaBoost.NC (denoted by “DNC”) is com-
pared to the original AdaBoost.NC (BNC) and Naive Bayes
(NB) based on T-test at confidence level of 95%. Its perfor-
mance outputs and the significance test results are shown in
Table VII. The superscripts (subscripts) of ‘b’ and ‘n’ indicate
that DNC’s performance is significantly better (worse) than
BNC and NB respectively.

In terms of the defect detection rate (PD), although DNC
is still worse than Naive Bayes in 9 out of 10 cases, it
outperforms BNC in 5 cases significantly and is competitive
in the rest. It shows that AdaBoost.NC can find more defects
by changing its parameter dynamically during training than
that with a fixed parameter.

In terms of the overall performance, DNC performs signif-
icantly better than or at least comparably to BNC and Naive
Bayes in all cases according to balance. According to G-mean,
DNC performs significantly better than or comparably to BNC
and Naive Bayes in 9 out of 10 cases. According to AUC,
DNC outperforms BNC in 3 cases, is outperformed by BNC
in 4 cases and is comparable to BNC in 3 remaining cases;
DNC performs significantly better than or comparably to Naive
Bayes in 8 cases. These results show that in general DNC
has better or at least comparable overall performance to BNC
and Naive Bayes. It can improve PD and overall performance
without fixing the best parameter prior to learning.

V. CONCLUSIONS

The objective of SDP is to find defective software modules
as many as possible without hurting the overall performance
of the constructed predictor (e.g. without increasing the false
alarm rate). The imbalanced distribution between classes in
SDP data is a main cause of its learning difficulty but has
not received much attention. This paper studied whether
and how class imbalance learning can facilitate SDP. We
investigated five class imbalance learning methods, covering
three types (undersampling, threshold-moving, Boosting-based
ensembles), in comparison with two top-ranked predictors

(Naive Bayes and Random Forest) in the SDP literature. They
were evaluated on ten real-world SDP data sets with a wide
range of data sizes and imbalance rates. To ensure that the
results presented in this paper are of practical value, five
performance measures were considered, including PD, PF,
balance, G-mean and AUC.

To fully discover the potential of using class imbalance
learning methods to tackle SDP problems, we first searched
for the best parameter setting for each method based on
the balance, G-mean and AUC measures, since determining
how much degree the defect class should be emphasized is
crucial to their final performance. Then, random undersam-
pling, the balanced random undersampling, threshold-moving,
AdaBoost.NC and SMOTEBoost were compared with Naive
Bayes with the log filter and Random Forest. The results
show that AdaBoost.NC presents the best overall performance
among all in terms of balance, G-mean and AUC. The bal-
anced random undersampling has better defect detection rate
(PD) than the other class imbalance learning methods, but
it is still not as good as Naive Bayes. The balance and G-
mean measures are shown to be better performance criteria
than AUC for deciding algorithm parameters.

To further improve AdaBoost.NC and overcome the pa-
rameter setting issue, we proposed a dynamic version of
AdaBoost.NC that can adjust its parameter automatically. It
shows better PD and overall performance than the original
AdaBoost.NC. It offers the advantage of reduced training
time and more practical use, as no pre-defined parameters of
emphasizing the minority class are required.

Future work of this paper includes the investigation of other
base classifiers. Currently, this paper only considered C4.5
decision trees. In addition, it is important to look into more
practical scenarios in SDP, such as learning from data with
very limited defective modules and many unlabeled modules
(semi-supervised), and defect isolation to determine the type
of defects (multi-class imbalance).

ACKNOWLEDGMENT

This work was supported by EPSRC (Grant Nos.
EP/D052785/1 and EP/J017515/1) on “SEBASE: Software
Engineering By Automated SEarch” and “DAASE: Dynamic
Adaptive Automated Software Engineering”. Part of writing
was completed while the first author was visiting Xidian
University, China, supported by an EU FP7 IRSES grant on



IEEE TRANSACTIONS ON RELIABILITY 10

“NICaiA: Nature Inspired Computation and its Applications”
(Grant No. 247619).

REFERENCES

[1] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[2] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[4] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,”
Information Sciences, vol. 179, no. 8, pp. 1040–1058, 2009.

[5] Y. Ma, L. Guo, and B. Cukic, “A statistical framework for the prediction
of fault-proneness,” Advances in Machine Learning Applications in
Softwre Engineering, pp. 237–265, 2006.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic review of fault prediction performance in software engi-
neering,” IEEE Transactions on Software Engineering, 2011 (DOI:
10.1109/TSE.2011.103).

[7] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” Journal of Systems and Software, vol. 83, no. 1,
pp. 2–17, 2010.

[8] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Impli-
cations of ceiling effects in defect predictors,” in The 4th International
Workshop on Predictor Models in Software Engineering (PROMISE 08),
2008, pp. 47–54.

[9] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[10] J. Zheng, “Cost-sensitive boosting neural networks for software defect
prediction,” Expert Systems with Applications, vol. 37, no. 6, pp. 4537–
4543, 2010.

[11] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K. ichi
Matsumoto, “The effects of over and under sampling on fault-prone
module detection,” in International Symposium on Empirical Software
Engineering and Measurement, 2007, pp. 196–204.

[12] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction,” in 22nd IEEE
International Conference on Tools with Artificial Intelligence (ICTAI),
2010, pp. 137–144.

[13] J. C. Riquelme, R. Ruiz, D. Rodriguez, and J. Moreno, “Finding defec-
tive modules from highly unbalanced datasets,” Actas de los Talleres de
las Jornadas de Ingenierı́a del Software y Bases de Datos, vol. 2, no. 1,
pp. 67–74, 2008.

[14] S. Wang, H. Chen, and X. Yao, “Negative correlation learning for
classification ensembles,” in International Joint Conference on Neural
Networks, WCCI. IEEE Press, 2010, pp. 2893–2900.

[15] S. Wang and X. Yao, “The effectiveness of a new negative correlation
learning algorithm for classification ensembles,” in IEEE International
Conference on Data Mining Workshops, 2010, pp. 1013–1020.

[16] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in Knowledge
Discovery in Databases: PKDD 2003, vol. 2838, 2003, pp. 107–119.

[17] G. M. Weiss, “Mining with rarity: a unifying framework,” SIGKDD
Explor. Newsl., vol. 6, no. 1, pp. 7–19, 2004.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intel-
ligence Research, vol. 16, pp. 341–378, 2002.

[19] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” in Computational Intelligence
20, vol. 20, no. 1, 2004, pp. 18–36.

[20] N. Japkowicz, C. Myers, and M. A. Gluck, “A novelty detection
approach to classification,” in IJCAI, 1995, pp. 518–523.

[21] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” in IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 1, 2006, pp. 63– 77.

[22] T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple
classifier systems,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 1, pp. 66–75, 1994.

[23] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 1–39, 2010.

[24] S. Wang and X. Yao, “Negative correlation learning for class imbalance
problems,” School of Computer Science, University of Birmingham,
Tech. Rep., 2012.

[25] G. Brown, J. L. Wyatt, and P. Tino, “Managing diversity in regression
ensembles,” Journal of Machine Learning Research, vol. 6, pp. 1621–
1650, 2005.

[26] K. Tang, P. N. Suganthan, and X. Yao, “An analysis of diversity
measures,” Machine Learning, vol. 65, pp. 247–271, 2006.

[27] G. Boetticher, T. Menzies, and T. J. Ostrand. (2007) Promise
repository of empirical software engineering data. [Online]. Available:
http://promisedata.org/repository

[28] T. M. Khoshgoftaar and N. Seliya, “Tree-based software quality estima-
tion models for fault prediction,” in Proceedings of 8th IEEE Symposium
on Software Metrics, 2002, pp. 203–214.

[29] M. M. T. Thwin and T.-S. Quah, “Application of neural networks for
software quality prediction using object-oriented metrics,” Journal of
Systems and Software, vol. 76, no. 2, pp. 147–156, 2005.

[30] B. Turhan and A. Bener, “Analysis of naive bayes’ assumptions on soft-
ware fault data: An empirical study,” Data and Knowledge Engineering,
vol. 68, no. 2, pp. 278–290, 2009.

[31] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Using the
support vector machine as a classification method for software defect
prediction with static code metrics,” Engineering Applications of Neural
Networks, vol. 43, pp. 223–234, 2009.

[32] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, October 2001.

[33] C. Catal, “Software fault prediction: A literature review and current
trends,” Expert Systems with Applications, vol. 38, no. 4, pp. 4626–
4636, 2010.

[34] L. Pelayo and S. Dick, “Evaluating stratification alternatives to improve
software defect prediction,” IEEE Transactions on Reliability, 2012
(DOI: 10.1109/TR.2012.2183912).

[35] ——, “Applying novel resampling strategies to software defect pre-
diction,” in Annual Meeting of the North American Fuzzy Information
Processing Society, 2007, pp. 69–72.

[36] T. M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-
sensitive boosting in software quality modeling,” in Proceedings of 7th
IEEE International Symposium on High Assurance Systems Engineering,
2002, pp. 51–60.

[37] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 356–370, 2011.

[38] K. M. Ting, “An instance-weighting method to induce cost-sensitive
trees,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 3, pp. 659–665, 2002.

[39] C. Seiffert, T. M. Khoshgoftaar, and J. V. Hulse, “Improving software-
quality predictions with data sampling and boosting,” IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39,
no. 6, pp. 1283–1294, 2009.

[40] R. E. Schapire, “The boosting approach to machine learning: An
overview,” in MSRI Workshop on Nonlinear Estimation and Classifi-
cation, 2002, pp. 1–23.

[41] S. Wang and X. Yao, “Relationships between diversity of clas-
sification ensembles and single-class performance measures,” IEEE
Transactions on Knowledge and Data Engineering, 2011 (DOI:
10.1109/TKDE.2011.207).

[42] ——, “Multi-class imbalance problems: Analysis and potential solu-
tions,” IEEE Transactions on Systems, Man and Cybernetics, PartB:
Cybernetics, vol. 42, no. 4, pp. 1119–1130, 2012.

[43] J. V. Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Experimental per-
spectives on learning from imbalanced data,” in ICML ’07: Proceedings
of the 24th international conference on Machine learning, 2007, pp.
935–942.

[44] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[45] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. San Francisco, CA: Morgan Kaufmann.,
2005.

[46] N. V. Chawla, “C4.5 and imbalanced data sets: Investigating the effect of
sampling method, probabilistic estimate, and decision tree structure,” in
Workshop on Learning from Imbalanced Datasets II, ICML, Washington
DC, 2003., 2003, pp. 1–8.

[47] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision: A response to ”comments on ’data mining static code
attributes to learn defect predictors’”,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 637–640, 2007.



IEEE TRANSACTIONS ON RELIABILITY 11

[48] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: One-sided selection,” in Proc. 14th International Conference on
Machine Learning, 1997, pp. 179–186.

[49] A. P. Bradley, “The use of the area under the roc curve in the evaluation
of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[50] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the
detection of oil spills in satellite radar images,” Machine Learning,
vol. 30, no. 2-3, pp. 195–215, 1998.

[51] T. Fawcett, “Roc graphs: Notes and practical considerations for re-
searchers,” HP Labs, Palo Alto, CA, Technical Report HPL-2003-4,
2003.

[52] S. Wang, “Ensemble diversity for class imbalance learning,” Ph.D. dis-
sertation, School of Computer Science, The University of Birmingham,
2011.

[53] X. Zhu, “Lazy bagging for classifying imbalanced data,” in Seventh
IEEE International Conference on Data Mining, 2007, pp. 763–768.

Shuo Wang received the B.Sc. degree in Computer Science from the Beijing
University of Technology (BJUT), China, in 2006, and was a member of
Embedded Software and System Institute in BJUT in 2007. She received
the Ph.D. degree in Computer Science from the University of Birmingham,
U.K., in 2011, sponsored by the Overseas Research Students Award (OR-
SAS) from the British Government (2007). She is currently a post-doctoral
Research Fellow at the Centre of Excellence for Research in Computational
Intelligence and Applications (CERCIA) in the School of Computer Science,
the University of Birmingham. Her research interests include class imbalance
learning, ensemble learning, machine learning and data mining.

Xin Yao (M’91-SM’96-F’03) is a Chair (Professor) of Computer Science at
the University of Birmingham, UK. He is the Director of CERCIA (the Centre
of Excellence for Research in Computational Intelligence and Applications),
University of Birmingham, UK, and of the Joint USTC-Birmingham Research
Institute of Intelligent Computation and Its Applications. He is an IEEE Fellow
and a Distinguished Lecturer of IEEE Computational Intelligence Society
(CIS). He won the 2001 IEEE Donald G. Fink Prize Paper Award, 2010
IEEE Transactions on Evolutionary Computation Outstanding Paper Award,
2010 BT Gordon Radley Award for Best Author of Innovation (Finalist), 2011
IEEE Transactions on Neural Networks Outstanding Paper Award, and many
other best paper awards at conferences. He won the prestigious Royal Society
Wolfson Research Merit Award in 2012 and was selected to receive the 2013
IEEE CIS Evolutionary Computation Pioneer Award. He was the Editor-in-
Chief (2003-08) of IEEE Transactions on Evolutionary Computation. He has
been invited to give more than 65 keynote/plenary speeches at international
conferences in many different countries. His major research interests include
evolutionary computation and neural network ensembles. He has more than
400 refereed publications in international journals and conferences. According
to Google Scholar, his H-index is 57 and total citations more than 17,000.


