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Using Classical Test Theory in Combination
With Item Response Theory

Timo M. Bechger, Gunter Maris, Huub H. F. M. Verstralen,
and Anton A. B éguin, Cito, Arnhem, The Netherlands

This study is about relations between classical
test theory (CTT) and item response theory (IRT).
It is shown that CTT is based on the assumption
that measures are exchangeable, whereas IRT is
based on conditional independence. Thus, IRT is
presented as an extension of CTT, and concepts
from both theories are related to one another.
Furthermore, it is demonstrated that IRT can be

used to provide CTT statistics in situations where
CTT fails. Reliability, for instance, can be
determined even though a test was not
administered to the intended population.
Index terms: classical test theory, item response
theory, item reliability, true test score, item
total correlation, item true score, item response
function.

Introduction

Notwithstanding the many developments in item response theory (IRT), classical test theory
(CTT) continues to be an important framework for test construction. It is therefore useful to have
a clear notion of the relations between IRT and CTT. This should improve the appreciation of both
theories and facilitate communication with researchers and item writers who are frequently more
familiar with CTT thanwith IRT. In this article, the relations betweenCTTand IRT are summarized,
and novel applications of CTT that are feasible using IRT are discussed.
This article consists of a theoretical and a practical part. The second section provides a brief

outline of CTT and its relation to IRT. In the third section, theCTT concept of reliability is applied in
an IRT context, including reliability of estimated latent trait values and reliability of classifications
using a test score. In the fourth section, four applications are discussed: (a) reliability estimation
from a single administration of a test; (b) relations between test characteristics, the population of
test takers, and test scores; (c) the correlation between latent traits measured by different tests; and
(d) the selection of items from a pilot test when the pilot test could not be administered to the
intended population. The article is concluded in the fifth section.
Thisarticle iswritten in thespirit ofworkbyVerstralen (1997b), Lord (1983),Nicewander (1993),

Thissen (1990), Mellenbergh (1994, 1996), and Steyer and Eid (1993), and there is some overlap
between these studies and the present article. Naturally, Lord and Novick (1968) are frequently
referred to as well.

Classical Test Theory From an IRT Point of View

Classical Test Theory

Let an “item” be a means to produce a measurementX. It is assumed that the respondent’s
behavior is determined by the value on a vector variableθ , which represents what the item intends
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tomeasure. This variablemay be continuous or discrete. ThemeasurementX is defined as a discrete
random variable that represents the credit assigned to each response. The function that definesX

is calledthe scoring rule. Realizations ofX are called “responses” in IRT and “scores” in CTT.
The true scoreof any person is defined as the expectationE[X|θ ] of the distribution ofX over

subjects with the same ability. The deviationsX − E[X|θ ] represent random measurement error,
that is, uncontrolled environmental variables that influence the response (Lord & Novick, 1968,
pp. 38-39). The distribution of the measurement errors has zero mean and varianceV ar(X|θ).
Although the measurement error varies across persons with the sameθ , the true score is a fixed
parameter characterizing the combination of aθ and an item.
Taking the expectation ofE[X|θ ] over the distribution ofθ in the population of interest gives

the expected response to itemi. Thereliability of X in the reference population,ρ2X, is defined as
the proportion of true variation. Specifically, provided thatV ar(X) > 0,

ρ2X ≡ V ar(E[X|θ ])
V ar(X)

(1)

= 1− E[V ar(X|θ)]
V ar(E[X|θ ]) + E[V ar(X|θ)] ,

whereV ar(E[X|θ ]) denotes the true score variance, and
E[V ar(X|θ)] ≡ E(E[(X − E[X|θ ])2|θ ]) = E[(X − E[X|θ ])2],

is the measurement error variance in the population. It is customary to denote the reliability as a
square becauseρ2X equals the square of the correlation between the true score and the observed
score (Lord & Novick, 1968, p. 57). For this reason, reliability is sometimes denoted byρ2XT . A
correlation is not invariant under nonlinear transformations, and reliability depends on the scoring
rule. That is, some scoring rules give higher reliability than others. Equation (1) also shows that
item reliability depends on the ability distribution in the population.
Lord and Novick (1968) consider the following experiment, albeit in different wording: Draw

a θ from the population and generate two independent responsesx andx∗ to the same item. The
joint distribution of these responses is

Pr(X,X∗) =
∫
Pr(X = x|θ)Pr(X∗ = x∗|θ)g(θ)dθ, (2)

where

Pr(X = x|θ) = Pr(X∗ = x|θ).
Equation (2) states that the response variables are exchangeable, and henceforth they will be called
exchangeable replicationsto indicate that they are independent conditional onθ , but notmarginally.
Item reliability equals the correlation between exchangeable replications and is sometimes denoted
asρXX∗ . This can be seen using thecovariance decomposition formula:

Cov(X,X∗) = Cov(E[X|θ ], E[X∗|θ ]) + E[Cov(X,X∗|θ)], (3)

whereE[Cov(X,X∗|θ)] = 0, andCov(E[X|θ ], E[X∗|θ ]) = V ar(E[X|θ ]) by assumption.
Dividing Cov(X,X∗) by

√
V ar(X)V ar(X∗) = V ar(X) gives (1).

Now, consider a test consisting ofI > 1 items.1 It is customary to consider a linear combination
Y ≡ ∑I

i=1wiXi of the item responses as a test score, where thewi are constant weights. The true

1The distinction between an item and a test is convenient but unnecessary for classical test theory (CTT).
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test score is given byE[Y |θ ] = ∑I
i=1wiE[Xi |θ ]; in IRT, this function ofθ is known as thetest

characteristic curve. The reliability of the test score in the reference population is given by

ρ2Y = V ar(E[Y |θ ])
V ar(E[Y |θ ]) + E[V ar(Y |θ)] . (4)

It follows from exchangeability that the measurement errors on different items are independent
givenθ , and the error variance of the test score is given byE[V ar(Y |θ)] = E[V ar(X|θ)]∑I

i=1w2i .
Test reliability is of interest because its square root, called “the index of reliability,” provides an
upper bound to the validity of the test score with respect to any criterion, that is, the correlation of
the test score with any criterion (Lord & Novick, 1968, p. 72).
Another important statistic in CTT is theitem total correlation(ITC)—the correlation of the

score on itemi with the score on the test, including the item. By definition, the ITC is equal to

IT Ci = Cov(E[Y |θ ], E[Xi |θ ]) + E[Cov(Y,Xi |θ)]√
V ar(Y )V ar(Xi)

, (5)

where the numerator follows from the covariance decomposition formula (3). In CTT, this corre-
lation is interpreted as an item discrimination index because it indicates to what extent the item
differentiates between persons with high scores on the test and persons with low scores on the test.
Because the total score on the proposed test is calculated with the score on itemi, the ITC is

spuriously high. To correct the ITC, it is customary to calculate theitem rest correlation(IRC),
which is the correlation between the score on an item and the total score on the proposed test,
excluding the item. Specifically, the IRC of itemi equals the corresponding ITC withwi fixed to
zero. The following proposition suggests that the IRC may be interpreted as an approximation to
the square root of the item reliability.

Proposition 1Assume exchangeability. Then,

lim
I→∞

IRCi =
√

ρ2Xi
,

whereI denotes the number of items in the test.
Proof. LetY−i denote the rest score. By definition,

IRCi = Cov(Y−i , Xi)√
V ar(Y−i )

√
V ar(Xi)

= Cov(E[Y−i |θ ], E[Xi |θ ])√
V ar(E[Y−i |θ ])

√
V ar(Xi)

√
V ar(E[Y−i |θ ])

V ar(Y−i )

=
√

V ar(E[Xi |θ ])
V ar(Xi)

Cov(E[Y−i |θ ], E[Xi |θ ])√
V ar(E[Y−i |θ ])

√
V ar(E[Xi |θ ])

√
ρ2Y−i

= Corr
(
E

[
Y−i |θ

]
, E[Xi |θ ]

) √
ρ2Xi

ρ2Y−i
.

Under exchangeability,Corr
(
E

[
Y−i |θ

]
, E[Xi |θ ]

) = Corr ((I − 1)E[Xi |θ ], E[Xi |θ ]) = 1. It
follows that

lim
I→∞

ρ2Y−i
= lim

I→∞
(I − 1)2V ar(E[X|θ ])

(I − 1)2V ar(E[X|θ ]) + E[V ar(X|θ)](I − 1)

= lim
I→∞

V ar(E[X|θ ])
V ar(E[X|θ ]) + E[V ar(X|θ)](I − 1)−1

= 1
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so thatlimI→∞ IRCi =
√

ρ2Xi
. The same holds true for the ITC, which becomes equal to the IRC

when the number of items increases.�

It is seen that the IRC is positive and dependent on the relation of the true rest score and the item
true score.

Item Response Theory and Classical Test Theory

In practice, it is assumed that the responses to different items are exchangeable so that item
reliability can be estimated by their correlations. In CTT, such measures are called “equivalent”
(Lord & Novick, 1968). This assumption is unrealistic, especially because different items will not
frequently have the same conditional distribution. It is, therefore, opportune to relax the assumption
of exchangeability and require that responses to different items be independent conditional onθ

but not necessarily identically distributed. In IRT, this is calledconditional independence(CI). For
two items, CI is equivalent to

Pr(Xi,Xj ) =
∫
Pr(Xi = xi |θ)Pr(Xj = xj |θ)g(θ)dθ, (6)

where Pr(Xi = xi |θ), which will be denoted byPixi
(θ), is called theitem response function(IRF).

Suppes and Zanotti (1981) show that there always (i.e., for every joint distribution) exists a scalar-
valuedθ such thatCI holds. Thismeans thatCI by itself is not a restriction on the data, and additional
assumptions are needed on the IRFs. Together with CI, these additional restrictions define an IRT
model.
Here, it is assumed thatθ is scalar valued, and the item true score,E[Xi |θ ] = ∑

xi
xiPixi

(θ),
is a monotone increasing function ofθ so that the true score is a one-to-one transformation ofθ .
Together with CI, these assumptions define the family of unidimensional monotone IRT models
that encompasses most existing IRT models used for ability measurement.2

The Case of Binary, Equivalent Rasch Items

In this section, the items are assumed exchangeable measures, and an IRT model is introduced
that is formally equivalent to CTT. All items are binary withXi = 1 if the answer is correct and
Xi = 0 otherwise. Subscripti will be deleted because all items are equivalent.
Without loss of generality, the IRFs are modeled by the Rasch model (Rasch, 1960); that is,

P1(θ) = exp(θ − δ)

1+ exp(θ − δ)
, (7)

where the parameterδ ∈ R is considered known, andθ is a scalar ability. The population distribution
is unrestricted. The assumption thatP1(θ) is modeled by the Rasch model implies no loss in
generality becauseθ can always be transformed such that the IRFs assume any other functional
form. The difficulty parameterδ is the value ofθ , whereP1(θ) = 1− P1(θ) = 0.5.
With binary items, the item true score equals the probability of a correct response, givenθ . An

illustration is given in Figure 1. The conditional measurement error variance of the score for each
item is equal toP1(θ)(1−P1(θ)). Using the formulas in the previous section, the following is found:

V ar(X) = E[P1(θ)](1− E[P1(θ)]), (8)

2Note that given conditional independence (CI),E[Cov(Y,Xi |θ)] = wiE[V ar(Xi |θ)], and (5) reduces to amore
manageable expression.
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whereE[P1(θ)]—that is, the expected percentage correct—is known as the difficulty of the item.
Because the termitemdifficultyhas a differentmeaning in IRT, the termexpected percentage correct
will be used to denoteE[P1(θ)]. The true score variance for any item is given by

V ar(E[X|θ ]) = E[(P1(θ))
2] − E[P1(θ)]

2, (9)

which equalsV ar(P1(θ)), the variance of the proportion correct in the reference population. Note
thatE[(P1(θ))2] = Pr(Xi = 1, Xj = 1), andV ar(E[X|θ ]) = Pr(Xi = 1, Xj = 1) − E[P1(θ)]2,
when i and j index two equivalent binary items. The item reliability follows from substitution
of (8) and (9) in (1). Under the present assumptions, item reliability equals Loevinger’s (1948)
H -coefficient, which is used in Mokken scale analysis (Mokken, 1971, p. 150).

Figure 1

The Item Response Function (IRF) for a Rasch Item Withδ = 1
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Test reliability can be calculated using the well-known Spearman-Brown formula or Cronbach’s
alpha. Both are easy to derive under the present assumptions (see Bechger, Maris, Béguin, &
Verstralen, 2003).
A plot of the ITC against the expected percentage correct of any of the items in Figure 2 shows

that the relation is quadratic. This reveals that, in the given circumstances, the ITC is not a well-
defined measure of “item discrimination power” because it depends on the item difficulty, on the
expectation and the dispersion ofθ , and on the number of items in the test (see also Steyer & Eid,
1993, pp. 137-138). This is also true under more general circumstances when the items are not
equivalent. One should therefore be careful to give general rules of thumb for the selection of items
based on the ITC (e.g., Ebel & Frisbie, 1986).

Reliability in Item Response Theory

Reliability of Estimated Abilities

The correlation betweenY andE[Y |θ ] is not equal to the correlation betweenY andθ unless
the latter is a linear transformation ofE[Y |θ ] as in the binomial model (Rost, 1996, pp. 113-119).
In most applications, the relation betweenY andθ is postulated to be nonlinear, however. When
estimates ofθ are reported and used, it is therefore appropriate to provide the reliability of the
estimated ability valueŝθ .
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Figure 2

Relation Between the Expected Percentage Correct and the
Item Test Correlation Assuming 10 Equivalent Rasch Items
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Note.The distribution ofθ is assumed standard normal.

To derive this reliability, note that

θ̂ = E[θ̂ |θ ] + e, (10)

wheree ≡ θ̂ − E[θ̂ |θ ] can be interpreted as measurement error, andE[θ̂ |θ ] can be interpreted as a
true score. Reliability is defined as the proportion of true variance in the reference population, and
hence

ρ2
θ̂

= V ar(E[θ̂ |θ ])
V ar(θ̂)

= 1− E[V ar(θ̂ |θ)]
V ar(E[θ̂ |θ ]) + E[V ar(θ̂ |θ)] , (11)

whereV ar(θ̂ |θ)denotes thevarianceof theestimatedvalues,givenθ . It follows from theprevious
discussion thatρ2

θ̂
may be interpreted as a measure of linear association between exchangeable

replicates ofθ̂ . This means thatρ2
θ̂
changes ifθ̂ is nonlinearly transformed, and its value depends

on the parameterization of the IRT model.
If θ̂ is an unbiased estimator,V ar(E[θ̂ |θ ]) = V ar(θ), andρ2

θ̂
is equal to the square of correlation

betweenθ̂ andθ , which was proposed by Gustafsson (1977) as a measure of “subject separability.”
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This is also true whenE[θ̂ |θ ] = α1θ + α2, (α1, α2 ∈ R) becausêθ is then a linear function of an
estimator that is unbiased, and the correlation between exchangeable replicates is invariant under
linear transformations. In general, the correlation betweenθ andθ̂ is equal to

Corr(θ, θ̂) = Cov(θ, θ + Bias(θ))√
V ar(θ̂)V ar(θ)

(12)

=
√

V ar(θ̃)

V ar(θ̂)

√
V ar(θ)

V ar(θ̃)
+ Corr(Bias(θ), θ)

√
V ar(Bias(θ))

V ar(θ̂)
,

whereθ̃ denotes an unbiased estimator, andθ̂ is a biased estimator. The ratioV ar(θ)/V ar(θ̃) is
the reliability of an unbiased estimator.
There are at least two ways to calculate the reliabilities: The first procedure requires that the

estimatedθ is a one-to-one function of the test score. That is,Y is minimally sufficient forθ , as in
the Rasch model. The IRT model gives the distribution of the test scoreY , givenθ ; Pr(Y = y|θ),
wherey are the values taken byY . Each valuey gives an estimated abilitŷθ(y) and Pr(Y = y|θ) =
Pr(θ̂ = θ̂ (y)|θ)—the distribution of the estimated abilities, givenθ . The variance of̂θ , givenθ ,
may now be calculated as

V ar(θ̂ |θ) = E[θ̂2|θ ] − E[θ̂ |θ ]2 (13)

=
∑
y

θ̂2(y)Pr(θ̂ = θ̂ (y)|θ) −
(∑

y

θ̂(y)Pr(θ̂ = θ̂ (y)|θ)
)2

,

and

V ar(E[θ̂ |θ ]) = E[E[θ̂ |θ ]2] − E[E[θ̂ |θ ]] 2. (14)

This means that the second expression in Equation (11) can be used to compute the reliability.
The second method uses the fact that when the parameters are estimated by the method of

marginal maximum likelihood, the variance ofθ is typically a parameter that is estimated, whereas
the variance of the estimatedθs can be computed directly. This implies that the first expression in
Equation (11) can be used to compute the reliability.
Thissen (1990; Mellenbergh, 1994, Equation (22); Samejima, 1994, Equation (21)) gives an

approximation to the reliability (see Equation (15)). It will now be shown that this approximation
gives an upper limit to the reliability. First, it is well known that the ML estimator has a limiting
normal distribution with expectationθ and variance equal to the inverse of the informationI (θ):

√
I (θ̂ − θ)

L→ N (0, I−1(θ)),

where

I (θ) = 1

I

∑
i

−E

[
∂2 ln(Pi(θ))

∂θ2

]
.

Using this result, the reliability may be expressed as follows:

ρ2
θ̂

= V ar(θ)

V ar(θ) + V ar(E[θ̂ |θ ]) .
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Second, it follows from Jensen’s inequality thatE[I−1(θ)] ≥ E[I (θ)]−1. Hence, if bias is ignored
(i.e.,V ar(E[θ̂ |θ ]) = V ar(θ)), the following upper limit for the reliability is obtained:

ρ2
θ̂

≤ E[I (θ)]V ar(θ)

1+ E[I (θ)]V ar(θ)
. (15)

All the required integrals can be calculated using numerical integration, if necessary. Alternative
approximations toρ2

θ̂
are discussed by Verhelst, Glas, and Verstralen (1995, p. 64) and Rost (1996,

pp. 353-354).

The Reliability of Classifications

Suppose that a test score is used to classify examinees in two mutually exclusive categories
on the basis of a predetermined observed score cut pointc, preferably derived using some sort of
standard-setting scheme. The observed cut point may also be a score corresponding to a latent cut
point. Thus, persons with test scores less thanc will fail the test, and persons with a score equal to
c or overc will pass. Now, letIp denote whether students pass. Then, assuming CI, the conditional
probability of passing is equal to

Pr(Ip = 1|θ) =
max(Y )∑
y=c

Pr(Y = y|θ) (16)

=
max(Y )∑
y=c


 ∑
x:

∑
i wixi=y

∏
i

Pr(Xi = xi |θ)

 . (17)

It is seen from (17) that Pr(Y = y|θ) is an elementary symmetric function. It may be calcu-
lated recursively, as discussed by Lord and Wingersky (1984); Thissen, Pommerich, Billeaud, and
Williams (1995); and Bechger et al. (2003, appendix). The marginal probability of passing equals
Pr(Ip = 1) = E

[
Pr(Ip = 1|θ)].

Equation (1) provides a definition for the reliability of the classification; that is,

ρ2Clas = V ar(E[Ip|θ ])
V ar(E[Ip|θ ]) + E[V ar(Ip|θ)] (18)

= E[Pr(Ip = 1|θ)2] − E[Pr(Ip = 1|θ)]2
E[Pr(Ip = 1|θ)] − E[Pr(Ip = 1|θ)]2 .

Becauseρ2Clas is a reliability, it equals the correlation between classifications across two exchange-
able administrations of the test. It can also be shown that classification reliability equals Cohen’s
kappa (Cohen, 1960) when it is computed using two exchangeable administrations of the same test.
For later reference, this is stated as a proposition:

Proposition 2Assuming exchangeability, classification reliability equals Cohen’s kappa (Cohen,
1960).

Proof. Let I (r)
p denote passing on therth administration. Cohen’s kappa is equal to

κ = Po − Pc

1− Pc

, (19)
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wherePo = E[Po(θ)] denotes the observed agreement, andPc = Pr(I (1)
p = 1)Pr(I (2)

p = 1) +
Pr(I (1)

p = 0)Pr(I (2)
p = 0) denotes the agreement observed by chance. Under exchangeability,

Po = E[Po(θ)]

= E[Pr(I (1)
p = 1, I (2)

p = 1|θ)] + E[Pr(I (1)
p = 0, I (2)

p = 0|θ)]
= E[Pr(I (1)

p = 1|θ)Pr(I (2)
p = 1|θ)] + E[Pr(I (1)

p = 0|θ)Pr(I (2)
p = 0|θ)]

= E[Pr(Ip = 1|θ)2] + E[(1− Pr(Ip = 1|θ))2].

The last equality follows becausePr(I (1)
p = 1|θ) = Pr(I (2)

p = 1|θ), by assumption. In the sameway,

Pc = (
E

[
Pr(Ip = 1|θ)])2 + (

1− E
[
Pr(Ip = 1|θ)])2 .

If Po andPc are expanded and substituted in Equation (19), then

κ = 2V ar(Pr(Ip = 1|θ))
−2E[Pr(Ip = 1|θ)]2 + 2E[Pr(Ip = 1|θ)]

= V ar(Pr(Ip = 1|θ))
E[Pr(Ip = 1|θ)] − E[Pr(Ip = 1|θ)]2

= V ar(Pr(Ip = 1|θ))
V ar(Ip)

= V ar(E[Ip|θ ])
V ar(Ip)

.

This ends the proof. �

As seen in Proposition 2, exchangeability implies that kappa cannot be negative. If it is found to
be negative, this is a sign that exchangeability is violated. Note that the weighted kappa coefficient
(Cohen, 1968) may serve as a general index for the reliability of classification when there are more
than two categories (see Bechger et al., 2003).
Imagine two exchangeable administrations of the same examination. The probability of consis-

tent classification, givenθ , equals

Po(θ) = Pr(I (1)
p = 1, I (2)

p = 1|θ)] + E[Pr(I (1)
p = 0, I (2)

p = 0|θ) (20)

=
[
max(Y )∑
y=c

Pr(Y = y|θ)
]2

+
[

c−1∑
y=0

Pr(Y = y|θ)
]2

. (21)

This function is called thetest characteristic decision curve(TCDC). The probability of inconsis-
tent classification is 1− Po(θ). When the TCDC is integrated over the reference population, the
probability of consistent classification when the test is applied to the reference population using
y = c as a cutoff is obtained. This quantity may prove to be useful in view of the current trend
to demand that testing organizations publish procedures and provide formal justification for the
quality of their examinations.
Alternative ways to quantify and investigate the quality of classifications are discussed by

Livingston and Lewis (1995), Verstralen (1997a), Sluijter (1998), and Spray and Reckase (1994).
Lee, Hanson, and Brennan (2002) also consider Cohen’s kappa as an index for the quality of
classification.
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Applications

Calculating Reliability With a Single Administration of a Test

The easiest application is to use the formulas that were given earlier to calculate reliability using
a single test administration.3 To illustrate this possibility, the “KFT data” that are listed on pages
99 and 100 in the book by Jürgen Rost (1996) are used.4 The data consist of responses to five
items by 300 students. The items were found to conform to a theory-based restriction of the Rasch
model called the linear logistic test model (Fischer, 1995). A report of the IRT analysis can be
found in Rost (1996, p. 248) or Bechger, Verstralen, and Verhelst (2002, section 6). This illustrates
that an IRT analysis may provide information about the items that would not be available if one is
confined to classical item analysis. Marginal maximum likelihood estimation was used to obtain
estimates of population parameters; the population distribution was assumed to be normal, and the
item parameters were restricted to sum to zero to achieve identification of the model.
The population mean was estimated to be−0.158 and the standard deviation 1.950. The trape-

zoidal rule (Davis & Rabinowitz, 1984, chap. 2, section 3.4) was used to approximate the expecta-
tions and calculate the values in the following table.

ρ2Xi
E[Xi ] IRCi

Item 1 0.37 0.63 0.59
Item 2 0.38 0.56 0.60
Item 3 0.38 0.49 0.61
Item 4 0.38 0.42 0.60
Item 5 0.36 0.28 0.56

ρ2
θ̂

= 0.74 ρ2Y = 0.75

The items are nearly equivalent so that Cronbach’s alpha is, in this case, found to be only slightly
lower than theestimated test reliability. The reliability of theunweighted test scorealmost equals that
of the estimatedθs. This means that the relation between the unweighted scores and the estimated
θs is approximately linear.

Graphical Methods to Investigate Relations Between Test Characteristics, the Population of
Test Takers, and Test Scores

Plots are often useful to illustrate relations between test characteristics as determined by an IRT
model, the population of test takers, and test scores, especially when such relations cannot easily
be described analytically or communicated to test developers. For example, Lord (1953; Lord &
Novick, 1968, Figs. 16.14.1-16.14.6) uses plots of the relation betweenθ and the true score to
illustrate how the distribution of the true score depends on the discrimination power of the test.
Using numerical integration to calculate expectations, if necessary, the formulas presented here
may be used to produce such plots.
In a previous section, this approach was illustrated when the relation between the ITC and the

item difficulty was investigated (see Figure 2). Two further illustrations are presented here of the
usefulness of the plots.
A first illustration is provided in Figure 3, which shows the relation between the expected

information of a test of two items, as well as the difference between the difficulty parameters of
the items. Although the mean percentage correct is always a half, it is seen that the expected test

3Some of this could be done with the OPTAL program (Verstralen, 1997b), which is part of the OPLM software.
4The complete data set with 15 variables comes with the (excellent) WINMIRA software (von Davier, 1994).

The present items are the first five items.
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informationdiminishesasone itembecomesmoredifficult and theothermoreeasy (seealsoMuraki,
1993). Moreover, in the limiting case, every subject solves the easy item and fails the difficult one.
That is to say, all true score variance vanishes, which leaves the reliability undefined. From this
example, it may be concluded that focusing exclusively on expected percentage correct may lead
test developers to a test that fails to distinguish between persons.

Figure 3

Expected Information for a Test With Two Rasch Items,
With Mean Difficulty Equal to Źero, Plotted Against
the Difference Between the Difficulty Parameters

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2
  

1

E
xp

ec
te

d 
Te

st
 In

fo
rm

at
io

n

δ δ−

The second illustration is provided in Figure 4, which shows the effect of the item discrimination
on the TCDC. In IRT, the item discrimination corresponds to the slope of the IRF at the point
θ = δi . The Rasch model can be extended to include an item discrimination parameterαi , and this
model is called thetwo-parameter logistic(2PL) model (Birnbaum, 1968). It is seen that the TCDC
becomes more concentrated when the discrimination parameter increases. This illustrates that the
quality of a decision increases when items discriminate better, especially when items are located
close to the cutoff. This implies that test constructors are advised to select highly discriminating
items close to the cutoff.

Calculating the Correlation Between Latent Traits Measured by Different Tests

Supposeone testmeasuresa latent traitθ , andanother testmeasuresa latent traitξ . LetCorr(θ̂ , ξ̂ )

denote the correlation between the estimates ofθ andξ . The following theorem relatesCorr(θ̂ , ξ̂ )

to the correlation betweenθ andξ .
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Figure 4

Plots Illustrating the Effect of the Discrimination Parameters on the
Test Characteristic Decision Curve (TCDC) Under the Two-Parameter Logistic (2PL) Model
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THEOREM 3 If both estimates are unbiased, andCov(θ̂, ξ̂ |θ, ξ) = 0,

Corr(θ, ξ) = Corr(θ̂ , ξ̂ )/
√

ρ2
θ̂
ρ2
ξ̂
,

whereCorr(θ, ξ) denotes the correlation betweenθ andξ .

Proof. First, the covariance decomposition formula implies that

Cov(θ̂, ξ̂ ) = Cov
(
E

[
θ̂ |θ, ξ

]
, E

[
ξ̂ |θ, ξ

])
+ E

[
Cov(θ̂, ξ̂ |θ, ξ)

]
.

It follows thatCov(θ̂, ξ̂ ) = Cov (θ, ξ) if both estimators are unbiased, andCov(θ̂, ξ̂ |θ, ξ) = 0.
Hence,

Cov (θ, ξ)√
V ar(θ)V ar(ξ)

= Cov(θ̂, ξ̂ )√
V ar(θ)V ar(ξ)

= Cov(θ̂, ξ̂ )√
V ar(θ̂)V ar(ξ̂ )

√
V ar(θ̂)V ar(ξ̂ )

√
V ar(θ)V ar(ξ)
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= Cov(θ̂, ξ̂ )√
V ar(θ̂)V ar(ξ̂ )

√
V ar(θ̂)

V ar(θ)

V ar(ξ̂ )

V ar(ξ)

= Cov(θ̂, ξ̂ )√
V ar(θ̂)V ar(ξ̂ )

1√
ρ2
θ̂
ρ2
ξ̂

.

This ends the proof. �

Theorem (3) shows thatCorr(θ̂ , ξ̂ ) may be much lower thanCorr(θ, ξ) due to unreliability
in the estimates. It has been shown how the reliability can be computed, andCorr(θ̂ , ξ̂ ) is easily
estimated from the data.
Note that the assumption thatCov(θ̂, ξ̂ |θ, ξ) = 0 is violated when responses to items in

one test are dependent on the responses to items in the other test, conditional onθ and ξ .
When Cov(θ̂, ξ̂ |θ, ξ) > 0, the correlation between the latent traits is overestimated, but if
Cov(θ̂, ξ̂ |θ, ξ) < 0, the correlation between the latent traits is underestimated.

Selecting Items From a Pilot Test

This application is discussed in the context of a real example. The state examination of Dutch as
a second language is a large-scale examination of the ability to use the Dutch language in practical
situations. There are separate examinations for listening, speaking, writing, and reading. An IRT
model is used to scale the data and equate an examination to a reference examination to ensure that
the ability required to pass the examination stays the same over years. Estimated achievement is
transformed to a convenient scale and serves as examination marks.
The construction of a new examination is preceded by a pilot study that entails the administration

of new items to a sample of immigrants who participate in a language course. The purpose of the
pilot study is to select the items for the coming examinations. After the data have been collected,
they are added to a large incomplete data set that contains the data obtained from previous pilot
studies and examinations. This data set is called thedata bank. Thereference examinationis a subset
of the items in the data bank. This reference test was chosen by the examination committee and
used to set the cutoff. Thereference populationis the population of examinees who are generally
more able than the persons who participate in the pilot study.
The analysis of the pilot data consists of three stages. The IRT model used is the generalized

partial credit model (GPCM) (Muraki, 1992). The GPCM is fit to the data using all relevant parts
of the data bank. Items are discarded that do not conform to the model. In the second stage, the test
developers are given two additional pieces of information. First, the expected proportions correct in
the reference population are provided. The examination committee desires the expected proportions
correct between 0.50 and 0.70. Second,IRCis are provided using the score on the reference
examination as a rest score. These IRCs may be interpreted as a measure of the fit of an item to
the reference examination. With this information, and under strict surveillance by the examination
committee, the developers compose a new examination. Once an examination has been constructed,
an estimate of the reliability of the estimatedθs is provided. This is the third stage of the analysis. It
is convenient to use the common statistics from CTT, which are well understood by the developers.
Developers, in turn, find this language convenient to explain matters to the examination committee.
The expected proportion correct has been reported to the developers for some years now, and it

appears possible to successfully predict those found in the actual examinations. For instance, of the
past nine examinations of listening, the realized expected proportion correct ranged between 0.63
and 0.68, as intended.
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Determine the Reliability of Classifications

The tests discussed in the previous section are high-stakes examinations. To gain insight in
the quality of the decision made with these tests, 1− Po(θ) is presented in Figure 5 for one of
the examinations. As one might expect, 1− Po(θ) increases to 0.5 whenθ becomes close toθc,
corresponding to the cutoff.

Figure 5

A Plot of 1 Minus the Probability of Consistent Classification,
Givenθ , for a Test With 40 Binary Items
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Note.The generalized partial credit model (GPCM) was estimated with 2, 500 examinees
using the method of marginal ML (Muraki, 1992).

It is found that 0.25≤ 1− Po(θ) ≤ 0.50 for about 16% of the examinees.
This percentage is dependent on the postulated population distribution. In this case, it can be

argued that the distribution is unlikely to be normal as the examinees constitute a mixture of
immigrants from many different countries. TheR0 test, incorporated in the OPLM software (Glas
& Verhelst, 1995), and histograms of estimatedθ confirm this argument. When the distribution
of estimatedθs is considered, the mentioned percentage rises from 16% to 35%. This percentage
appears quite high for a high-stakes examination.

Discussion

The aim of this article has been to clarify relations between CTT and IRT, generalize concepts
from CTT to IRT, and demonstrate that, when an appropriate IRT model is found, one is able to
calculate and use classical indices for properties of items and tests in situations when CTT could
normally not be applied. A number of applications have been described ranging from issues in test
construction to analysis of examination data. Other applications of this kind have been discussed
byMellenbergh (1994, pp. 227-229), who explains how an IRTmodel can be used to select a test of
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items that are parallel in the CTT sense; Kolen, Zeng, and Hanson (1996) also use IRT to estimate
the standard errors of scale scores. Monotone, unidimensional IRT models have been considered,
but this was not essential. General formulas have been presented here precisely with the aim to
facilitate the derivation of reliability and so forth using any IRT model.
It must be noted that all calculations are predicated on the validity of the IRT model, as well as

the availability of good estimates of the distribution of the population of interest. Furthermore, it
is necessary that the model is sufficiently parameterized but, at the same time, simple enough to
admit (approximate) calculation of moments in the population of interest. To assess IRT model fit,
most software packages provide a myriad of goodness-of-fit indices, and ways to test IRT models
are continuously being developed.
When an IRT model is found appropriate, an impression of the sample variance involved in

this study’s calculations can be obtained by varying the values of the parameters. For example,
if the population distribution is assumed normal with meanµ and varianceσ 2θ , an approximate

95% interval of uncertainty may be constructed by varyingσθ betweenσ
(low)
θ = σθ − 1.64SE and

σ
(high)
θ = σθ +1.64SE, whereSE denotes the standard error of the standard deviation. In this case,
it is opportune to varyσθ because it is estimated with much less precision than the mean and is
the main determinant of CTT indices. In the analysis discussed in the fourth section,SE = 0.149,
which provides the following interval:ρ2Y ∈ [0.70− 0.78].
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