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Abstract Estimation of economic loss is essential for

stakeholders to manage flood risk. Most flooding events are

closely related to extreme precipitation, which is influ-

enced by large-scale climate factors. Considering the lag-

ged influence of climate factors, we developed a flood-risk

assessment framework and used Hunan Province in China

as an example to illustrate the risk assessment process. The

main patterns of precipitation—as a connection between

climate factors and flood economic losses—were extracted

by the empirical orthogonal function (EOF) analysis. We

identified the correlative climate factors through cross-

correlation analysis and established a multiple stepwise

linear regression model to forecast future precipitation

patterns. Risk assessment was done based on the main

precipitation patterns. Because the economic dataset is

limited, a Monte Carlo simulation was applied to simulate

1000-year flood loss events under each precipitation

regime (rainy, dry, normal years) to obtain aggregate

exceedance probability (AEP) and occurrence exceedance

probability (OEP) curves. We found that precipitation has a

strong influence on economic loss risk, with the highest

risk in rainy years. Regional economic development

imbalances are the potential reason for the varying eco-

nomic loss risks in different regions of Hunan Province. As

the climate indices with at least several months prediction

lead time are strong indicators in predicting precipitation,

the framework we developed can estimate economic loss

risk several months in advance.

Keywords Atmospheric and oceanic variables � Flood

risk � Forecast-based economic loss assessment � Hunan
Province � Risk management

1 Introduction

Global climate change has increased during the past dec-

ades and is expected to worsen the frequency, intensity,

and impact of some types of extreme weather events

(Alexander et al. 2006; Hiwasaki et al. 2014; Kelman et al.

2015; IPCC 2018), causing significant social and economic

impacts (Munich Re 2019). It is essential for stakeholders

to develop risk assessment strategies to mitigate the con-

sequences of weather-related disasters (Jongman et al.

2014). Flooding, as the most common natural hazard

worldwide (Doocy et al. 2013), has caused the highest

amount of economic losses (Munich Re 2019; Raikes et al.

2019). Amplification of extreme precipitation may increase

the frequency and intensity of flooding (Tabari 2020).

During recent decades, there has been an increasing trend

in extreme precipitation events that cause more floods

(Torgersen et al. 2015).

Large-scale climate factors such as the El Niño Southern

Oscillation (ENSO) and the North Atlantic Oscillation

(NAO) have been shown to be important drivers of spatial

and temporal change in hydrometeorological variables and

have influence on flood damages (Zebiak et al. 2015;

Emerton et al. 2017; Kundzewicz et al. 2019). Such factors

are generated by atmosphere-ocean coupled interaction and
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can strongly influence climate over large areas concur-

rently or in a delayed way (Almeira and Scian 2006; Dai

and Tan 2019; Zhou et al. 2021)—this is known as tele-

connection (McPhaden et al. 2006; Wang and Zhang 2015;

Steptoe et al. 2018). For example, NAO and ENSO signals

have a dominant influence on European anomalous pre-

cipitation in the following winter (Tabari and Willems

2018). The Arctic Oscillation (AO) is negatively correlated

with the East Asia winter monsoon, which influences

spring rainfall across eastern China (Wang and Chen

2014). It is useful for decision makers to consider this

lagged impact of climate factors on societal risks caused by

extreme weather events (Goddard and Dilley 2005). Such

information can be especially meaningful when the climate

factors can be predicted in advance, allowing for early

warning (Ludescher et al. 2014).

The role of climate factors with respect to flood risk has

already been discussed in some work. Some researchers

estimate flood risk by exploring the influence of climate

factors on flood hazards, such as extreme precipitation or

river discharge. Kiem et al. (2003) created a simple index

of regional flood risk by using flood frequency, and ana-

lyzed the observed modulation of ENSO magnitude on this

index. The effect of climate factors on flood timing is

simulated in hydrological modeling in order to explore the

difference in flood timing under different phases of ENSO

and the Indian Ocean Dipole (IOD) (Kundzewicz et al.

2019). Other research has focused on ENSO’s effect on

flood risk expressed in terms of population and gross

domestic product (Ward et al. 2014). Recently, the impact

of multiple indices of climate factors on flood damage was

analyzed, and this work mainly aimed to explore the dif-

ference in flood damage and occurrence under different

modes of ENSO, NAO, and the East Atlantic (EA) pattern

(Nobre et al. 2017). To the best of our knowledge, no work

has used climate factors to estimate flood damages in terms

of economic loss under different return periods and annual

average loss, and our study aimed to fill this gap.

We propose a framework that connects climate factors

and flooding-related economic losses through the different

patterns of precipitation, given that extreme precipitation

plays a crucial role in the formation and development of

flooding. We use climate factors to predict precipitation

patterns, and estimate economic loss probability under

different precipitation patterns. As we mainly examine the

lag-effect of climate factors on precipitation, how early this

estimation can launch depends on the minimum time lag

between change of climate factors and precipitation.

However, since the change of most of the climate factors

can be anticipated, the prediction lead time can be longer

than the minimum time lag.

2 Framework and Methods

The amount of precipitation and its spatiotemporal con-

centration have a direct impact on flooding (O’Donnell and

Thorne 2020), which can be affected by atmospheric and

oceanic circulation anomalies through teleconnection

(Wang et al. 2015). Therefore, we established an evaluation

framework to connect atmospheric and oceanic variables

with flood economic loss by taking precipitation as a

bridge. The crucial and necessary steps are: (1) analyze the

spatial distribution and temporal variation of precipitation

anomalies during the flood season and extract the main

patterns of rainfall; (2) construct a predictor pool based on

precipitation-related oceanic and atmospheric variables; (3)

build the prediction model of precipitation with different

predictors; (4) evaluate the skill of the prediction model;

(5) divide the flood economic loss dataset into different

groups based on precipitation patterns and simulate corre-

sponding loss events in each group; and (6) evaluate the

economic loss risk caused by flood events in each group.

Figure 1 outlines this analytical framework.

2.1 Prediction Model of Precipitation During Flood

Seasons

Spatial distribution and temporal variation of precipitation

act as a bridge to connect climate factors and economic

losses. Empirical orthogonal function (EOF) analysis is an

effective tool to extract features of the observed field

(Tomozeiu et al. 2005; Ning and Bradley 2014). Hence, the

EOF method is applied to flood-season precipitation to

obtain spatial modes (EOFs) and time coefficients of pre-

cipitation. The time coefficients represent the year-to-year

variation of precipitation.

In view of the persistence of some climate factors

(predictors), a prediction scheme based on cross-correla-

tion and multiple linear regression between time coeffi-

cients and these predictors is proposed (Chang et al. 2004;

Tabari and Willems 2018). To investigate the relationships

between the climate factors and the time coefficients, we

calculated Pearson’s correlation coefficients, which are

tested for statistical significance at a significance level of

5%. The highly related factors are potential predictors for

the regression model. Establishing a regression model

consists of two steps: (1) using the stepwise variable

selection to select the optimum variables, and (2) estab-

lishing multiple linear regression models (Applequist et al.

2002; Gao and Xie 2014; Tozer et al. 2017). In this

research, we used the bidirectional elimination stepwise

variable selection to select climate factors for the regres-

sion model (Yavuz and Erdoğan 2012). A cross-validation
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method was used to evaluate the model skill (Hussung

et al. 2019; Yavuz and Erdoğan 2012).

2.2 Estimation of Economic Loss Probability

We divided the whole study period into three groups: rainy

years, dry years, and normal years, according to the value

of the time coefficients. Therefore, flood loss events are

separated into these three groups. We quantified the dis-

aster risk using the probability distribution of loss at the

appropriate level (World Bank 2017). The probability

distribution of the maximum loss in a year is called the

occurrence exceedance probability (OEP) distribution

(Royse et al. 2014; Stephenson et al. 2018), which reflects

the probability that the maximum event loss in a year

exceeds a given level. The probability distribution of the

sum of the losses in a year is termed the aggregate

exceedance probability (AEP) distribution (Hisamatsu

et al. 2019; Wobus et al. 2019). The AEP is the probability

that the sum of the event losses in a year exceeds a given

level. The area under the AEP curve is equal to the annual

average loss (AAL). In most catastrophe models, OEP and

AEP curves are standard outputs used to estimate the dis-

tribution of maximum loss and sum of losses in a year

(Dong 2002; Hsu et al. 2011). In this study, we used AEP

and OEP curves as the tool to estimate the economic loss

risks. In order to obtain a sufficient amount of data, we

applied a Monte Carlo simulation to build 1000-year flood

loss events in each group (Arunraj et al. 2013). The process

consisted of five steps:

1. In each group, we fit the probability distribution of

flooding event frequency and generated 1,000 random

numbers for each group that obey this distribution.

These 1,000 random numbers refer to the frequency of

flooding events for a 1,000 year period in each group;

2. To ensure comparability of the economic data in

different years, preprocessing of the historical eco-

nomic data is necessary. We took the consumer price

index (CPI), an important tool in economics, to make

currency conversions (Stapleford 2009; Xiao et al.

2018). Economic values in each year were all

converted to the year 1984, which acts as the basis

of comparison;

3. We took the logarithm of these preprocessed values,

and calculated the cumulative distribution function

curve for the best distribution type;

4. We generated N random numbers, which obey the

Bernoulli distribution; N is equal to the number of

flood events in each year according to the flood

frequency we generated in the first step. Using the

cumulating distribution function curve obtained in step

3, we were able to get the corresponding economic loss

value from this function curve.

5. The AEP and OEP curves were obtained by calculating

the aggregated and maximum values each year.

Fig. 1 An analytical framework and methods of connecting climate

factors with flood economic losses through precipitation change (the

connecting BRIDGE); northern and southern areas refer to the Hunan

Province study area. EOF = Empirical orthogonal function; SST = Sea

surface temperature; HGT = geopotential height (units: geopotential

meters, gpm); hPa = Hectopascal; AEP = Aggregate exceedance

probability; OEP = Occurrence exceedance probability
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3 The Case Study of Hunan Province

We selected Hunan Province in central China as the study

area to illustrate our risk assessment method. Hunan Pro-

vince is located in the middle reaches of the Yangtze River

region and affected by the East Asian summer monsoon,

and receives sufficient rain in flood season. Rainfall from

April to September accounts for around 70% of the annual

precipitation (Duan et al. 1999), and the province is rich in

surface water. Due to the influence of geographical and

terrain conditions—with a horseshoe-shaped landform that

is surrounded by mountains on three sides and opens to the

north, the contours of climatic elements such as precipi-

tation and heat in Hunan are roughly parallel to the topo-

graphic contour—precipitation in Hunan is characterized

by great spatial and annual variation, which causes frequent

flood disasters (Wang et al. 2011; Liu et al. 2018). Flooding

is among the most dangerous natural hazards in terms of

economic damages. Besides, Hunan is one of the most

important agricultural production and commodity grain

bases in China (Tao et al. 2004; Lu et al. 2021). It is

appropriate to use Hunan Province as a study area, con-

sidering the particularity of its geographical features and its

importance in Chinese agriculture.

3.1 Data

The precipitation data of the study area are from the dataset

of Observed Daily Precipitation for 1970-2013, which

was obtained from the China Meteorological Administra-

tion (CMA). A systematic data quality control process was

conducted for each station, and only meteorological sta-

tions with at least 30 years of data (34 stations in total)

were selected (Fig. 2). Atmospheric variables were calcu-

lated from the US National Centers for Environmental

Prediction / National Center for Atmospheric Research

(NCEP/NCAR) reanalysis dataset with a resolution of

2.5� 9 2.5�, including: (1) monthly sea level pressure

(SLP); and (2) monthly mean 500 hPa geopotential height

(HGT), which extends from 1948 to the present. The

reanalysis data we used in our case study are from 1969 to

2013. The sea surface temperature (SST) from the UK Met

Office Hadley Centre observations datasets from 1969 to

2013 with a resolution of 1�91� was used for calculating

SST anomalies. The base period for calculating all the

meteorological quantity anomalies in this research is from

1981 to 2010. The global circulation indices (a total of 88

atmospheric circulation indices and 26 oceanic indices)

from China’s National Climate Center were used as

potentially influential climate factors. The flood economic

losses in Hunan are from the meteorological disaster

dataset of the National Disaster Reduction Center of China

(NDRCC), including historical flood disaster data in Hunan

Province, which extend from 1984 to 2007.

3.2 Results

We assessed the flood risk for the whole province and two

separate regions in Hunan through an analysis of precipi-

tation patterns by using the EOF method. The first leading

mode (EOF1) reflects the typical spatial distribution of

precipitation in the whole province. The second leading

mode (EOF2) corresponds to the north-south opposite

spatial distribution pattern. For both the provincial and

subregional analysis, we took the corresponding time

coefficients of EOFs of precipitation to represent the tem-

poral variation of precipitation and used a statistical model

with different climate factors to make a prediction of time

coefficients (Sect. 3.2.2). Finally, we estimated flood risk

under each precipitation regime (rainy, dry, normal years)

and the risk is illustrated using AEP and OEP curves.

3.2.1 The Spatial and Temporal Distributions

of Precipitation in Hunan Province During the Flood

Season

Figure 3 shows that precipitation and flooding events are

concentrated in the period from April to August in Hunan.

Therefore, we define this period as the flood season. We

conducted an EOF analysis of the flood-season precipita-

tion, and the first leading mode explains 49.25% of the total

variance of the precipitation, the second mode explains

18.78% of the total variance. The total variance explained

by the first two leading modes together exceeds 68%.

These two leading modes are statistically independent of

each other based on North’s significance test (North et al.

1982). Therefore, the first two leading modes were selected

to represent the spatial distribution and temporal variation

of rainfall in Hunan over the flood season.

The first leading mode (EOF1) reflects the typical pre-

cipitation pattern in this area. As shown in Fig. 4, EOF1 is

distributed with the same sign throughout the region,

indicating high or low rainfall in the whole area. The

second leading mode (EOF2) illustrates a dry-wet differ-

ence pattern, indicating opposite trends of precipitation

variation in the northern and southern regions, which

means rainy in the northern area while dry in the southern

area, or vice versa. The ±0.5 times standard deviation of

the corresponding time coefficients are defined as the

thresholds for extreme precipitation. If the absolute value

of a time coefficient is greater than this threshold, the

corresponding year is counted as a rainy year or dry year;

otherwise, it is considered a normal year.
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3.2.2 Identification of Predictors

Identifying correlated climate factors is crucial for estab-

lishing prediction models of precipitation. Many studies

have shown that some climate factors, such as tropical

Pacific and Indian Ocean SST anomalies, have important

impacts on precipitation patterns in the Asian summer

monsoon season (Wang et al. 2009; Wu et al. 2009; Wang

et al. 2020). Hunan Province is located in a region that is

influenced by the southeastern and southwestern monsoon

in flood seasons. It may suffer from large floods if sea

surface temperature and atmospheric conditions are

anomalous. Therefore, we considered oceanic and atmo-

spheric circulation anomalies as predictors. We took into

account four factors: (1) the global sea surface temperature

(SST); (2) the sea level pressure (SLP) field; (3) the general

atmospheric and oceanic circulation indices; and (4) the

500 hPa HGT field. The reason for choosing these four

climate factors is explained below. A cross-correlation

analysis was applied between these factors from the pre-

vious whole year until February in the same year and the

time coefficients of precipitation in the flood season. The

highly correlated factors passing the significance test

(significance level of 5%) were included in the stepwise

variable selection step (Table 1).

(1) Sea surface temperature

Numerous meteorologists have pointed out that the El

Niño / Southern Oscillation is the most important

climate factor to affect the East Asian summer mon-

soon (EASM) interannual variation (Wu et al. 2009;

Chen et al. 2013; Shi and Wang 2019). In addition,

SST anomalies in the Indian Ocean also affect pre-

cipitation in the EASM region (Li et al. 2008). In this

study, we conducted cross-correlation between time

coefficients of EOFs of precipitation and global SST

(within four seasons, previous autumn and winter;

spring and summer in the same year). The regions of

SST that affect the flood-season rainfall in Hunan are

consistent with those that affect the EASM area.

There are previous studies indicating that ENSO and

the Indian Ocean Dipole (IOD) have independent

influences on precipitation in Hunan Province (Liu

et al. 2009; Xiao et al. 2015). Therefore, we further

calculated the correlation coefficients between the

oceanic indices in these two regions and the time

coefficients of the EOFs of precipitation separately.

(2) Sea level pressure field

We divided the SLP field data from the NCEP/NCAR

reanalysis dataset during the 1969-2013 period into

Fig. 2 Location of the study area (Hunan Province) in China and distribution of the meteorological stations in the study area with a minimum of

30 years of data

Fig. 3 Average monthly precipitation in the 30-year climate period

(1981-2010) and frequency of flooding events (1984-2007) in

Hunan Province, China

123

Int J Disaster Risk Sci 735



Fig. 4 Spatial distribution and temporal variation of flood-season precipitation in Hunan Province, China (top: EOF1 and time coefficient of

EOF1; bottom: EOF2 and time coefficient of EOF2). EOF = Empirical orthogonal function

Table1 Climate factors in the stepwise variable selection (EOF = Empirical orthogonal function)

Climate factor Predictand Variable Description

Sea level

pressure

field (slp)

Time

coefficient

of EOF1

slp1(1); slp1(10); slp1(11); slp2(11); slp2(12); slp3(2) slp1 refers to slp in area 1; number in brackets denotes

the key month, for example, slp1(1) represents slp

in area 1 in previous January; we use the time

coefficients of slpTime

coefficient

of EOF2

slp1(10); slp2(4); slp2(5); slp2(10); slp2(11);

slp2(12); slp3(9); slp3(10); slp3(11); slp3(12)

500 hPa

geopotential

height

(HGT) field

Time

coefficient

of EOF1

(60�E-160�E, 54�N-80�N; previous March);

(30�E-150�E, 60�N-80�N; previous July);

(40�E-110�E, 54�N-72�N; previous September);

(150�E-180�E, 70�N-80�N; previous September)

Region and period of 500 hPa geopotential height

(HGT) showing high correlations with time

coefficients of precipitation

Time

coefficient

of EOF2

(120�E-180�E, 36�N-54�N; previous March);

(30�E-60�E, 30�N-63�N; previous November);

(100�E-140�E, 20�N-36�N; previous November)

Atmospheric

oceanic

circulation

indices

Time

coefficient

of EOF1

Niño 1?2(6,7,8); Niño 3(8); Niño C(8); Niño B(6);

Niño Z(6); NAO(5); WP(6); PNA(2); AO(10);

SCA(1)

Number in brackets denotes the related month, for

example, Niño 1?2(6,7,8) indicates Niño 1?2 in

previous June, July, and August

Time

coefficient

of EOF2

Niño 1?2(11); Niño 3(11); Niño 3.4(1); Niño Z

(11,12); SCA(9); EA(2); EA/WR(11); AAO(10);

PNA(2); POL(2); NAO(3,7)

NAO = North Atlantic Oscillation; WP = West Pacific Pattern; PNA = Pacific/North American Pattern; AO = Arctic Oscillation; SCA =

Scandinavia Pattern; EA = East Atlantic; EA/WR = East Atlantic-West Russia Pattern; AAO = Antarctic Oscillation; POL = Polar-Eurasia

Pattern; Niño B = regional average of sea surface temperature anomalies (SSTA) in the region 0�-10�N, 50�E-90�E; Niño C = regional average

of sea surface temperature anomalies (SSTA) in the region 10�S-0, 180�-90�W; Niño Z = weighted average of Niño 1?2 (10�S-0�,

90�W-80�W), Niño 3 (5�S-5�N, 150�W-90�W), and Niño 4 (5�S-5�N, 160�E-150�W) indices
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three zones: area 1 (20�S-50�S), area 2

(15�S-15�N), and area 3 (20�N-50�N). In each

zone, the EOF analysis was performed for monthly

SLP. Cross-correlation analysis was applied between

the first 15 modes of time coefficients of SLP and

time coefficients of precipitation. The highly corre-

lated factors were included in the stepwise variable

selection step.

(3) General atmospheric and oceanic circulation indices

The atmospheric circulation in mid-high latitudes also

plays an important role in the evolution of the EASM,

being the third most important factor that affects the

interannual variability in the global atmospheric

system (Zhao et al. 2018). Based on the global

atmospheric and oceanic circulation indices (a total of

88 atmospheric circulation indices and 26 oceanic

indices from the China National Climate Center), the

relationship between the time coefficients of precip-

itation and these monthly indices was established.

The factors with correlation coefficients greater than

0.4 that passed the significance test were used as

alternative predictors for the stepwise variable

selection.

(4) The 500 hPa geopotential height (HGT) field

The 500 hPa HGT field is commonly used in weather

forecasting. Some studies have shown that precipita-

tion in the Yangtze River region is correlated with the

500 hPa geopotential height field (Jia et al. 2010). We

used the Northern Hemisphere 500 hPa geopotential

height data during the 1969-2013 period to conduct a

cross-correlation analysis with time coefficients of

precipitation. We took the area where the correlation

coefficient is larger than 0.4 as the correlated region.

The EOF analysis was conducted on these regions

during the key periods. The corresponding time

coefficients of the first fifteen modes were included

in the bidirectional stepwise variable selection step.

3.2.3 Prediction Model and its Evaluation

We finally selected the highly correlated climate factors for

time coefficients of precipitation in each mode for the

bidirectional stepwise variable selection step (factors are

shown in Table 1). At the beginning, we randomly selected

10 variables into the stepwise regression model and

removed the variable that gave the most statistically

insignificant reduction in the model fit. Then we added the

variable that gave the most statistically significant

improvement to the model fit. By repeating this procedure

several times, we obtained several different prediction

formulas. The final regression equations of time coeffi-

cients of the first two leading modes were determined by

the F-reliability test, which was set to 95%. Figure 5

reflects the forecast and the original value of time coeffi-

cients of precipitation, which shows the high degree of

fitting between the predicted values and the measured

values. The correlation coefficients of the regression

equation for time coefficients of EOF1 and EOF2 are: r1 =

0.91 and r2 = 0.88. The specific factors are described in

Tables 2 and 3. The stepwise regression equation of the

time coefficient of EOF1 is:

Y ¼ �0:051� 0:341� X1 þ 0:211� X2 � 0:148� X3

� 0:911� X4 þ 0:229� X5 � 0:304� X6

� 0:239� X7 þ 0:225� X8

Similarly, the stepwise regression equation of the time

coefficient of EOF2 is:

Y ¼ �0:029� 0:176� X1 � 0:218� X2 � 0:19� X3

� 0:16� X4 � 0:166� X5 � 0:388� X6

To examine whether the regression model is

generalizable beyond the sample data and avoid

overfitting, we needed to obtain new independent data to

validate the model. It is difficult to test this model in real-

time applications. Therefore, we had to rely on

retrospective forecasts (hindcasts). We divided the

sample data into a training (or model-building) set to

develop the model, and a validation (or prediction) set to

evaluate the predictability of the model. This method is

called cross-validation (Ruiz et al. 2005). In this research,

the leave-one-out cross-validation was applied.

Considering that we had already chosen a model that

provides the highest correlated value to the original value,

we used two methods to calculate the model skill scores:

the correlation skill score and the mean squared prediction

error (MSPE). The correlation skill score is the correlation

between the retrospective forecast values and the actual

corresponding observation values. The MSPE is defined as:

MSPE ¼
1

n

Xn

i¼1

yi � ŷið Þ2

The correlation score for time coefficients of EOF1 is

0.84, and for time coefficients of EOF2 is 0.73; both are

significant at the 95% confidence level. For the prediction

model of time coefficients of EOF1, the MSPE is 0.298

(the standard deviation of observational time coefficients of

EOF1 is 1.016 [ 0.298), and the MSPE for time

coefficients of EOF2 is 0.183 (the standard deviation of

observational time coefficients of EOF2 is 0.628[0.183),

which indicates that our prediction model is not overfitted.
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3.2.4 Assessment of Economic Loss Risk

Considering that the disaster events in the dataset were

limited (from 1984-2007 there were 3,158 records in the

dataset), we used a Monte Carlo simulation to simulate

1000-year flood loss events for rainy years, dry years, and

normal years under different precipitation patterns (under

each precipitation pattern, we divided the whole period into

three groups according to the value of the time coefficients

of the EOFs, that is, rainy years, dry years, and normal

years).

(1) Risk assessment for all of Hunan Province

We divided the economic loss dataset into three

groups based on the precipitation regimes defined by

values of time coefficient of EOF1 rainy years (1993,

1994, 1995, 1996, 1998, 1999, 2002, 2004, 2010, and

2012), dry years (1985, 1986, 1990, 1991, 1992,

2000, 2005, and 2007), and normal years (remaining

years). In each group, the probability distribution of

the flood disaster frequency and the flood-caused

direct economic losses are respectively fitted. Good-

ness-of-fit comparisons indicate that the generalized

extreme value (GEV) and Weibull distributions give

the best approximations of the distribution of flood

frequencies under different precipitation regimes.

Normal distribution provides the best fit to flood

economic losses in each group, which all pass the K-S

test.

We created 1000-year flood loss events in each group

using the Monte Carlo simulation and acquired AEP

and OEP curves from the simulated dataset. The

procedure has three steps: (1) for each group, we

generated 1000 random numbers Ni (i = 1, 2, …,

1,000), which obey the probability distribution of

flood frequency. We obtained the flooding frequency

Ni in year i during the period of 1000 years; (2) we

generated Ni random numbers obeying Bernoulli

distribution (0-1 distribution); and (3) based on the

probability distribution of the economic losses in each

group, we used the random numbers generated in step

2 to obtain the economic loss in each year. Following

these three steps, we obtained the simulated economic

losses during a 1000-year period for each group (rainy

years, dry years, and normal years) and corresponding

OEP and AEP curves.

From the OEP curves, stakeholders can obtain infor-

mation on the probability of the largest flooding loss

event in a year and get the probability of annual

accumulated economic losses from the AEP curves.

Figure 6 shows that under the same exceedance

probability, the loss in the rainy years is more serious,

followed by the normal years, and the lightest loss is

in the dry years. Under different return periods, both

the maximum loss in one flood event and the annual

accumulated loss are largest when the year is rainy

(time coefficient of EOF1[ 0.5 standard deviation).

In addition, the maximum loss and annual accumu-

lated loss are quite close to each other under extreme

conditions, that is when the return period is 1000

years. In Hunan Province, under the condition of a

1000-year return period rainfall, the maximum loss in

certain events and the accumulated loss are close to

each other, approximately RMB 60 billion yuan in

rainy years.

(2) Risk assessment for the northern and southern areas

of Hunan Province

For the time coefficient of EOF2 of precipitation, the

result is more complicated. Since the precipitation

pattern corresponding to the time coefficient of EOF2

is a north-south opposite type, we discuss the

southern and northern areas of the province sepa-

rately. From the spatial distribution of the precipita-

tion pattern, 27.5�N is roughly the north-south

dividing line. Therefore, we define the area north of

27.5�N as the northern part, and the area south of the

line is the southern part. Based on the time coefficient

Fig. 5 The original value and model-predicted curve of the time coefficients of the flood-season rainfall in Hunan Province, China (left: time

coefficients of EOF1 of precipitation; right: time coefficients of EOF2 of precipitation)
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of EOF2 loading values, with ±0.5 standard deviation

being used as the standard, the observed years are

divided into three categories, corresponding to dif-

ferent regimes of precipitation. During the period

from 1984 to 2007, the years when it was rainy in the

north while dry in the south are: 1983, 1991, 1995,

1998, and 2003; the years when it was dry in the north

while rainy in the south are: 1984, 1988, 1994, 1997,

2000, 2001, 2002, and 2006; the remaining years

show normal precipitation for both the north and the

south. The probability distributions of flooding

frequency and economic losses are fitted. Similarly,

according to the goodness-of-fit comparisons, the

lognormal distribution provides the best fit for

flooding frequency under each precipitation regime.

The generalized extreme value distribution and nor-

mal distribution provide good fits for the flood

economic losses in different data groups. We con-

ducted the same procedures as described above for

the whole province and obtained the AEP and OEP

curves for the north and the south regions of Hunan

Province separately.

In the northern area of the province, the AEP and OEP

curves indicate a similar trend as those of the whole pro-

vince: in rainy years, the flood losses are the most serious,

and the flood losses are the lightest in dry years. The

maximum loss of certain flooding events is very different

from the annual accumulated loss in magnitude under

several return periods. For example, when we consider a

1000-year return period condition, the maximum loss is

approximately RMB 1.6 billion yuan, whereas the annual

accumulated loss is approximately RMB 17 billion yuan,

that is 10 times higher.

The AEP and OEP curves in the southern area similarly

obey the same rules. However, there is a similarity in the

magnitudes of maximum loss and annual accumulated loss

under each return period in the southern area, which is very

different from the condition in the northern area. This

finding is unexpected and very interesting, because logi-

cally the accumulated loss should be larger than the max-

imum loss. Considering the spatially unbalanced economic

development in Hunan, especially between the northern

and southern areas, we make a rough comparison of flood

risk variations in these two areas and analyze the potential

reason for this result.

According to the China Statistical Yearbook and the

local government report, there is a difference in the eco-

nomic development between the northern and southern

areas in Hunan Province. The northern area includes the

Changsha, Zhuzhou, Xiangtan core-city group, which is

more economically developed than other areas of the pro-

vince. From the governmental statistical data, the

Table 2 Factors in the regression equation for time coefficients of EOF1 (EOF = Empirical orthogonal function)

Index Description Key period

X1 AO Arctic Oscillation Previous October

X2 Niño 1?2 10�S-0�, 90�W-80�W, the regional average of sea surface temperature anomalies Previous June

X3 PNA Pacific/North American Pattern Previous February

X4 SCA Scandinavia Pattern January

X5 H Time coefficient of EOF1 of 500 hPa geopotential height field at 40�E-110�E, 54�N-72�N Previous September

X6 H Time coefficient of EOF9 of 500 hPa geopotential height field at 150�E-180�E, 70�N-80�N Previous September

X7 H Time coefficient of EOF3 of 500 hPa geopotential height field at 80�E-120�E, 36�N-54�N Previous May

X8 slp Time coefficient of EOF5 of sea level pressure in area 1 January

Table 3 Factors in the regression equation for time coefficients of EOF2 (EOF = Empirical orthogonal function)

Index Description Key period

X1 Niño 1?2 10�S-0�, 90�W-80�W, the regional average of sea surface temperature anomalies January

X2 slp Time coefficient of EOF7 of sea level pressure in area 2 Previous November

X3 slp Time coefficient of EOF10 of sea level pressure in area 3 Previous September

X4 slp Time coefficient of EOF11 of sea level pressure in area 3 Previous October

X5 slp Time coefficient of EOF12 of sea level pressure in area 3 Previous November

X6 NAO North Atlantic Oscillation Previous March
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population in the Changsha, Zhuzhou, Xiangtan core-city

group accounts for around 60% of the total population of

the province and the per capita GDP of this area is 1.4

times higher than the provincial average. In the southern

area of Hunan, the population accounts for 26.9% of the

provincial total, and the area contributes 20.4% of the GDP

of the whole province (data in 2010).1

Figure 7 indicates that in terms of the expected maxi-

mum loss, when less serious flooding occurs (with a

smaller return period), there is little difference between the

two areas. But in the case of catastrophes (larger return

period), the related economic losses are much larger in the

southern area than in the northern area.

Figure 8 shows the result of the annual accumulated

loss, which is the opposite of the maximum loss result. The

southern area suffers more serious maximum loss under the

very extreme condition (larger return period). The annual

accumulated loss is generally larger in the northern area.

We can conclude that the southern area in Hunan Province

tends to suffer more losses in a certain flood event,

potentially due to its possibly weaker disaster management

measures, whereas in the northern area the accumulated

economic loss is more serious.

4 Conclusion

Flood risk assessment is essential for risk management. In

this research, we propose a framework to connect climate

factors and flood economic loss risk based on the spatial

distribution and temporal variation of flood-season pre-

cipitation. We use Hunan Province in China to illustrate

how our framework can be used and assess flood risk in

Hunan Province, considering that this area is suffering

from floods, which are largely influenced by the East Asia

monsoon system and global climate change, as well as data

accessibility. We find that:
1 https://tjj.hunan.gov.cn/hntj/tjfx/jczx/2011jczxbg/201507/

t20150717_3788794.html (a government website, in Chinese)

Fig. 6 Aggregate exceedance probability (AEP) and occurrence

exceedance probability (OEP) curves of the whole province of Hunan,

China; and economic losses under different return periods: a AEP

curve; b OEP curve; c expected accumulated loss under different

return periods; d expected maximum loss under different return

periods
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1. The estimated annual accumulated economic loss and

maximum loss are more serious in rainy years,

followed by normal years and dry years.

2. Annual average loss (AAL) can be obtained by

calculating the area of AEP curves, and AAL and

estimated economic loss under different return periods

can act as the estimation of economic loss risk.

3. There is an obvious difference in flood risk between

the northern area and southern area in Hunan Province.

For the northern part, the maximum loss is much

Fig. 7 Occurrence exceedance probability (OEP) curves and annual maximum economic loss from flood events under different return periods

(from left to right: rainy years, normal years, and dry years) for Hunan Province, China

Fig. 8 Aggregate exceedance probability (AEP) curves and annual accumulated economic losses from flood events under different return

periods (from left to right: rainy years, normal years, and dry years) for Hunan Province, China
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smaller than the cumulative loss under different return

periods and each precipitation regime. In the southern

area, these two types of losses are much closer to each

other in magnitude.

4. When we further compare the economic loss risks in

these two areas, the results indicate that the maximum

loss is always larger in the southern area compared

with the northern region; however, for the accumulated

loss, it is larger in the northern area except for the

extreme condition (1000-year return period) under dry

years. Economic development, the level of risk

management, and the frequency of extreme weather

events may be the reasons leading to this result.

5. We have established a prediction model to forecast the

time coefficients of EOFs of precipitation several

months in advance, and the precipitation regime can be

estimated for the next flood season according to our

prediction model. We are able to obtain the flood

economic loss risk for the whole province as well as

separately for the northern and southern parts in the

following year from the corresponding AEP and OEP

curves, achieving the goal of assessing the flood risk

with a lead time of several months.

Generally, we establish a framework using climate

factors to predict the time coefficients of EOFs of precip-

itation and evaluate the economic loss risks under different

precipitation regimes. We find that the flood risk differs

under different rainfall regimes. Differences in population

density and economic development in the northern and

southern regions may be the reason that they suffer dif-

ferently from disaster events with similar magnitude (same

return period). The framework method proposed here can

be used in regions suffering from flooding caused by

extreme precipitation. The main purpose of this article is to

introduce the framework and how it works in a region. The

climate indices in the prediction model will change when

applying this method to other regions, as different regions

are influenced by different climate factors.

The limitation of this work arises from the fact that the

relationship we explored between time coefficients of

precipitation and climate factors is based on historical

datasets; therefore, this relationship is relatively stationary.

However, this relationship may vary with time (Wang et al.

2019; Yun et al. 2021), as some climate factors have been

changing in recent decades and may continue to change in

the future (Rodrı́guez-Fonseca et al. 2016). It is important

to discuss how climate factors and related disaster events

will change and estimate the related risk in the future. We

estimate flood risk based on the historical economic loss

data, which also change with socioeconomic development.

As our framework can estimate flood risk several months in

advance, it can be used as an early warning tool. We verify

our precipitation forecast by using correlation and MSPE,

while it is difficult to benchmark the estimated risk result.

Acknowledgement This research was partially supported by the

National Natural Science Foundation of China (grant No. 41671503).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Alexander, L.V., X. Zhang, T.C. Peterson, J. Caesar, B. Gleason, M.

Haylock, D. Collins, B. Trewin, et al. 2006. Global observed

changes in daily climate extremes of temperature and precipi-

tation. Journal of Geophysical Research, 111(D5): Article

D05109.

Almeira, G.J., and B. Scian. 2006. Some atmospheric and oceanic

indices as predictors of seasonal rainfall in the Del Plata Basin of

Argentina. Journal of Hydrology 329(1–2): 350–359.

Applequist, S., G.E. Gahrs, R.L. Pfeffer, and X.F. Niu. 2002.

Comparison of methodologies for probabilistic quantitative

precipitation forecasting. Weather and Forecasting 17(4):

783–799.

Arunraj, N.S., S. Mandal, and J. Maiti. 2013. Modeling uncertainty in

risk assessment: An integrated approach with fuzzy set theory

and Monte Carlo simulation. Accident Analysis & Prevention 55:

242–255.

Chang, Y.S., D. Jeon, H. Lee, H.S. An, J.W. Seo, and Y.H. Youn.

2004. Interannual variability and lagged correlation during

strong El Niño events in the Pacific Ocean. Climate Research

27(1): 51–58.

Chen, W., J. Feng, and R. Wu. 2013. Roles of ENSO and PDO in the

link of the East Asian winter monsoon to the following summer

monsoon. Journal of Climate 26(2): 622–635.

Dai, Y., and B. Tan. 2019. On the role of the eastern Pacific

teleconnection in ENSO impacts on wintertime weather over

East Asia and North America. Journal of Climate 32(4):

1217–1234.

Dong, W. 2002. Engineering models for catastrophe risk and their

application to insurance. Earthquake Engineering and Engi-

neering Vibration 1(1): 145–151.

Doocy, S., A. Daniels, S. Murray, and T.D. Kirsch. 2013. The human

impact of floods: A historical review of events 1980–2009 and

systematic literature review. PLoS Currents. https://doi.org/10.

1371/currents.dis.f4deb457904936b07c09daa98ee8171a.

Duan, D.Y., Y.X. Chen, and J.L. Ju. 1999. Discussion on the division

and variation of precipitation in flood season in Hunan Province.

Resources and Environment in the Yangtze River Basin 8:

440–444 (in Chinese).

Emerton, R., H.L. Cloke, E.M. Stephens, E. Zsoter, S.J. Woolnough,

and F. Pappenberger. 2017. Complex picture for likelihood of

ENSO-driven flood hazard. Nature Communications 8(1): 1–9.

123

742 Hu et al. Using Climate Factors to Estimate Flood Economic Loss Risk

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a
https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a


Gao, T., and L. Xie. 2014. Multivariate regression analysis and

statistical modeling for summer extreme precipitation over the

Yangtze River basin China. Advances in Meteorology. https://

doi.org/10.1155/2014/269059.

Goddard, L., and M. Dilley. 2005. El Niño: catastrophe or opportu-

nity. Journal of Climate 18(5): 651–665.

Hisamatsu, R., S. Kim, and S. Tabeta. 2019. Estimation of expected

loss by storm surges along Tokyo Bay coast. In Proceedings of

the International Conference on Ocean, Offshore and Arctic

Engineering, OMAE2019-95336, V009T13A005. 9-14 June

2019, Glasgow, Scotland.

Hiwasaki, L., E. Luna, and R. Shaw. 2014. Process for integrating

local and indigenous knowledge with science for hydro-meteo-

rological disaster risk reduction and climate change adaptation in

coastal and small island communities. International Journal of

Disaster Risk Reduction 10: 15–27.

Hsu, W.K., P.C. Huang, C.C. Chang, C.W. Chen, D.M. Hung, and

W.L. Chiang. 2011. An integrated flood risk assessment model

for property insurance industry in Taiwan. Natural Hazards

58(3): 1295–1309.

Hussung, S., S. Mahmud, A. Sampath, M. Wu, P. Guo, and J. Wang.

2019. Evaluation of data-driven causality discovery approaches

among dominant climate modes. http://hpcf-files.umbc.edu/

research/papers/CT2019Team2.pdf. Accessed 4 Sept 2021.

IPCC (Intergovernmental Panel on Climate Change). 2018. Global

warming of 1.5�C. An IPCC special report on the impacts of

global warming of 1.5�C above pre-industrial levels and related

global greenhouse gas emission pathways, in the context of

strengthening the global response to the threat of climate change,

sustainable development, and efforts to eradicate poverty, ed.

V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea,
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