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Abstract

Cluster randomized trials involving participants nested within intact treatment and
control groups are commonly performed in various educational, psychological, and
biomedical studies. However, recruiting and retaining intact groups present various
practical, financial, and logistical challenges to evaluators and often, cluster randomized
trials are performed with a low number of clusters (~20 groups). Although multilevel
models are often used to analyze nested data, researchers may be concerned of poten-
tially biased results due to having only a few groups under study. Cluster bootstrapping
has been suggested as an alternative procedure when analyzing clustered data though
it has seen very little use in educational and psychological studies. Using a Monte
Carlo simulation that varied the number of clusters, average cluster size, and intraclass
correlations, we compared standard errors using cluster bootstrapping with those
derived using ordinary least squares regression and multilevel models. Results indicate
that cluster bootstrapping, though more computationally demanding, can be used as
an alternative procedure for the analysis of clustered data when treatment effects at
the group level are of primary interest. Supplementary material showing how to per-
form cluster bootstrapped regressions using R is also provided.

Keywords

cluster bootstrapping, cluster randomized trials, low number of clusters, clustered
data

Clustered or nested data are a common occurrence in educational and psychological

research (e.g., students within schools, patients within clinics). Standard parametric
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analytic techniques (e.g., regression, analysis of variance, t tests) which ignore this

nesting effect violate the well-known assumption of observation independence

(Cohen, Cohen, West, & Aiken, 2003). As a result of the violation, the standard

errors for the point estimates are misestimated which may result in erroneous conclu-

sions resulting from increased Type I errors (Arceneaux & Nickerson, 2009; Clarke,

2008; Hahs-Vaughn, 2005; Musca et al., 2011). Accounting for the clustered nature

of the data is especially important in cluster randomized trials (CRTs) in which a

treatment is applied at the group level (e.g., at the school or classroom level) instead

of the individual level (e.g., at the student level; Donner & Klar, 2004).

With CRTs, treatment effects are investigated by recruiting intact groups (e.g.,

schools), randomly assigning groups to a treatment or a control (e.g., business as

usual) condition, and individual-level outcomes are evaluated. From a practical per-

spective, recruiting and retaining groups to participate in CRTs can be financially

and logistically challenging. In practice, a large number of groups may not be needed

to reach the conventionally acceptable level of power for some CRTs. Conducting

power analysis specifically dealing with clustered data using software such as

Optimal Design (Spybrook et al., 2011) or PowerUp! (N. Dong & Maynard, 2013)

indicates that with an alpha of .05, an intraclass correlation coefficient (ICC) of .05,

and a moderate effect size of 0.40, as little as 14 groups with 100 individuals per

group (which is not unusual in whole school CRTs) would be needed to achieve a

desired power level of .80. The number of clusters needed yielding an acceptable

level of power may decrease even further if additional covariates are included in the

model which results in improved model precision and power. Recruiting a few

groups with a large number of subjects per group (e.g., 10 schools with 100 students

each) is generally easier than recruiting more groups with a fewer number of subjects

per group (e.g., 100 schools with 10 students each), though power is maximized in

the latter condition (Murnane & Willett, 2011; Musca et al., 2011).

Although a large number of clusters may be desirable in CRTs (especially if sub-

group analysis is desired), a low number of clusters is at times seen in practice (Flynn

& Peters, 2004; Moerbeek & van Schie, 2016). For example, in a health-related CRT,

Curtis et al. (2011) recruited 12 hospitals with 822 individuals in total and randomly

assigned 6 hospitals each to the treatment and control groups. In an educational set-

ting, Coyne et al. (2010) described a reading intervention assigned at the classroom

level involving 121 students within 8 classrooms. To test interventions designed to

increase the uptake of children’s vegetable consumption, Hanks, Just, and Brumberg

(2016) conducted a CRT and randomly assigned 10 elementary schools to control

and treatment groups. A review of 285 CRTs in the health sciences indicated that the

median number of clusters used was 21 (Ivers et al., 2011).

A common way of analyzing clustered data is to use a hierarchical linear model

(Raudenbush & Bryk, 2002) also commonly referred to as a mixed model, a random

coefficient model, or simply a multilevel model (MLM). MLMs have increased in

popularity over the years as a means to properly analyze clustered data sets.

However, researchers have often expressed concern using MLMs when the number
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of clusters or groups is low (e.g., groups \ 20; e.g., Curtis et al., 2011; Gehlbach et

al., 2016; McCoach & Adelson, 2010). Often, this reluctance stems from a concern

that standard error estimates for group-level point estimates may continue to be nega-

tively biased even if the clustering is accounted for using MLM (Maas & Hox,

2005). The analysis of CRTs with a low number of clusters thus continues to be of

both a practical and statistical concern.

Although various techniques have been suggested in dealing with nested data

apart from the use of MLM (see Huang, 2016), one alternative method, that has seen

little use in educational and psychological research is cluster bootstrapping

(Cameron, Gelbach, & Miller, 2008; Fox, 2016). Since point estimates (e.g., regres-

sion coefficients) in a properly specified regression model are generally unbiased

when analyzing clustered data (Moulton, 1990; Mundfrom & Schultz, 2001), cluster

bootstrapping provides an alternative method for dealing with nested data to estimate

standard errors (Dedrick et al., 2009; Maas & Hox, 2005). A full text search on the

PsycNET database of the American Psychological Association (APA) for peer-

reviewed APA journal articles from 2011 to 2016 using the keywords ‘‘cluster*
bootstrap*’’ resulted in only four articles that made use of bootstrapping specifically

to account for the clustered nature of the data analyzed (Gehlbach et al., 2016; Ifcher

& Zarghamee, 2014; Kizilcec, Bailenson, & Gomez, 2015; van den Bos & Michiel,

2016).1 Of the four, two of the articles indicated using cluster bootstrapping due to

the small number of clusters (Gehlbach et al., 2016; Ifcher & Zarghamee, 2014). In

the current article, we describe the issues with analyzing clustered data, provide an

overview of cluster bootstrapping, and compare standard error estimates across dif-

ferent methods using a Monte Carlo simulation to analyze data with a low number of

clusters.

The Problem With Analyzing Clustered Data

As observations within the same cluster tend to be more alike with each other com-

pared with observations in other clusters (e.g., students in the same class have a com-

mon teacher), observations exhibit some degree of interdependence (Hox & Kreft,

1994). This interdependence is a result of the sampling design typically found in

CRTs where all students in one group or cluster are assigned to a condition which

then affects the variance of the outcome which in turn affects the estimates of the

standard errors (McCoach & Adelson, 2010). Although point estimates derived using

standard ordinary least squares (OLS) regression with continuous outcomes will gen-

erally yield unbiased point estimates when using nested data (Clarke, 2008; Harden,

2011; Maas & Hox, 2005; Moulton, 1986), the greater concern when dealing with

clustered data revolves around the standard errors. As standard errors are used in

computing t-statistics, standard errors that are too small or biased downward, will

yield results that are statistically significant more often increasing the probability of

making a Type I, much more than the nominally stated alpha of .05. The ICC (or r)

is a commonly used measure to indicate the degree of violation of the observation
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independence assumption, indicates how similar individuals are within clusters, and

also measures the proportion of variance in the outcome that is attributable to the

group level.

To calculate the ICC, an unconditional MLM is run which partitions the amount

of variance at the group level (too) and the amount of variance within clusters (s2).

The ICC is the group-level variance divided by the overall variance (i.e., too/

[s2
+ too]). A simple way to estimate the ICC is to run an OLS regression model pre-

dicting the outcome of interest and only including J 2 1 dummy codes for the cluster

variables as predictors, where J is the total number of groups. The resulting adjusted

R2 estimates the proportion of variance in the outcome variable that is attributable to

the grouping variables (Huang, 2016). In education, a review of several national data

sets using reading and math outcomes for K-12 students within schools indicated that

the average unconditional ICC was .22 (Hedges & Hedberg, 2007).

The violation of observation independence is indicated by the degree in which the

ICC is greater than zero, with an ICC of zero indicating complete observation inde-

pendence. In early studies, some have suggested that clustering may be ignored when

ICCs are low (e.g., r\:05) and data may be analyzed using standard analytic proce-

dures (e.g., OLS regression; Heck & Thomas, 2008). However, more recent studies

have shown that even minimal departures from zero can result in increased Type I

errors (Lai & Kwok, 2015; Musca et al., 2011) when group-level predictors are of

interest. Apart from the ICC, the probability of making a Type I error is also influ-

enced by the average number of observations per cluster and the cluster size is used

in estimating what is referred to in the survey sampling literature as the design effect

(Kish, 1965).

Kish (1965) defined the design effect (or DEFF) for a sample statistic (e.g., the

mean) as the ‘‘ratio of the actual variance of a sample to the variance of a simple ran-

dom sample of the same number of elements’’ (p. 258). For nested models, DEFF

can be estimated by DEFF = 1 + r (m 2 1; Kish, 1965) where r is the ICC and m is

the average number of observations per cluster (for unbalanced cluster sizes, the har-

monic mean may also be used). The square root of DEFF is known as DEFT (Hahs-

Vaughn, 2005) and DEFT can be used as a variance inflation factor to adjust standard

errors to account for the clustering effect (i.e., adjusted standard errors = DEFT 3

standard errors). For example, with a DEFT of 2, standard errors should be twice as

large compared with a model that ignores the clustering effect.

Given the equation, the standard error corrections are a factor of both the ICC and

the number of observations within a cluster such that DEFT increases if either the

ICC and/or the cluster size increases. So even if the ICC is held constant, DEFT may

increase if the number of observations within a cluster increases. In cases where r = 0

or m = 1 (i.e., there is one individual per cluster), then no adjustments are necessary.

In the field of applied economics, the design effect was rediscovered by Moulton

(1986, 1990) and the correction factor has popularly come to also be known as the

Moulton factor (Angrist & Pischke, 2014). The design effect can also be used in

power analyses to compute the effective sample size such that effective sample size
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is the nominally stated sample size divided by DEFF (Snijders & Bosker, 2012;

Taljaard, Teerenstra, Ivers, & Fergusson, 2016).

Various approaches have been discussed in the literature that can be used in the

analysis of clustered data (Huang, 2016; McNeish & Stapleton, 2016). However,

when the number of clusters is low (e.g., J \ 30), certain approaches may not be suit-

able if Level 2 regression coefficients are of interest. An example of this is the com-

monly used cluster robust standard errors, widely used by economists (Cameron &

Miller, 2015). Although relatively easy to implement, the use of cluster robust stan-

dard errors or similar standard error adjustment technique such as using Taylor series

variance estimation can still underestimate Level 2 standard errors with a low number

of clusters (R. Bell & McCaffrey, 2002; Harden, 2011; Huang, 2016). Another com-

mon method to analyze clustered data is through the use of fixed effects models.

Fixed effects models are a powerful, flexible, and straightforward way to account for

the nesting effect though may not be of use if the variable of interest is at the cluster

level (Murnane & Willett, 2011) which is the case when CRTs are analyzed. In edu-

cation and psychological sciences, MLM is a commonly used technique for the anal-

ysis of clustered data though some may refrain from using MLM when the number of

groups is low due to potentially biased estimates (Coyne et al., 2010; e.g., Curtis et

al., 2011; McCoach & Adelson, 2010).

Sample Size Guidelines for the Number of Clusters

The most widely cited rule of thumb for minimum sample sizes based on a recent

review of MLM studies (Tonidandel, Williams, & LeBreton, 2014) can be attributed

to Kreft’s (1996) unpublished manuscript2 and coined the 30/30 sample size require-

ment indicating that 30 groups with 30 individuals per group was sufficient for MLM

studies. However, Tonidandel et al. pointed out that Kreft’s study was based on a

review of other unpublished manuscripts and findings were applicable only to studies

with ICCs \ .25,3 focused on fixed effects estimation, and sample size recommenda-

tions were for obtaining sufficient power to detect cross-level interactions. However,

researchers should not rely heavily on rules of thumb—which ignore important com-

ponents of power analyses such as considering minimum detectable effect sizes—

especially when software for multilevel power analyses (N. Dong & Maynard, 2013;

Spybrook et al., 2011) are readily available and take out the unnecessary guesswork

for calculating required sample sizes.

Another often cited reference for minimum sample sizes in MLM studies is the

Monte Carlo simulation of Maas and Hox (2005), which focused not on power but

on potentially biased estimates.4 Simulating two-level models varying the number of

clusters, observations per cluster, and ICCs (.10 to .30), Maas and Hox concluded

that both the regression coefficients and the standard errors were estimated without

bias in all the conditions investigated. Only with an extremely small sample size of

10 clusters with 5 observations per cluster (an extra condition investigated) did the

standard errors for the regression coefficients become slightly underestimated (~9%).

Huang 301



Other simulations though using more conditions and a low number of clusters have

indicated that using MLM may not necessarily result in biased point estimates or

standard errors (B. A. Bell, Morgan, Schoeneberger, Kromrey, & Ferron, 2014;

Huang, 2016; McNeish & Stapleton, 2016). Although Maas and Hox (2005) indi-

cated that the variance components may be underestimated to a larger extent, often

the focus of MLM studies are on the fixed effects and their associated significance

tests (Dedrick et al., 2009). However, as MLM and OLS point estimates are gener-

ally unbiased, studies have suggested the use of bootstrapping which may not be as

sensitive to a small number of Level 2 clusters (Dedrick et al., 2009; Maas & Hox,

2005; McNeish & Stapleton, 2016).

The Cluster Bootstrapping Procedure

Bootstrapping as an analytic technique is not new and has been around for decades

(Efron, 1979). The term itself is said to be derived from the phrase to ‘‘pull oneself

up by one’s bootstrap, widely thought to be based on one of the 18th century

Adventures of Baron Munchausen, by Rudolph Erich Raspe’’ where the baron finds

himself at the bottom of a lake but manages to get out by pulling himself up only

using his bootstraps (Efron & Tibshirani, 1994, p. 5).

Bootstrapping is a resampling technique which involves computing a statistic of

interest repeatedly based on a large number of random samples drawn from the origi-

nal sample. In such a manner, the variability of the statistic of interest can be calcu-

lated as a result of the repeated sampling. Operationally, from an existing original

sample of size n, bootstrapping involves taking a random sample (simply referred to

as a bootstrap replicate) from the existing sample (with replacement) also of size n

and computing a statistic of interest (e.g., a regression coefficient which we can

denote as ub) using the bootstrapped sample b. Since the sampling is done with

replacement, observations may appear more than once and some observations will

also not be selected.5 The process of drawing a new sample and computing the statis-

tic of interest is performed B times and will result in collecting B number of us (i.e.,

u1, u2, . . ., uB). For a large number of ub estimates, the standard deviation of the us

can be referred to as the bootstrapped standard error of û, the estimated statistic of

interest, or

SEû =
1

B� 1

XB

b = 1
(ub � �u)

2

� �1
2

,

where �u is the mean of the collected us.

The standard error, along with the mean of the vector of us, can be used to con-

struct the bootstrapped normal-approximation confidence intervals (CIs) and used for

inferential statistics such as t tests (e.g., û=SEû). Nonparametric confidence intervals

(e.g., a 95% CI) using the a/2 and 1 2 (a/2) quantiles (i.e., 2.5% and 97.5%) of the

ordered distribution of us can also be used which does not make any distribution

assumptions for û. Although �u is used to estimate the standard error, it is not used to
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estimate the statistic itself and instead, the original statistic û is used which is com-

puted using the original sample and is the best point estimate of the statistic

(StataCorp, 2015). Although guidelines have been suggested as to the number of

replications required for the optimal number of bootstrapped replications (see Poi,

2004), 1,000 replications is generally considered acceptable for standard error esti-

mates (Chernick & LaBudde, 2011).

Bootstrapping is relatively straightforward, can be used with a wide variety of sta-

tistics, but is a computationally intensive task which requires sampling and comput-

ing the statistic of interest repeatedly (i.e., B times). However, given the speed of

modern computers, that is less of an issue and with relatively simple multiple regres-

sion models (e.g., 5 variables and 1,000 observations), results using 1,000 replica-

tions can be generated in a few seconds. The logic of bootstrapping is that a random

sample drawn from a random sample from the population is also a random sample of

the population itself (Murnane & Willett, 2011). Fox (2016, p. 651) indicates that the

key bootstrap analogy is that the population is to the sample as the sample is to the

bootstrap samples.

However, with nested data, the standard bootstrapping procedure is modified to

reflect the sampling design used in a CRT (Fox, 2016). Standard bootstrapping proce-

dures though still require identically distributed responses which is not the case with

clustered data (Goldstein, 2011). Cluster bootstrapping, which has been referred to

using various names such as the cases bootstrap, the block bootstrap, and the pairs

bootstrap (Cameron et al., 2008; Van der Leeden, Meijer, & Busing, 2008), slightly

modifies the standard bootstrapping procedure with regard to the resampling process.

Instead of drawing a random sample of n observations, the sampling is based on the

total number of J clusters. With cluster bootstrapping, the first step is to randomly

select J number of clusters with replacement (Davison & Hinkley, 1997). For each

cluster selected (with some clusters selected more than once and others not selected

at all), all observations within that cluster are included in the bootstrapped sample.

Then the desired statistics are computed using the bootstrapped sample and the pro-

cess is repeated B number of times. Standard errors and confidence intervals can be

derived using standard bootstrapping procedures.

For CRTs with a low number of clusters and a binary predictor at Level 2 (i.e., a

treatment indicator where treat = 1 or 0) an additional modification to the standard

cluster bootstrapping procedure is necessary. Because of the low number of clusters

(e.g., 10) and the random selection of clusters with replacement, it is possible to have

a bootstrapped sample with clusters that are either all from the treatment condition

or all from the control condition. In such a case, the treatment effect for that boot-

strapped sample becomes inestimable as a result of a lack of variation in the treat-

ment variable. To remedy this, a modified bootstrap procedure is possible where the

treatment and control clusters are separated into two groups and in each resampling

step, clusters are sampled independently within the treatment and control groups and

then combined to form the complete bootstrapped sample, ensuring the presence of

both treatment and control groups in every bootstrapped sample. For example, with
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an overall sample made up of 10 clusters with 5 clusters in a treatment group and 5

clusters in a control group, in each resampling step, 5 clusters are randomly selected

(with replacement) from the treatment group and 5 clusters are randomly selected

from the control group (with replacement). All the observations within those clusters

from both sets of random samples are combined to form the 10 clusters where the

analysis will be performed. This is repeated B number of times. Statistical software

such as R and Stata can perform this modified cluster bootstrapping procedure with-

out the need of any statistical programming.6

The Present Study

The objective of the current study was to investigate the performance of cluster boot-

strapped standard errors (CBSE) in the presence of a low number of Level 2 clusters,

a situation found in a number of CRTs (Flynn & Peters, 2004; Ivers et al., 2011). As

point estimates (i.e., the regression coefficients) using MLM and OLS are generally

unbiased (Moulton, 1986), the current study focuses on the potential bias in standard

errors using OLS, MLM, and CBSE.

Previous studies have investigated bootstrapping within a multilevel framework

but have not specifically used cluster bootstrapping as an alternative to MLM (e.g.,

Roberts & Fan, 2004; Thai, Mentré, Holford, Veyrat-Follet, & Comets, 2013; Vallejo

Seco, Ato Garcı́a, Fernández Garcı́a, & Livacic Rojas, 2013). Other studies have

investigated the use of cluster bootstrapping (Cameron et al., 2008; Harden, 2011)

but have not used ICCs typically found in an educational setting, have not used a

dichotomous Level 2 predictor which is of interest in CRTs, nor compared results

with those derived using MLM. To summarize, the current study specifically:

1. Investigated results using cluster bootstrapping using both continuous and

dichotomous Level 2 predictors

2. Compared the CBSE with standard error estimates using MLM and OLS

regressions

3. Investigated results using a low number of clusters

4. Used unconditional ICC conditions commonly found in educational settings.

Prior studies have suggested that bootstrapping may be a good alternative to stan-

dard MLMs (Dedrick et al., 2009; Maas & Hox, 2005; McNeish & Stapleton, 2016).

However, cluster bootstrapping has not been specifically investigated with a focus on

both continuous and dichotomous Level 2 predictors and comparing estimates with

those derived using MLMs, a technique used predominantly in the education and psy-

chological sciences when clustered data are analyzed.

Although bootstrapping as a procedure has been around for decades, barriers that

may have slowed its adoption by applied researchers is that the literature on boot-

strapping may be dense and in previous years, performing the procedure itself may

have involved some statistical programming which may be a daunting task for
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applied researchers (Fox, 2016; Roberts & Fan, 2004). An additional objective was

to use a bootstrapping procedure that was readily available and easily implemented

in free software such as R or commercial software such as Stata. To illustrate the

process of cluster bootstrapping with an applied data set, a complete example is

shown in the online appendix.

Method

Data Generating Process

To assess the various procedures in addressing potentially underestimated standard

errors at Level 2, we used a Monte Carlo simulation in R (R Core Team, 2016). We

simulated a linear model with dependent variable Yij, for observation i in group j,

with two uncorrelated predictors at Level 2 (the group level). The first group-level

predictor, Tj, was a dichotomous predictor often found in CRTs where entire clusters

are assigned to either a treatment and control group. The second group-level predic-

tor, Wj, was a continuous variable, also commonly found in multilevel studies (e.g.,

group-level socioeconomic status). Both variables were specified to be uncorrelated

with another predictor, Xij, at Level 1 (the individual level), resulting in the following

combined model:

Yij = b0 + b1Tj + b2Wj + b3Xij + u0j + rij:

The model is defined such that b0 = 0:00, b1 = 0:30, b2 = 0:30, and b3 = 0:80.

Approximately half of the participants were assigned to be in the ‘‘treatment’’ (T = 1)

or the control (T = 0) groups and assignment was done at the group level. The set of

W and X variables were generated from a standard normal distribution and two error

terms were included: a cluster-level error term, u0j, and an individual-level error term,

rij. Both the error terms were assumed to be independent of each other, followed a

normal distribution such that uoj;N 0, tooð Þ and rij;N 0, s2ð Þ, and were not corre-

lated with the independent variables (which is a reasonable assumption in a CRT).

Although centering is a commonly used technique when estimating MLMs (Enders

& Tofighi, 2007), centering was not done to allow for comparability of results across

models.

As we were interested in the level of bias of the standard errors under various

small group conditions, we manipulated the number of clusters (i.e., J = 10, 20, 30

clusters), the average number of observations within each cluster (i.e., nJ = 10, 30,

50), and the unconditional ICCs that may typically be found in educational and psy-

chological research (i.e., ICC = .05, .10, .20, .30; Hedges & Hedberg, 2007; Kreft &

Yoon, 1994). To estimate the unconditional ICCs, the Level 1 variance for the error

term, s2, was set to 2.25 and variance of the group-level error term, too, was modified

accordingly. To simulate an unbalanced number of observations per cluster, we esti-

mated 10% more observations per cluster than specified (e.g., 33 vs. 30 observations

in 20 clusters) and then randomly excluded an appropriate number of observations
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(e.g., 60) to arrive at the specified average number of observations per condition

(e.g., 30). The probability of excluding an observation within each cluster was not

uniform (i.e., some clusters had no cases removed and others had more excluded) cre-

ating an unbalanced design condition often found in CRTs. As a result, we tested 36

conditions (i.e., 3 number of clusters 3 3 average observation per cluster conditions

3 4 ICCs) with 1,000 replications per condition (i.e., 36,000 data sets).

Analytic Strategy

Each simulated data set was analyzed using three techniques. To establish a baseline,

each data set was analyzed using standard OLS regression, not accounting for the

clustering. A second method used was multilevel modeling using the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015) in R. As standard errors are generally more

accurate using restricted maximum likelihood (REML) when the number of groups

is small (Goldstein, 2011; Huang, 2016; Meijer, Busing, & Van der Leeden, 1998),

REML estimation was used. In addition, a Kenward–Roger (Kenward & Roger,

1997) correction using the pbkrtest package (Halekoh & Højsgaard, 2014) in R

was used to adjust standard errors which has shown to result in less-biased standard

errors when analyzing data with a low number of clusters (B. A. Bell et al., 2014;

McNeish & Stapleton, 2016). As a specification check, MLMs using full maximum

likelihood (ML) were also tested. The third technique assessed, which was of pri-

mary interest, used cluster bootstrapping using the bootcov function in the rms:

Regression Modeling Strategies package (Harrell, 2016) in R. One thousand boot-

strap replicates were created by first dividing the sample into two groups (i.e., T =

1 and T = 0) and then within each group, sampling with replacement at the cluster

level and then moving all the observations within the clusters to the bootstrap

replicate. Each replicate was analyzed using OLS regression as point estimates for

properly specified models are unbiased (Moulton, 1990; Mundfrom & Schultz,

2001). To estimate the CBSEs, the standard deviation of the point estimates of the

1,000 bootstrap replicates was used. Because of the resampling required in boot-

strapping, the current study analyzed 36 million data sets in total (36,000 data sets

3 1,000 bootstrap replicates).7

To assess the relative bias of the standard errors, we generated the empirical stan-

dard errors (i.e., u) which was the standard deviation of the point estimates per con-

dition using a specific estimation method. Relative bias was computed using the

estimated standard errors (i.e., û) per data set, where bias = ½(û� u)=u�3100 (e.g.,

Clarke, 2008). The relative bias of the standard errors indicated whether, on average,

the expected standard errors were under- or overestimated. Underestimated standard

errors result in increased Type I errors while overestimated standard errors result in

increased Type II errors. Although there is no generally agreed-upon threshold of

what is acceptable bias, we used a 610% mean bias threshold for standard errors

(Muthén & Muthén, 2002).
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Results

Convergence Rates

Rates of nonconvergence resulting in inadmissible solutions were first assessed. Out of

the 36,000 data sets simulated, only 8 in total (0.02%) had convergence problems when

analyzed using MLM, most of which were in the cluster size of 10 condition. As in

other studies, convergence was not an issue (B.A. Bell et al., 2014; Maas & Hox, 2005).

Level 2 Standard Errors for the Dichotomous Predictor

When analyzing CRTs, dichotomous predictors (e.g., treatment = 1 or 0) are often of

primary interest. As expected, the Level 2 OLS standard errors (see Table 1) were con-

sistently underestimated, even with a low ICC (i.e., .05). All OLS standard errors were

underestimated, with underestimation ranging from 5% to 78%. Apart from underesti-

mation worsening as ICCs increased, the bias worsened when the number of Level 1

units increased. This pattern is more clearly seen in Figure 1, which presents the bias in

standard errors visually. In contrast, both CBSE and MLM standard errors performed

well when the number of clusters was at least 20, regardless of the number of observa-

tions within each cluster and ICC. The average bias when the number of groups was at

least 20 was \10% for both MLM and CBSE, regardless of ICC or cluster size.

However, in two conditions when ICCs were � .10 and the sample size consisted

of 10 clusters and an average of 10 observations per cluster, the bias of Level 2

CBSEs were on average slightly greater than 10% (see Table 1). In contrast, MLM

standard errors were slightly underestimated when ICCs were . .05 but not to a

large extent (i.e., mean bias \ 10%). In general though, with 10 clusters, the mean

bias of CBSEs were generally positive (i.e., more conservative) while the mean bias

of MLM standard errors were more often negative (i.e., more liberal).

Level 2 Standard Errors for the Continuous Predictor

Mirroring with the pattern of underestimation of standard errors for the Level 2

dichotomous predictor using OLS, the OLS standard errors for the continuous Level

2 predictor were consistently underestimated for all conditions. The MLM standard

error mean bias on the other hand for the continuous Level 2 predictor was no greater

than 10% for any of the conditions. CBSE mean bias was acceptable when the num-

ber of clusters was at least 20 or more but showed consistently large overestimation

(i.e., . 20%) when the cluster size was only 10. The mean bias in CBSE though

decreased as the cluster size increased.

Level 1 Standard Errors

For Level 1 standard errors, for OLS and MLM regression analyses, mean bias

was never greater than 5% regardless of number of clusters, sample size, and ICC
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(Table 2) . The average bias over all conditions for OLS and MLM was 20.2% and

0.4%, respectively.

However, CBSE on average had consistently underestimated Level 1 standard

errors for all conditions, with underestimation more pronounced when the number of

clusters was low (i.e., 10). When the number of clusters was 10, CBSEs were

Figure 1. Mean bias in standard errors for the Level 2 dichotomous predictor by number of
clusters, cluster size, intraclass correlation coefficient (ICC), and analytic technique.
Note. CB = cluster bootstrap; MLM = multilevel model estimated with restricted maximum likelihood

using a Kenward–Roger (Kenward & Roger, 1997) standard error adjustment; OLS = ordinary least

squares regression.
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underestimated from 12% to 17%. However, only in 3 out of the 24 other conditions

(i.e., number of clusters > 10) did the underestimation of CBSEs exceed 10%.

Discussion

Revisiting Sample Size Guidelines

As seen by the simulation results, estimating MLMs using 30 or fewer clusters is not

only possible but can result in models with relatively unbiased standard error esti-

mates. As indicated by McNeish and Stapleton (2016), the popularly used 30-cluster/

30-unit recommendation of Kreft (1996) is ‘‘being rendered obsolete, outdated, and

inaccurate’’ (p. 510). This is important since the 30/30 rule is an often-cited guide-

line for required sample sizes for MLMs (Tonidandel et al., 2014). As indicated by

Scherbaum and Ferreter (2009), ‘‘following the 30/30 rule may lead to high levels of

power but is probably excessive for most organizational research’’ (p. 354).

Table 2. Mean Bias in Level 1 Standard Errors Across Varying Simulated Conditions by
Analytic Technique (1,000 Replications Each).

Number of clusters Cluster size

ICC = .05 ICC = .10

OLS MLM CB OLS MLM CB

10 10 24.2 22.8 216.5 23.4 22.6 216.2
30 0.5 0.7 212.0 0.2 0.5 212.9
50 1.9 2.2 211.5 1.5 2.0 212.5

20 10 20.2 0.3 26.1 20.4 20.3 26.7
30 21.2 21.2 27.4 21.8 21.2 28.5
50 21.0 20.8 27.0 —1.3 20.8 27.8

30 10 3.3 2.9 21.4 2.8 2.2 22.1
30 1.2 1.0 23.7 1.1 1.0 24.2
50 2.2 2.3 21.2 1.4 2.6 22.5

Number of clusters Cluster size

ICC = .20 ICC = .30

OLS MLM CB OLS MLM CB

10 10 22.2 22.8 216.3 21.3 22.8 216.8
30 20.1 0.6 214.8 20.5 0.7 216.7
50 1.0 1.9 214.5 0.6 1.9 216.5

20 10 20.5 20.6 27.9 20.5 20.7 29.2
30 22.5 21.1 210.5 23.0 21.1 212.2
50 21.8 20.8 29.4 22.2 20.9 211.0

30 10 2.0 1.8 23.7 1.4 1.7 25.1
30 0.7 1.0 25.2 0.4 1.0 26.2
50 0.4 2.7 24.7 20.4 2.7 26.6

Note. OLS = ordinary least squares; MLM = multilevel model estimated with restricted maximum

likelihood using a Kenward–Roger (Kenward & Roger, 1997) standard error adjustment; CB = cluster

bootstrapped standard errors using 1,000 replicates; ICC = intraclass correlation coefficient.
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The current study, as well as various recent studies, has shown that researchers

may estimate unbiased MLMs with fewer than 30 clusters (B. A. Bell et al., 2014;

Huang, 2016; McNeish & Stapleton, 2016) and evaluators do not necessarily require

a large number of clusters for a successful CRT. Although estimates may be

unbiased with a small number of clusters, CRT evaluators should perform the neces-

sary power analyses using free and readily accessible software such as Optimal

Design (Spybrook et al., 2011) or PowerUp! (N. Dong & Maynard, 2013) rather than

relying on rules of thumb, prior simulations, or conventional wisdom. Also, despite

unbiased results, there may be other risks associated with conducting CRTs with a

small number of clusters (see Taljaard et al., 2016, for a review).

MLM With a Small Number of Clusters Should Consider REML

When the number of clusters was low (i.e., 10), the use of REML with the Kenward–

Roger (1997) adjustment in MLM models is an important consideration as this results

in less biased standard errors compared with an MLM estimated using ML (results were

estimated but not shown using ML). This finding has been discussed in other studies

and recent simulations (Hox & Kreft, 1994; Huang, 2016; McNeish & Stapleton, 2016)

but should be reemphasized. In a review of 96 MLM studies (Dedrick et al., 2009), the

majority of studies (84%) did not indicate the estimation method use but of those stud-

ies that did indicate what was used, only 20% used REML.

Whether to Use MLM or Cluster Bootstrapping?

In cases where a CRT is being analyzed and a Level 2 dichotomous predictor is of

interest, both MLM and cluster bootstrapping can be effective in evaluating CRT data

with a low number of clusters. When the number of clusters was at least 20, there

was no particular advantage in evaluating group-level treatment effects using either

MLM or cluster bootstrapping (see Table 1). When the number of clusters was low

(i.e., 10) and ICCs were moderate to large (i.e., .10 to .30), standard errors for the

Level 2 coefficient estimated using MLM were on average slightly underestimated

and the CBSEs were slightly overestimated. In other words, with only 10 clusters,

standard errors from MLM were slightly more liberal and CBSEs were slightly more

conservative. Researchers though should keep in mind that with only 10 clusters, an

intervention’s minimum detectable effect size would need to be large (i.e., � .80) to

even have an acceptable level of power (i.e., .80).

From a practical perspective, researchers can estimate models using both tech-

niques. If Type I errors are of primary concern, cluster bootstrapping could be used

and conversely, if Type II errors are of concern, MLM can be used as well. The

choice of procedure to use is not an ‘‘either/or’’ question when researchers can read-

ily perform robustness checks using both methods.

For example, two recent experimental psychology studies indicated using cluster

bootstrapping because of a small number of clusters (Ifcher & Zarghamee, 2014) or
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were worried that MLM may provide underestimated standard errors (Gehlbach et

al., 2016), both concerns warranted by prior research. Studies though may use cluster

bootstrapping with another analytic technique to compare results as a robustness

check and provide additional support for their findings (Gehlbach et al., 2016; Ifcher

& Zarghamee, 2014). Providing study results using different model specifications or

alternative estimation strategies is a practice often performed by econometricians to

lend further support for study findings (Huang, 2016).

However, if a continuous Level 2 predictor is of interest, simulation findings indi-

cate that for the 10 cluster condition, CBSEs will be too conservative (i.e., standard

errors will be too high). This is in contrast to Harden’s (2011) simulation using

CBSEs which showed unbiased standard error estimates for cluster bootstrapping

using only 10 clusters. In an earlier version of this article, which did not include a

dichotomous predictor, initial results were similar to Harden’s study but changed

once the dichotomous predictor at Level 2 was included.

Simulation results though clearly indicate that OLS regression, without some form

of standard error adjustment such as using DEFT, should not be used to evaluate

CRTs even if ICCs may be considered low (e.g., .05). The underestimation of stan-

dard errors at Level 2 is not merely a factor of the ICC but the number of observa-

tions within the cluster. As the number of observations within a cluster increases, so

do the resulting design effects (see, Lai & Kwok, 2015). The underestimation of stan-

dard errors using OLS when the ICC was .05 still resulted in biased Level 2 standard

errors that were not negligible and the bias only worsened when number of observa-

tions per cluster increased. At times, studies may indicate low ICCs as a reason for

not accounting for the clustering effect (Heck & Thomas, 2008) but even when the

ICC in the current study was .05 and the number of observations per cluster were 30

or more, Level 2 standard errors were underestimated by more than 15%.

The findings that OLS and MLM standard errors are relatively unbiased at Level 1

for a properly specified model have been shown in other simulations (Harden, 2011;

Huang, 2016). However, CBSEs at Level 1 were generally underestimated, though not

to a large extent and certain methodologists may not consider the bias practically mean-

ingful (Clarke, 2008; Muthén & Muthén, 2002) except in the low number of clusters

condition. In addition, with CRTs, the primary concern is the effect of the treatment

condition which is randomly assigned at the group level and not at the individual level.

Some Other Bootstrapping Considerations

Although bootstrapping is generally a straightforward procedure, why is it not more

commonly used? Fox (2016) provided several reasons why this may be the case: lack

of familiarity, reliance on common practice, and the necessity of some form of statis-

tical programming. Of the three reasons, the last concern may be greater than the

other two. To address the need for statistical programming, a basic tutorial using the

bootcov function in R, which does not require any statistical programming, is avail-

able in the online appendix. In addition, the code to perform the simulation and
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analysis in the article are also available upon request. Of the commercially available

statistical software packages, Stata may provide the simplest way to run bootstrapped

regressions with the built-in bootstrap command which also has both cluster
and strata (i.e., can be used to specify treatment groups) options.

Apart from the cluster bootstrapping procedure presented in this article, other

bootstrap variants are available. For example, after randomly selecting clusters with

replacement, it is also possible to randomly sample within those clusters the observa-

tions with replacement as well (referred to as Strategy 2 by Davison & Hinkley,

1997, p. 100). Field and Welsh (2007) also call this a two-stage bootstrap and discuss

a variety of cluster bootstrapping strategies (see also, Cameron et al., 2008). Others

may skip the first stage of randomly selecting the clusters but instead include all

clusters and then randomly sample with replacement observations within every clus-

ter (Roberts & Fan, 2004).

Although we used bootstrapped estimates based on an OLS regression model, it is

also possible to bootstrap the estimates derived using an MLM as well (e.g., Thai et

al., 2013). For example, the lme4 package in R, which is commonly used in multile-

vel modeling, specifically does not provide p values for the fixed effects estimates

and the developers of the package suggest, among other strategies, bootstrapping to

generate the confidence intervals of the MLM point estimates (Bates et al., 2015).

When bootstrapping MLMs, bootstrapped estimates of the random effects, not just

fixed effects, may also be done though a prior study has shown that bootstrapped

higher level random effects may be biased (Vallejo Seco et al., 2013). These other

bootstrapping variations though require additional programming expertise when boot-

strapping already remains ‘‘procedurally difficult for most research practitioners’’

(Roberts & Fan, 2004, p. 24).

In addition, accounting for missing data may be slightly more challenging if users

want to use some form of multiple imputation (Y. Dong & Peng, 2013). However,

an alternative procedure is to perform each regression using full information maxi-

mum likelihood (FIML), which is considered another modern way of accounting for

missing data (Enders, 2010). In R, regressions using FIML may be performed using

the lavaan package (Rosseel, 2012) and regression coefficients, which account for

the missing data, can then be pooled to estimate the empirical standard errors.

Limitations

As with other simulations, several limitations must be kept in mind when interpreting

results. First, models tested were relatively simple though conditions were varied.

However, treatment and control groups in CRTs, as a result of randomization to con-

ditions, are generally assumed to be equal on both observed and unobserved charac-

teristics and can be evaluated using simpler statistical procedures that do not

necessarily require more complicated models nor control variables if randomization

was successful (Murnane & Willett, 2011). In CRTs, the primary interest generally

is the treatment condition variable at Level 2 and covariates are included in CRT
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models in order to increase precision resulting in greater power to detect effects. In

other words, even though the models simulated were relatively simple, these are

models often used when evaluating CRTs. Second, we used a continuous outcome

variable and results may differ if a binary outcome was investigated. Binary out-

comes are more challenging to estimate using small samples and are known to expe-

rience more convergence issues (Cohen et al., 2003). Third, fully nonparametric

confidence intervals can also be estimated (as well as bias corrected bootstraps, see

Chernick & Labudde, 2011) though since we generated the data using normally dis-

tributed variables and wanted to allow for the comparability of standard errors across

different methods, we used the standard deviation of the estimates as the empirical

standard errors. However, results support the use of cluster bootstrapping as a viable

alternative procedure in analyzing clustered data sets.

Conclusion

Focusing on bias and putting power issues aside (which can be computed using read-

ily available free software instead of using rule-of-thumb guidelines), generally

unbiased point estimates and standard errors can be obtained using either MLM or

cluster bootstrapping. Although prior studies have suggested that MLM may not be

suitable with only 10 clusters (Maas & Hox, 2005), the current study, along with

more recent studies (e.g., B.A. Bell et al., 2014; Huang, 2016; McNeish & Stapleton,

2016), suggests otherwise if researchers are interested in fixed effect estimates along

with their standard errors. Even though cluster bootstrapping has not seen much use

in educational and psychological research, we hope that this article, together with the

tutorial in the online appendix, may help applied researchers use cluster bootstrap-

ping as an additional robustness check when dealing with clustered data.
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Notes

1. Bootstrapping though has commonly been used for mediation analyses using procedures

popularized by Preacher and Hayes (2004).
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2. Being unpublished, the manuscript was also hard to find.

3. The ICC is generally acceptable for educational research.

4. As of September 2016, the article was cited more than 1,200 times based on Google

Scholar.

5. If the random sampling was done without replacement (i.e., an observation may only

appear once), we would wind up with the same sample as the original sample.

6. Specifying this in R is straightforward using the rms package (Harrell, 2016; using an addi-

tion group= option) and is also shown in the tutorial on the author’s website at http://
faculty.missouri.edu/huangf/data/pubdata/. In Stata, researchers can specify the strata
option (and indicate the treatment variable) when using the bootstrap command.

7. Even though writing a cluster bootstrapping function using loops in R was straightforward,

the bootcov function greatly speeded up the Monte Carlo simulation since the rms function

(Harrell, 2016) used vectorized operations and was more efficient.
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