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Abstract

Much of the cost of software development is maintenance. Well structured

software tends to be cheaper to maintain than poorly structured software, because

it is easier to analyze and modify. The research described in this thesis concentrates

on determining how to improve the structure of object-oriented classes, the

fundamental unit of organization for object-oriented programs.

Some refactoring tools can mechanically restructure object-oriented classes,

given the appropriate inputs regarding what attributes and methods belong in the

revised classes. We address the research question of determining what belongs in

those classes, i.e., determining which methods and attributes most belong together

and how those methods and attributes can be organized into classes. Clustering

techniques can be useful for grouping entities that belong together; however, doing

so requires matching an appropriate algorithm to the domain task and choosing

appropriate inputs.

This thesis identifies clustering techniques suitable for determining the

redistribution of existing attributes and methods among object-oriented classes,

and discusses the strengths and weaknesses of these techniques. It then describes

experiments using these techniques as the basis for refactoring open source Java

classes and the changes in the class quality metrics that resulted. Based on these

results and on others reported in the literature, it recommends particular clustering

techniques for particular refactoring problems.

These clustering techniques have been incorporated into an open source

refactoring tool that provides low-cost assistance to programmers maintaining

object-oriented classes. Such maintenance can reduce the total cost of software

development.
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Chapter 1

Introduction

1.1 Motivation and context

Software development is big business. While there is significant cost and effort

spent preparing code for its release, several studies indicate that 40% - 65% of the to-

tal effort is spent maintaining software after delivery [Han93, Pre97, Som96, YL94],

and the maintenance is expensive. An estimate from the mid-1990s [Sut95] put

the total cost of maintaining code in the United States at approximately 70 billion

dollars per year. Numbers like these motivate us to try to decrease maintenance

costs.

Maintainability refers to the ease by which software can be modified [ISO06],

where potential software modifications include bug fixes, feature additions, and

adaptations of the software for different environments. Maintainability is affected

by the software’s structure. Software that is modular and simple is generally

easier to analyze and maintain than software that is poorly structured or complex.

A programmer should be able to analyze well-structured code, understand its

purpose, and improve it in a short time.

However, not all software “improvements” are worth doing. Every software

change has a cost. In addition to the cost of programming the change, there are

potential additional costs when the external behavior of a software component

changes, e.g., updating test suites and documentation. Furthermore, any change

to software entails risks – new bugs may be introduced, or the code may become

less maintainable. Due to these issues, many software businesses prefer to be

conservative when making code changes [Cor03]. The perceived benefit of a

change must outweigh the perceived cost and risk.

1



CHAPTER 1. INTRODUCTION 2

Refactoring techniques are useful for making software more maintainable,

while limiting the scope of potentially costly changes. Refactoring refers to

changes that preserve the external behavior of code while improving its internal

structure [Opd92, FBB+99]. Because refactoring maintains external behavior, it

lessens some of the associated costs of a code change, for example, the costs of

changing client code, test suites, and documentation.

Modern integrated development environments (IDEs) [SDF+03, SFB06] gen-

erally provide tool support that helps programmers to quickly refactor their

code once they have noticed a potential maintenance problem. The IDE can

often determine whether a proposed refactoring is legal, determine additional

code that might be affected by the change, and reliably change the specified

code and its dependent code in a matter of seconds. This automated refactoring

support generally reduces cost, because the programmer is freed from much of

the required analysis, and reduces risk, because the automated refactoring tools

have presumably undergone ample quality assurance testing prior to release.

Refactoring typically makes the code easier to understand, which facilitates

future coding changes. Many people [FBB+99, Bec00, MB08a, Mar08] advocate

refactoring as part of a programmer’s daily coding routine. (Some go as far as to

recommend that programmers “refactor mercilessly” [ACP+06]). The underlying

idea is to make incremental design improvements in the form of refactoring part

of an evolutionary development process. By doing so, everyday development can

proceed more smoothly, and the designated maintenance phase of development

can be shortened. This underlying idea is often not realized, and software

maintainability problems persist into the maintenance phase of the software life

cycle.

Refactoring is also useful in the maintenance phase. As with other designated

maintenance activities, there are typically several steps involved – a programmer

must identify a potential problem, determine how to fix it, and then implement a

solution. The problem of locating maintenance problems amenable to refactoring

is an ongoing effort, and numerous researchers [FBB+99, DBDV04, LM06,

MB08b] have suggested ways of identifying problematic code (a.k.a. “bad

smells” [FBB+99]). How to perform the second step is even less clear-cut. For some

refactorings, determining how to fix the problem is trivial; for others, only high-

level advice exists. The third step, implementing the solution, has been aided by a

number of integrated development environments whose “automated refactoring”

tools provide a mechanism for mechanically altering source code, given the



CHAPTER 1. INTRODUCTION 3

appropriate inputs. Here too, the state of the practice is varied – some refactorings

are widely implemented and robust, while more complicated refactorings may

not have robust implementations (or any implementation at all).

Because object-oriented programming is one of the most popular programming

paradigms of today [Lan11], this thesis concentrates on refactoring techniques for

object-oriented programs. One of the less mature areas in refactoring is how to

reorganize the class structure of object-oriented programs. For object-oriented

languages like Java, C++, and C#, the fundamental organizational units are classes,

and one of the most important things for creating and maintaining code written in

object-oriented languages is getting the classes “right”. Yet, although there is high-

level guidance on how to design good classes [CY91, Rum96, Mar08], problematic

classes persist.

Much of the high-level guidance for creating good classes pertains to

having clear-cut divisions of responsibilities between classes. “One class, one

responsibility” is a common refrain [Mar08], and there are a variety of pejorative

terms that refer to classes where the division of responsibilities is not clear-

cut, e.g., “blobs” [MHVG08], “god classes” [LM06, WL08], and “spaghetti

classes” [BCM+96]. All of the bad smells below indicate problems with dividing

responsibilities between classes. For each of them, Fowler’s book [FBB+99]

provides some high level strategic advice about how class structures should be

modified by refactoring, e.g.:

1. Large class – Large classes that perform too many functions can be divided

into smaller ones, e.g., via the Extract Class refactoring (described in

Section 3.1.3).

2. Data Clumps – Groups of attributes (a.k.a. fields) that repeatedly show up

together in multiple classes can be grouped as the basis for a class, e.g., via

the Extract Class refactoring.

3. Feature envy – Classes with inappropriate functionality can have that

functionality moved to other classes, e.g., via the Move Method and Move

Field refactorings (described in Section 3.1.3).

The common theme for these refactorings is to put closely related class members

(attributes and methods) together in the same class and less closely related

members1 in different classes.

1This thesis uses the shorter term “members” instead of “class members” to refer to the attributes

and methods of a class, when the shorter term is unlikely to cause confusion.
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Figure 1.1: Extracting a class using an IDE

Unfortunately, such strategic refactoring advice generally lacks detail about

what needs to be done to effect a solution. For example, Figure 1.1 shows how one

IDE determines how to perform the Extract Class refactoring – by the user entering

the class members that should be moved to the new class. However, it is up to

the user to determine which members are to comprise the revised classes. This is

difficult when a class can consist of over a hundred members.

1.2 Objective

The objective of this research is to develop techniques that can improve the

maintainability of object-oriented classes by supplying the necessary detail on how

the class members should be reorganized. Given such input, programmers can

restructure code either using “automated” refactoring tools provided by popular

IDEs or manually. From our point of view, it would be ideal if programmers
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could easily identify difficult-to-maintain classes, and based on input supplied by

our techniques, easily refactor those classes into ones that were less expensive to

maintain.

1.3 Approach

If there were sufficient knowledge of what constitutes good class structure,

restructuring classes would be relatively easy. For example, one could construct a

“class structure evaluation function” and then use “generate and test” techniques

to create potential class structures to maximize the result of the evaluation

function [SSB06]. Unfortunately, such comprehensive knowledge about class

structure does not exist, so a more exploratory approach is indicated. An

exploratory refactoring environment helps researchers determine how to refactor

classes based on existing ideas of what constitutes good classes, and also helps

them discover additional characteristics of classes and their relationships that may

be useful for refactoring.

An interactive class refactoring environment should help with each of the

following tasks:

1. Identifying classes that violate guidelines concerning class structure.

2. Proposing potential refactorings that address these violations.

3. Performing the refactorings.

4. Evaluating the results of the refactorings.

5. Visualizing the classes before, during, and after refactoring.

The refactoring environment I created for my research concentrates on (2), but

makes contributions to (1), (4), and (5) as well. In principle, the first four tasks

could be completely automated, with the output of one task serving as the

input to the next one. In practice, however, we prefer an interactive approach,

where the environment provides helpful input to the programmer, rather than

programmatically making decisions and executing them.

There are many reasons to prefer an assistive, interactive approach to an

automated one [Cor03]. In our case, there are two main ones:

1. The state of the art for refactoring class structure is not sufficiently mature to

trust automated results.



CHAPTER 1. INTRODUCTION 6

2. There are many potential programming styles, each of which has advantages

in certain circumstances. A completely automated approach is unlikely to be

sufficiently flexible to satisfy users.

Chapter 4 discusses the ExtC (Extract Class) refactoring environment I created,

including details of user interfaces. The following subsections describe our

approach to the five refactoring subtasks above.

1.3.1 Identifying problematic classes

Figure 1.2: Locating classes using metrics

Object-oriented software metrics can help programmers detect poorly struc-

tured classes that are too large, too small, or have poor distribution of methods and

attributes across the class hierarchy [LM06, CK94, Hen96, CLM06]. Of particular
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interest are metrics that measure a class’s cohesion (how well the members of a

class work together) and those that measure coupling between classes (the degree

to which classes rely on other classes). Both cohesion and coupling have been

shown to correlate with maintainability [ASKM07, DJ03, CDK98]. In general, one

wants to maximize cohesion and minimize coupling [CK94].

We provide programmers the capability of constructing metric-based queries to

locate potentially troublesome classes. Figure 1.2 shows a user interface containing

a user-composed query and a table of matching classes and their metric values.

These classes can then be examined in a source editor or with a graph-based

visualization that shows their internal structural dependencies. Figure 1.3 shows

a visualization of one of the identified large classes, which shows the methods,

attributes, and certain relationships between them. In this thesis, we will generally

illustrate relevant points using graphs instead of the actual code. This tends to be

both clearer and more concise.

Figure 1.3: Visualizing a class using a graph
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1.3.2 Proposing refactorings

This thesis explores how a variety of clustering techniques can be applied to

creating higher quality classes. Clustering techniques [JMF99, Ber02, Sch07]

group together related entities into clusters. In the context of correcting poorly

designed classes, the entities to be clustered consist of the members of the classes.

The clustering algorithms use information about the affinity of the members to

determine which members most belong together in classes.

Figure 1.4: Identifying clusters of members

Some of these clustering techniques work by determining similarities between

entities. Others, derived from social network analysis, form clusters based on

patterns of communications between entities as shown in Figure 1.4. (Textual

identification of the group members is on the left, and a graph-based visualization

is on the right.) Still others work by evaluating the “semantic” content contained in

the classes. The class members within the clusters produced from these techniques

can serve as inputs to automated refactoring tools as shown in Figure 1.1.



CHAPTER 1. INTRODUCTION 9

1.3.3 Performing refactorings

Until relatively recently, almost all code changes were performed manually by

programmers. Beginning in the 1990s, integrated development environments have

been providing an increasing amount of semi-automated refactoring capability,

and some of these IDEs offer application programmer interfaces (APIs) for

refactoring [Wid06, Jem08]. Our research makes heavy use of existing capabilities

to restructure classes, but does not implement any new refactorings.

1.3.4 Evaluating results

Evaluating the effects of refactoring on maintainability can be difficult and

expensive. Because this is impractical for the scope of this thesis, we use

several software metrics that may correlate with maintainability [LH93, BBD01] to

evaluate the effectiveness of the refactorings.

There are some difficulties with using software metrics to measure the quality

of software. While there is general agreement on some high-level principles (e.g.,

high cohesion and low coupling are desirable [HM95]), there are seldom specifics

(e.g., what cohesion values indicate acceptable class structure). Furthermore,

there are no studies that we know of that indicate acceptable trade-offs between

various metric values. For example, what should happen when one metric shows

improvement (e.g., cohesion increases) while another metric shows degradation

(e.g., coupling also increases)?

Another possibility is to have programmers evaluate the results. This, too,

is problematic. Many of the characteristics of programs that make them hard to

maintain also make them hard to evaluate for improvement.

Given these difficulties, we use a multi-pronged approach to evaluating results.

First, we collect and compare metric values from before and after any restructuring.

Secondly, we evaluate our techniques relative to a test suite with known preferred

outcomes. Finally, we provide visualizations that help programmers see the

relationships between the members of classes, so that they can better compare

classes before and after refactoring.

1.3.5 Visualizing refactoring

Complex object-oriented classes are difficult to analyze and understand, and

therefore difficult to maintain. This same complexity also makes it difficult to see
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how best to refactor them. We help with this problem by providing visualizations

of the static structure of classes (as seen in Figure 1.3 and discussed in Section 4.2)

and by providing visualizations of the clustering technique results (as discussed

in Sections 5.5 and 6.3.1).

1.4 Contributions

The primary contribution of this research is the identification of the relative

strengths and weaknesses of various clustering techniques for identifying groups

of class members that can be used as the basis for refactoring object-oriented classes.

To address some of the weaknesses of current approaches, we introduce two new

techniques. The first, based on betweenness clustering [GN02, Bra01], determines

clusters based on the communication patterns within a class. The second,

dual clustering, determines clusters by sequentially using two complementary

techniques – betweenness clustering based on structure and agglomerative

clustering [Ber02, JMF99, WFH11] based on semantics.

In order to evaluate the use of clustering techniques in support of refactoring,

it was helpful to build an exploratory environment in which problematic classes

could be identified, examined, and repaired. This effort led to some additional

contributions. In order to better identify problematic classes, we analyzed many

cohesion metrics and their limitations. This led to the development of a technique

to make certain structural cohesion metrics more accurate by eliminating specified

class members and relationships from consideration, and including additional

relationships in the calculations. This same technique is also useful for reducing

noise in the inputs to clustering.

To help determine whether clustering was producing meaningful results,

we created two novel visualizations of clustering acting upon class structure.

In addition, we created a test suite of Java classes to use for the Extract Class

refactoring. Given these classes as inputs, one can determine whether tools

produce the desired recommendations for refactoring.

1.5 Organization of the thesis

The thesis is organized as follows. The next chapter, Chapter 2, discusses how

to evaluate the quality of object-oriented classes and concentrates on the use of
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metrics, especially cohesion metrics. It goes into some detail on some of the

weaknesses of the cohesion metrics, and also discusses a structural technique we

use to improve them for use with refactoring.

The next two chapters cover common material useful for understanding

Chapters 5 - 7. Chapter 3 provides general background information on refactoring

and clustering, while Chapter 4 describes the refactoring environment in which

the clustering and refactoring investigations took place.

Chapters 5 - 7 contain the bulk of the analysis and new work. These chapters

discuss the utility of various clustering techniques for refactoring object-oriented

classes. Chapter 5 discusses distance-based clustering techniques, such as

agglomerative clustering and k-means [Har75, HW79, Ber02, JMF99]; Chapter 6

discusses graph-based clustering techniques, such as betweenness clustering and

max flow/min cut [FF09]; and Chapter 7 discusses how combining multiple

clustering techniques can aid refactoring. All three of these chapters follow

a similar outline. They start with a background discussion of the clustering

techniques and then describe prior work on applying clustering techniques to

refactoring object-oriented systems. Next is a discussion of our contributions

of applying the particular clustering technique towards refactoring, and an

evaluation of the various approaches. Chapter 8 contains a review of the

contributions of the thesis and discusses potential future work.



Chapter 2

Evaluating the Quality of Classes

Our goal is to improve the structure of object-oriented classes to make them more

maintainable. Given a sufficient description of the characteristics of good object-

oriented classes, it should be possible to determine whether or not a class has

those qualities.

Books often advise developers of object-oriented systems to create classes

that represent single concepts [RBL+90] or have single responsibilities [Mar08],

and state that the members of a class should all work well together [BME+07].

However, as Booch, et al. [BME+07] point out, it is difficult to define a class

correctly the first time. Programmers can have different opinions about what

constitutes a good class, because the concepts on which classes are based may be

imprecise or overlapping, and there are subtleties that can affect the design, e.g.,

the desired granularity of the public interfaces to the class. There are additional

constraints on design imposed by a desire to have maintainable classes, e.g., a

class should be easy to analyze and change [ISO06, fS01].

These characteristics of a good object-oriented class are mostly based on the

perceptions of the people using the class, and the degree to which a class possesses

these characteristics will vary by individual. They are not easy characteristics to

measure. These cognitive characteristics can be classified as external attributes of

software, i.e., their measurement requires something in addition to the software

itself. For example, measuring the analyzability of a class involves the software

being analyzed, analysis tasks, and the humans performing the analysis.

Designing and executing experiments to measure cognitive abilities is difficult,

due in part to the difficulty in determining the subjects’ thought processes, the

many variables involved, and the difficulty in creating appropriate controls for

12
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the variables being tested. Simpler attempts to measure cognitive characteristics

of software also have drawbacks. For example, while it is possible to query many

programmers about each class to determine whether the class had the desired

characteristics, such an approach is expensive and generally impractical, due to

the many programmers that need to be involved to make the results statistically

significant.

It is generally easier and cheaper to measure internal attributes of the software,

i.e., measurements on the software itself. Some internal attributes that are

frequently mentioned as desirable are small size, low coupling, low complexity,

and high cohesion [CSC06, BBG08, DJ03, LH93, MPF08, ASKM07, CDK98];

however, it is worth noting that there is debate about whether these all correlate

with maintainability [DJ03, EBGR01, BWZ02, BEGR00, SK03]. We use metrics

based on internal attributes of the software to identify classes that may benefit

from refactoring. Following refactoring, those same metrics are used to help

evaluate the quality of the refactored classes relative to the original ones.

This chapter discusses how we attempt to measure the quality of object-

oriented classes using internal attributes of the software. The chapter begins

with a discussion of object-oriented software metrics, with an emphasis on class

cohesion metrics. This is followed by a section on research that uses metrics to

detect bad smells indicative of problem classes. Section 2.3 analyzes features

of the Java language that can cause many cohesion metrics to give misleading

results, while Section 2.4 discusses modifications we made to existing metrics

to better handle those Java features, then discusses our experiments with the

modified metrics to determine whether they helped to better identified flawed

classes. The chapter concludes with an analysis of the use of metrics in the context

of refactoring and a summary of our contributions.

2.1 Background – object-oriented software metrics

Software metrics can be used for many purposes, and particular metrics are

better suited for some purposes than others. We are interested in using metrics

to measure the quality of object-oriented classes – to help identify Java classes

that are in need of refactoring and to help confirm that the classes’ quality has

improved as a result of refactoring.

This section discusses some object-oriented size and complexity metrics that
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may correlate with maintainability. Many of these evolved from metrics that were

used to help evaluate structured designs [YC79, SMC79] and were later adapted

for the object-oriented paradigm [EKS94, CK91].

2.1.1 Class size

Intuitively, small classes should be easier to analyze and change than large classes,

and several researchers have noted a correlation between class size and fault

proneness [DJ03, EBGR01, LH93]. While measuring the size of software is a

simple idea, there are several options of what can be measured – number of lines

of code (LOC), number of methods, number of fields, etc. We most often use the total

number of methods as a measure of an object-oriented class’s size, because this

gives an indication of the number of high-level functions a class supports.

2.1.2 Intraclass complexity – WMC

Simple classes should be easier to analyze and change than complex classes.

The Weighted Methods per Class (WMC) metric combines both size and complexity.

Chidamber and Kemerer [CK94] define the WMC as the sum of the complexities of

a class’s methods. They deliberately do not define what constitutes the complexity

of a method.

Several researchers [BLL09, CLM06, CAG11, LM06] use WMC with cyclomatic

complexity [McC76] as the method complexity metric. Cyclomatic complexity

measures the amount of logical branching (number of decision points) in a method.

We also use WMC in combination with cyclomatic complexity to detect large,

complex classes.

2.1.3 Intraclass complexity – cohesion

In general, cohesion refers to how strongly related the members of a group are. In

structured design, cohesion refers to how closely related the processing elements

in a module are [YC79]. In the most cohesive modules, the processing elements

all pertain to the module’s single function. Slightly less desirable, but easier to

recognize, are modules that are sequentially cohesive, where the output data from

one processing element serves as input data for the next.

The ideas about cohesion from structured design were adapted for use in

object-oriented design [EKS94, CK91]. For cohesion measurement purposes, the
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classes, methods, and attributes in object-oriented design roughly correspond

to the modules, processing elements, and data of structured design. Ideally, the

methods and attributes in a class are closely related to each other, and this is

reflected in their patterns of interaction. For object-oriented classes, the term

cohesion refers to how well the attributes and methods of a class work together.

Because cohesion is considered integral to good object-oriented design, there

have been many attempts to measure it, both from a structural and from a

conceptual point of view. There are over 40 different cohesion metrics in the

literature (see Appendix D). Rather than attempt a detailed review, this section

highlights cohesion metrics and principles that researchers have found useful

relative to refactoring. See Briand, et al. [BDW97], for a more detailed overview of

the early work on measuring object-oriented cohesion.

Structural cohesion metrics

Structural cohesion metrics measure relationships between various code constructs.

We are most interested in metrics that measure the relationships among attributes

and methods within a single class [CK94, BT07, BDW97, CKB00, EGF+04, Hen96,

HM95, ZLLX04], although some metrics measure the relationships between

methods and parameters [BEDL99, CSC06], and others consider relationships

to members of other classes [ML09, ML07]. Intraclass structural cohesion metrics

analyze the structure of a single class’s code to calculate a cohesion score based

on the degree to which a class’s methods access the other class members (e.g.,

attributes and methods). This is the largest class of cohesion metrics, presumably

because measurements of the existing static interactions between class members is

a logical indication of how much the members belong together.

As several authors [CKB00, HM95, ZLLX04, AD10] have noted, we can

interpret many structural cohesion metrics in terms of graph analysis, where

nodes in the dependency graph are methods or attributes, and edges indicate a

method calling another method or a method accessing an attribute. The code in

Figure 2.1 is a toy MetricDiscriminator class that will be used to show the

differences between how various structural cohesion metrics calculate cohesion.

Figure 2.2 is the corresponding intraclass dependency graph, where circular nodes

represent MetricDiscriminator’s methods, stars represent its attributes, and

the directed edges indicate methods calling methods or accessing attributes. In

Figure 2.2, there is an arrow from m1 to m0, because the method m1 calls the
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public c l a s s Metr icDiscr iminator {

private i n t a1 , a2 , a3 , a4 = 4 , a5 ;

public i n t m0( i n t i1 , i n t i 2 ) { return i 1 + i 2 ; }

public i n t m1( ) { return a1 = m0( a1 , 1 ) ; }

public i n t m2( ) { a2 = a3 = 3 ; return m0( a2 , a3 ) ; }

public i n t m3( ) { return a4 = a3 ; }

public i n t m4( ) { return a4 ; }

public i n t m5( ) { return a5 ; }

public void m12 ( ) { m1( ) ; m2( ) ; }

}

Figure 2.1: MetricDiscriminator source code

Figure 2.2: MetricDiscriminator intraclass relationships

method m0, and there is an arrow from m1 to a1, because the method m1 accesses

the attribute a1.

LCOM

Chidamber and Kemmerer [CK94] thought that a well-designed class should have

a set of attributes that are commonly used by the class’s methods. Their Lack of

Cohesion in Methods (LCOM) metric compares the number of dissimilar pairs of

methods to the number of similar pairs of methods, where two methods are similar

if they each access a common attribute directly. If there is a greater number of

similar methods than dissimilar methods, then LCOM is zero. Otherwise, LCOM

equals the number of dissimilar pairs of methods minus the number of similar

pairs of methods. A maximally cohesive class has an LCOM score of 0, as do some
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other less cohesive classes. There is no upper bound on the scores of noncohesive

classes.

In Figure 2.1, methods m2 and m3 are considered similar because they both

access attribute a3, whereas m1 and m2 would be dissimilar, because they access

no common attributes. MetricDiscriminator has an LCOM score of 17,

because (m2, m3) and (m3, m4) are similar, and the other 19 pairs of methods are

dissimilar.

There are a number of problems with using LCOM to measure cohesion [HM95,

BDW97, CKB00, ML06]. For example, many classes with varying degrees of

cohesiveness can have an LCOM score of zero. Furthermore, LCOM is not a

normalized metric. Because LCOM is measured based on the difference between

the counts of dissimilar pairs of methods and similar pairs of methods, there is a

correlation between the number of methods in classes and their LCOM scores. A

relatively large LCOM score for a small class generally indicates a more disjointed

class than that same score for a larger class. Despite its problems, LCOM has

inspired a number of other cohesion metrics. In particular, many subsequent

metrics also place primary importance on method-attribute interactions.

“LCOM*”

Henderson-Sellers’ enhancements to LCOM [Hen96] have been referred to by

different names (LCOM* [BDW98, FPn06, BT07, SB10], LCOM3 [WZW+05],

LCOM5 [BDW97, AD10, CEJ06, BBG08, UFPG10], and LCOM-HS [LLL08]) by

different authors. This thesis uses “LCOM*”, because that is the name used by the

Metrics2 plug-in [SB10] that is part of our refactoring environment.

Henderson-Sellers wanted a lack of cohesion metric that was normalized to a

range of 0.0 to 1.0, where 0.0 indicates perfect cohesion (every method accesses

every attribute) and 1.0 indicates total lack of cohesion. LCOM* is defined as:

LCOM∗ =
1

a

∑a

i=1
n(Ai)−m

1−m
(2.1)

where a is the total number of attributes, m is the total number of methods, and

n(A) is the number of methods that access attribute A. The LCOM* score for

MetricDiscriminator is 0.93.
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“LCOM4”

Hitz and Montazeri’s enhancements to LCOM [HM95] have been referred to

by different names (LCOM4 [BT07, CKB00, EGF+04], LCOM2 [WZW+05], and

LCOM3 [BDW97]) by different authors. This thesis uses “LCOM4”, in keeping

with the majority.

Hitz and Montazeri take a graph-theoretic approach to cohesion. LCOM4

is defined as the number of connected components of an undirected intraclass

dependency graph, so MetricDiscriminator has an LCOM4 value of 2.

Among LCOM4’s enhancements to LCOM is that it considers both direct and

indirect access of methods to attributes. For example, LCOM4 considers m12 and

m3 to be similar, because they each access attribute a3. The m12 method accesses

a3 indirectly through m2, so the original LCOM would not consider m12 and m3

to be similar.

There are several reasons for making indirect access from a method to an

attribute within a class as important as direct access to an attribute. For example,

consider a scenario where a class originally had a large m12 that directly accessed

a3. Later, a programmer refactors the large m12 method, so that it calls the

extracted m2 method, which calls a3. The class has the same functionality as

before the Extract Method refactoring, and m12 is just as dependent on a3 as it was

originally.

LCOM4 is not normalized; it ranges from a maximal cohesion of one and has

no upper bound on lack of cohesion. Because it is equivalent to the number of

connected components of a graph, its definition of lack of cohesion appeals to

those looking for classes that can be easily split.

TCC, LCC

The Tight Class Cohesion (TCC) and Loose Class Cohesion (LCC) metrics [BK95]

measure the proportion of pairs of connected, visible instance methods to the

maximum possible number of pairs of connected, visible instance methods, so

TCC and LCC scores range from 0 (least cohesive) to 1 (most cohesive). TCC

considers two methods to be connected when they both have paths to a common

attribute following directed edges. Like LCOM4, TCC considers m12 and m3 to be

connected, because they both access attribute a3 either directly or indirectly.

If one converts a directed dependency graph to an undirected one, LCC

considers two methods to be connected if there is any path between them in
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the undirected dependency graph that passes through one or more attribute nodes.

In our example, LCC considers m2 and m4 to be connected, because both of them

are connected to m3 (via a3 and a4 respectively). The rationale behind this is that

the intermediary methods can pass values indirectly to the other methods via the

attributes. In the example, m2 sets the value of a3; m3 reads a3 and sets a4, and

m4 reads a4, so m2 can affect the output of m4. Because this indirect connection

exists, MetricDiscriminator’s LCC value (0.48) is greater than its TCC value

(0.24). The LCC value will always be greater than or equal to the TCC value.

DCD, DCI

All of the previously mentioned cohesion metrics calculate cohesion based on some

notion of connectivity between methods and attributes. Badri and Badri [BB04]

point out that methods can be connected via access to common methods that do

not necessarily access any attribute in the class. Degree of Cohesion Direct (DCD) and

Degree of Cohesion Indirect (DCI) are closely related to TCC and LCC respectively,

but extend them, primarily by considering two methods to be connected if they

access a common method either directly or indirectly, but also by considering static

members. DCD and DCI scores range from 0 (least cohesive) to 1 (most cohesive).

DCI extends DCD similar to how LCC extends TCC. If one converts the directed

dependency graph to an undirected one, DCI considers public methods to be

connected if there is any path between the methods in the undirected dependency

graph.

In the example of Figure 2.2, DCD and DCI consider the m1 and m2 methods to

be connected, because they both use the m0 method. In contrast, TCC considers

them to be unrelated, because they do not access a common attribute. (LCC

considers m1 and m2 to be related via indirection through the method m12.)

Consequently, the DCD score (0.29) is slightly higher than the TCC score (0.24),

while the DCI and LCC scores are the same (0.48). DCI considers the m1 and m3

methods to be connected, because both of those are connected to m2 (via m0 and

a3 respectively), so the DCI score is greater than the DCD score. The DCI value

will always be greater than or equal to the DCD value.

CBMC, ICBMC

The metrics mentioned thus far base their calculations on the number of

interactions between methods and attributes, but do not consider the pattern
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of those interactions. Chae and his colleagues’ [CKB00] Cohesion Based on Member

Connectivity (CBMC) cohesion metric considers the patterns of interaction based

on a graph representation of the call pattern between methods and attributes.

They were motivated by what they perceived as deficiencies in some of the

earlier approaches to measuring cohesion. Figure 2.3 illustrates the dependency

graphs of four different classes, based on one of Chae’s examples [CKB00].

Although all four classes have the same number of methods and attributes, Chae

contends that intuitively, cohesion increases going from class A to class D. While

A and B have the same number of attribute accesses, the graph of class A is

disconnected. While the dependency graphs of classes B-D are all connected, the

number of edges increases, so cohesion should also increase. However, when they

calculated cohesion for these classes using nine existing metrics (including the

ones mentioned above), none of the metrics gave the expected behavior.1 Every

metric showed at least two of the classes having the same cohesion value.

(a) Class A (b) Class B

(c) Class C (d) Class D

Figure 2.3: Cohesion graph variations

CBMC introduced a novel way of calculating cohesion, based on breaking

apart a reference graph. Reference graphs are bipartite graphs consisting of nodes

that represent methods or attributes. There is an edge between a method and an

attribute if the method can access that attribute either directly or indirectly using

other methods. CBMC breaks apart a reference graph by removing the nodes that

1Al Dallal [AD10] provides a larger set of dependency graphs that he uses to illustrate the lack

of discriminatory power of 16 structural cohesion metrics.
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would most quickly fragment the graph into maximally connected components

(MCCs), where an MCC is a graph where all of the method nodes are connected

to all of the attribute nodes. Figure 2.3(d) is an MCC without the removal of

any nodes, so it is maximally cohesive. The mechanism for calculating CBMC is

complicated and can involve evaluating multiple alternatives for fragmenting the

graph, so it will not be reproduced here.

Zhou, et al. [ZXZY02] noticed that there were some cases where CBMC

calculated a higher cohesion score for a graph with fewer edges than a similar

graph that was more densely connected. They eliminated this problem with their

Improved CBMC (ICBMC) cohesion metric, which fragments the reference graph

by removing edges rather than nodes. CBMC and ICBMC scores both range from

0 (least cohesive) to 1 (most cohesive).

Chae, et al. [CKB00] also made explicit the idea of special methods, which are

methods that should not be taken into account when calculating cohesion. Special

methods are considered unrepresentative of the real purpose of the class and

therefore serve as “noise” when trying to measure cohesiveness. Such methods

include constructors, which access many attributes for initialization purposes, and

accessors, which typically provide access to exactly one attribute but provide no

behavioral logic.

Conceptual and semantic cohesion metrics

The ISO standard’s [ISO06, fS01] characteristics of maintainability (analyzability,

changeability, etc.) are predominately semantic criteria. “Conceptual” and

“semantic” metrics attempt to measure the software based on interpretations of

the programmers’ intent based on word usage within the software [ED00, MP05,

CEJ06, Etz06, MPF08, SDGP10, LPF+09, PM06, ED00]. Typically, these approaches

analyze the words that are embedded in the source code and associated comments,

looking for overlapping meaning in different parts of the software.

Etzkorn [Etz06] uses semantic metrics to refer to metrics such as Logical

Relatedness of Methods (LORM) [ED00] and Semantic Closeness from Disambiguity

(SCFD) [CEJ06], that measure software using knowledge-based natural language

processing. These techniques are applied to identifiers and/or comments to see

how close a class’s members are to each other conceptually. Etzkorn uses conceptual

metrics for metrics such as Conceptual Cohesion of Classes (C3) [MP05] and Conceptual

Lack of Cohesion Between Methods (CLCOM5) [UFPG10], that rely on usage statistics
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rather than some underlying knowledge base or dictionary. Because these terms

are not always distinguished in the literature, and because they both analyze

the content of identifiers and comments, we will generally use “semantic” and

“conceptual” interchangeably.

The idea of using underlying knowledge bases or dictionaries to help determine

the intent of the program is a good one; however, we do not use them in our

research. Creating and using such knowledge bases is a challenging task and

beyond the scope of this thesis. On the other hand, we do make use of conceptual

metrics that are based on usage statistics.

The C3 metric [MP05] is a good example of a cohesion metric based on usage

statistics. It measures the similarity in word usage between two methods. It

is similar to document similarity metrics that measure the overlap in content

between documents. For C3, the “documents” are the methods, and the words

embedded in the identifiers and in the comments constitute the content of the

documents.

C3 collects data on all of the methods in a class. For each method, it gathers

the words that are present in the identifiers and comments, and puts them into

a vector using latent semantic indexing (LSI) [DDF+90]. The authors note that

other information retrieval based techniques could be used, e.g., vector space

models [TP10, SWY75], but that they chose LSI due to positive experiences with

other software tasks based on semantics. They define the Conceptual Similarity

between Methods (CSM) function as the cosine similarity between their vectors. The

C3 value for a class is the maximum of zero and the average CSM value for each

pair of methods in the class. C3 ranges from a minimum of 0 to a maximum of 1.

Because a C3 implementation was not available to us, I have created a variant

of C3, the C3 (Vector space model variant) (C3V) metric. The primary differences

between C3 and C3V is that C3V uses a vector space model to create a vector rather

than LSI, and that the distance function that C3 uses only computes similarity

between methods, while C3V’s function calculates distances between all class

members.

While semantic cohesion metrics can be useful, they can also be unreliable.

They depend on the programmer encoding meaningful information in the

identifiers and documentation. For the extreme case of obfuscated code (or any

code having non-meaningful identifiers), semantic cohesion metrics are nearly

useless. Furthermore, a class’s semantic cohesion measurement can change due

to a simple renaming of one of its members. This is an undesirable consequence,
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given that the class functions exactly as before.

Comparative studies

Many researchers have done comparative studies on cohesion metrics, often in

the context of showing why their new new metric is an improvement, e.g. [BB04,

CKB00, ZLLX04]. The following paragraphs give a brief summary of the results

of some of the more independent studies.

Briand, Daly, and Wust [BDW97] analyzed many cohesion metrics and created

a theoretical framework encompassing the key points behind the various metrics.

They observed that metrics differ in how they handle various features of object-

oriented programming languages (e.g., inheritance, constructors, accessors, etc.).

They note that there are different reasons for measuring cohesion, and that the

purpose of the measurement should guide the selection of an appropriate metric.

For the purposes of deciding when to split a class, they recommend cohesion

metrics that are based on indirect connections between methods and attributes,

rather than on direct connections.

Etzkorn et al. [EGF+04] set up tests to correlate the opinions of software

engineers regarding the cohesion of classes with the measurements produced

by eight cohesion metrics. Each test was conducted on test sets consisting of

fewer than 20 test classes. One group of evaluators was composed of seven

software engineers with at least a BS degree in computer science or electrical

engineering and five years of experience. The other was composed of graduate

students studying software engineering. While there was variability between the

opinions of the two group of evaluators, both groups’ opinion-based cohesion

scores correlated most closely with LCC. (However, Dagpinar and Jahnke [DJ03]

found no correlation between LCC and maintainability when they examined the

maintenance history of two software systems.) Etzkorn’s study also found that

there was often poor correlation between the cohesion values produced by some

of the metrics.

Marcus and Poshyvanyk looked at the correlations between eleven different

cohesion metrics [MP05]. They found significant correlations between some

metrics and very little between others. The highly correlated metrics tended

to be in the same “family” of metrics, e.g., the ones derived from LCOM; however,

they did see some cross family correlations, including between the structure-based

LCOM* [Hen96] and their semantics-based C3.
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Barker and Tempero [BT07] conducted an empirical study of 16 cohesion

metrics on 92 Java applications to see what values were typical for real-world

systems. They also found some correlation between metrics in the same family

and significant variation between metrics in different families. They concluded

that “it is unclear which are of useful value”.

All of these studies found significant variation between different families of

structural cohesion metrics. Some of these variations are due to imprecision in

how the metrics were defined. For example, some metrics do not state what

happens when there are no attributes or no methods. In other cases, implementers

of metrics may make arbitrarily different decisions. One metric will consider a

class with a single method to be maximally cohesive while another will consider it

maximally noncohesive. Metrics also frequently differ in how they treat special

methods. Section 2.4 discusses some techniques we have introduced to address

some of the problems relative to special methods.

2.1.4 Interclass complexity – coupling

Coupling refers to the dependencies of entities on external entities, for example,

a method in one class depending on a method in another class. These

dependencies include methods in one class calling methods in another class,

inheritance relationships between classes, the use of a class as an attribute

type, the use of a class as a parameter type or as a return type for a method,

etc. [BDW99, CK91, EKS94, HM95].

Low coupling may indicate a good division of the functionality of the classes,

i.e., classes are not directly reliant on the capabilities of many other classes. High

coupling may indicate potential maintenance problems. With highly coupled

classes, it can be more difficult to isolate the source of a behavior among the

densely interconnected classes. Also, when a highly coupled class is changed,

these changes are more likely to require follow-on changes to the coupled classes.

Metrics differ in how they assign weights to various kinds of coupling. For

example, some metrics [EKS94, HM95] consider the direct access of one class’s data

by another to be a tighter coupling than when classes share data via the parameters

of methods. In their summary of the variation between coupling metrics, Briand

and his colleagues [BDW99] noted that the strength of coupling varies according

to the types of connections and the numbers of connections between classes. Most

coupling metrics give scores for an entity, e.g., they measure the degree to which a
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class is connected to multiple other classes.

Coupling metrics can often be classified as either import coupling or export

coupling metrics. Import coupling metrics measure the dependencies a particular

class has on others. The Message Passing Coupling (MPC) metric [LH93] is an

example of an import coupling metric, because MPC counts the number of times

a class calls methods external to the class. Export coupling metrics measure how

much a particular class is relied upon by others. Coupling Between Object Classes

(CBO) [CK94] is a well-known example. For a given class, CBO is the number of

classes which are in a uses relationship with the indicated class; i.e., the count of

the classes that access the methods or attributes of the indicated class.

Coupling metrics typically indicate which individual classes are highly coupled

to others. They do not typically identify excessive coupling between two particular

classes, which can be useful information for the task of identifying classes in

need of refactoring. Nevertheless, several refactoring researchers have either

used coupling metrics or have incorporated some of the principles of coupling

metrics [TM05, LM06, FTSC11], mostly for help in determining whether a method

should be moved from one class to another. Section 2.2.1 discusses coupling

relative to detecting feature envy.

2.2 Related work – detecting bad smells

Bad smells are emitted from code that “stinks” and needs changing [FBB+99]. Bad

smells are indicators of potential maintainability problems that can often be fixed

by refactoring.

We agree with Beck and Fowler [FBB+99] that “no set of metrics rivals informed

human intuition” for detecting bad smells, at least for the current state of the art.

In many small-scale software development scenarios, experienced developers

can easily locate classes that are prone to error or difficult to maintain. However,

on large systems, or when there is a lack of such expertise, it is useful to have a

consistent, programmatic way of locating potential problem classes. The combi-

nation of metrics and visualization tools can be particularly effective for helping

programmers identify classes in need of refactoring [SSL01, PGN08, WL08].

The existing research on locating classes with bad smells using metrics [CLM06,

DBDV04, FTSC11, LM06, MB08b, SSL01, TC09, TM05, Mun05, WL08] generally

attempts to translate qualitative bad smell descriptions [FBB+99] into quantitative
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criteria by which faulty classes can be identified programmatically. This entails

picking the proper combination of metrics and thresholds for those metrics.

This section discusses how the feature envy and large class smells can be

detected using metrics. Subsequent chapters discuss techniques for identifying

how to refactor the classes once these smells are detected.

2.2.1 Detecting feature envy

A class suffers from feature envy when it makes heavy use of another class’s

methods or attributes [FBB+99]. When this occurs, it is worth determining whether

some of the methods and attributes should be moved between the classes to lessen

interclass dependencies and the consequent coupling.

There are several feature envy detection strategies in the literature, e.g. [LM06,

TC09, TM05, SSB06]. Of these, the approach taken by researchers at the University

of Macedonia [TC09] is the most detailed. Because there is much detail, we will

only give a brief overview here. The cornerstone of their approach is an entity

placement metric, which measures how tightly associated each class member is with

its own class, i.e., what proportion of the member’s interactions are with members

of its own class rather than members of other classes. The entity placement value

for the system is the average value of the entity placement scores of its classes.

Their technique allows them to identify which members are closely associated

with other classes, and after relocating those members via refactoring, the system

entity placement metric enables them to determine whether the system as a whole

has improved. Their approach will be discussed in detail in Section 5.2.2.

2.2.2 Identifying large (god) classes

Large classes often contain too much functionality. When a class has too much

functionality, some groups of functions might be better compartmentalized by

placing them into additional classes.

There is no consensus on how to locate a class that is difficult to maintain due

to its large size. There have been metric-based recommendations to limit class size

since at least 1994, when Lorenz and Kidd [LK94] stated that the number of public

instance methods in a class should be ≤ 20 for a non-UI class and ≤ 40 for a UI

class, and the number of instance variables should be ≤ 3 for a non-UI class and

≤ 9 for a UI class. On the other hand, several large class detection strategies are



CHAPTER 2. EVALUATING THE QUALITY OF CLASSES 27

based on more than just the size of the class [LM06, TM05, CAG11, OCS10, WL08].

These authors use the term god class to indicate that it is a special kind of large

class that is capable of performing many tasks. These god class detection strategies

identify classes above a certain complexity and/or below a certain cohesion. (The

specific criteria that we use to detect god classes are given in Section 2.4.3.)

However, it also seems clear that many programmers have a tolerance for

large classes. For example, Gorschek, Tempero, and Angelis [GTA10] wanted to

determine what theories of good object-oriented design were used in practice.

They conducted a questionnaire-based on-line survey and analyzed 3785 responses

from software practitioners. Over half of the respondents either were against a

limit on the number of methods per class or did not care how many methods a

class had. In the same study, only 45 respondents thought that there should be an

absolute upper limit on the number of methods per class.

2.2.3 Determining thresholds of smell detection

For those people who believe in limits on class size, there is significant difference

of opinion regarding what those limits should be. The 45 respondents from

Gorschek’s study [GTA10] that supported an absolute upper limit had a median

suggested limit of 10 methods per class. For the 2450 respondents who were

“somewhat supportive” of a limit, the median suggested limit was 15 (although the

highest suggested limit was 1000). For those researchers who implement bad smell

detectors, the thresholds for the different metrics within the god class queries can

differ considerably from one approach to the next.

Some bad smell detection approaches attempt to derive meaningful thresholds

based on statistical measurements. For example, Lanza and Marinescu’s [LM06]

thresholds are based on mean values and standard deviations, e.g., for many

metrics, a high threshold is equal to the average value plus the standard deviation.

Crespo, Lopez, and Marticorena [CLM06] make use of quartiles to determine

metric value thresholds, e.g., a high value might be one in the upper quartile of a

distribution. To our knowledge, nobody claims that their queries use threshold

values based on empirical data that correlates metric values to maintenance activity.

Because the threshold values are based primarily on intuition, it is not surprising

that the values chosen vary widely. For example, the WMC threshold for god

classes ranges from 13.5 [CLM06] to 47.0 [LM06], depending on the approach and

project being investigated.
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There is still considerable debate about what constitutes appropriate criteria for

determining whether a large class is difficult to maintain and needs modification.

However, unless the maintenance approach is fully-automated, it is not necessary

to have precise criteria. Instead, maintainers can search for god classes in an

iterative fashion. If the results of a search contain too many classes that do not

need refactoring, the search criteria can be made more restrictive. If the results of

a search contain a high percentage of classes that do need refactoring, the search

criteria might be loosened in an attempt to find more classes to refactor. The

decision about whether specific search criteria are effective can be based on human

judgment or on other criteria, e.g. measurable improvement of the refactored

classes.

2.3 Analysis of existing cohesion metrics – sources of

failure

Some of our early work on refactoring god classes [CAGN09] used a god class

query to identify potential candidates for the Extract Class refactoring. It seemed

like our goal of locating poorly designed classes amenable to refactoring would be

a simple matter. The plan was to create a bad smell query that used a cohesion

metric to locate noncohesive classes, refactor those noncohesive classes, and then

use the cohesion metric to validate that the cohesion had improved.

The plan did not work as well as we had hoped. Relative to our intuition, the

cohesion metrics reported an inordinate number of false positives (classes that

were reported as noncohesive, but were not) and false negatives (classes that were

reported as cohesive, but were not). While the metrics helped narrow the scope of

classes to look at, it was still necessary to inspect the classes manually to eliminate

false positives.

We attribute much of the mismatch between our expectations and the actual

cohesion results to flaws in how the metrics measure software. In their paper

about software metric validation, Kitchenham et al. [KPF95] state that an important

assumption regarding measuring software is “that two units contributing to a

particular value are equivalent.” This is where existing metrics often fail – they do

not distinguish enough between the various roles of methods, attributes, and the

relationships between them when measuring cohesion.

This section discusses our identification of Java features that can have
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undesirable affects on cohesion measurements. It explains how the presence

of these features can cause cohesion measurements to be higher or lower than

expected, sometimes to a large degree. We have separated these features into

two broad categories, illusory and hidden cohesion, depending on whether

they typically generate higher or lower cohesion values than expected. Many

of these features will be discussed in the context of some deliberately noncohesive

“PersonCar” classes from our test suite.

2.3.1 Example noncohesive classes – PersonCars

This section describes three closely related classes from our test suite that were

designed to be conceptually noncohesive, and whose source code can be found

in the appendices – PersonCarDisjoint (Appendix A.2), PersonCarDirect

(Appendix A.3), and PersonCarSpecial (Appendix A.5). Figure 2.4 shows

intraclass dependency graphs for the three PersonCar variants.

Each of these classes has functionality pertaining to persons and functionality

pertaining to cars. The person functionality includes the attributes id, first-

Name, and lastName, their accessor methods, and the getPersonInfo and

getPersonName methods. The car functionality includes the attributes make,

model, and vin, their accessor methods, and the getCarDescription and

getCarInfo methods. PersonCarDirect and PersonCarSpecial also have

additional functionality unrelated to the primary purpose of the classes.

In each of the graphs in Figure 2.4, there is a group of members in the bottom

left that pertains to cars, and is a group of members on the bottom right that

pertains to persons. The three classes differ as follows:

1. The PersonCarDisjoint class of Figure 2.4(a) was designed to be

noncohesive. It contains two distinct groups of members, and there are

no interactions between the two groups.

2. The PersonCarDirect class of Figure 2.4(b) is like PersonCarDisjoint,

but has an additional toString method that calls getCarInfo and get-

PersonInfo, thereby connecting the previously disconnected groups.

3. The PersonCarSpecial class of Figure 2.4(c) is like PersonCarDirect,

but also has equals and hashCode methods that access all of the attributes

and a logger attribute that is accessed by many of the methods.

These classes will help illustrate the effects of illusory cohesion.
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(a) PersonCarDisjoint

(b) PersonCarDirect

(c) PersonCarSpecial

Figure 2.4: PersonCar variations
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2.3.2 Illusory cohesion

We use the term illusory cohesion to refer to code constructs that cause cohesion

values to be higher than expected. Sources of illusory cohesion include:

• Code that initializes an object, generally setting the values of many attributes.

• Code that deals with the identity of an object based on its attributes.

• Other cross-cutting concerns – code that is not related to the primary reason

of the object’s existence, but that accesses many of the attributes of an object.

This section discusses many of the constructs causing illusory cohesion.

Constructors and initializers

Constructors and initializers frequently set the initial values for many attributes,

while not providing any domain logic. This can cause misleadingly high scores,

because the attributes are linked together through the initialization code. For

this reason, a number of cohesion metrics [BB04, BK95, CKB00] do not consider

constructors when calculating cohesion. A problem with this approach is that some

programmers embed significant behavior in constructors, while those constructors

may have little or no explicit attribute initialization.

It is easy to detect and omit constructors from consideration; it is not always

easy to programmatically detect other initialization methods that set the initial

values of many attributes and make the class seemingly cohesive. Particular

projects may or may not have naming conventions that would make initialization

easier to detect. In some cases, if initialization methods can not be detected

readily, they may cause the cohesion metric to show a lower than expected

score when constructors are removed from consideration. For example, factory

methods’ [GHJV94] primary activity is to call a constructor. When constructors

are filtered out, factory methods will appear to be disconnected from the rest of

the class. Notice the isolated create* elements in Weka’s XMLElement class2 in

the upper right of Figure 2.5; the code for one of them is shown in Figure 2.6.

We believe that constructors should generally be ignored when calculating

cohesion; however, there are circumstances when they should not be, e.g., when

constructors perform some functions besides initializing attributes.

2Appendix B contains information on the open source software used in our work.
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Figure 2.5: Constructor removal in XMLElement

public IXMLElement createElement ( S t r i n g fullName ) {

return new XMLElement ( fullName ) ;

}

Figure 2.6: Example factory method

Object’s methods - toString, equals, ...

The methods provided by Java’s Object class are not intended to provide domain

logic; rather, they are used to provide general-purpose capabilities. For example,

toString can be used to provide a human-readable version of an object, and

equals is used to compare two objects to see if they are the same. For many

metrics, these methods cause misleadingly high scores.

The only difference between the PersonCarDisjoint and PersonCar-

Direct classes is that PersonCarDirect has a toString method that

calls getCarInfo and getPersonInfo, thereby connecting the previously

disconnected graph. A small change such as this can have big effects on

cohesion scores. For example, PersonCarDisjoint has an LCC score of 0.47.
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PersonCarDirect has the maximal LCC score of 1.0, because toString enables

(undirected) paths between all methods.

A close look at the top, middle of Figure 2.5 shows an interesting aberration

in the XMLElement class – toString is a node disconnected from the rest of the

graph, which would cause a misleadingly low score! In this case, XMLElement-

.toString did not directly access the attributes. Instead, it made use of a method

in another class, XMLWriter.write(XMLElement), to generate a string.

Cross-cutting concerns (especially logging)

The presence of cross-cutting concerns can also make cohesion scores higher

than expected, because many of the class members may make use of auxiliary

functionality provided by the cross-cutting members. For example, classes often

have methods that record information to a log file via a “logger” attribute, or they

may have methods that print out debugging information as they execute.

The detection of cross-cutting concerns is difficult, and is an on-going research

effort [ZGC08, MDM07]; however, simple approaches can suffice to identify some

of the most common cross-cutting concerns, e.g., logging. A simple approach

that works for some logging is to search for attributes of a known logging type;

however, this is weak approximation of what needs to be done. In the case of

logging, classes might utilize a less well-known logging package or a custom-built

one. Other cross-cutting concerns can be harder to detect, because they may not

have common implementations.

2.3.3 Hidden cohesion

We use the term hidden cohesion to refer to code constructs that are typically

ignored in cohesion metrics but that indicate relationships between certain of

a class’s members. When hidden relationships are not taken into account, cohesion

measurements appear lower than expected.

Static members

Some researchers choose to ignore static methods when measuring cohe-

sion [BT07], because static methods can only directly access static members,

not instance members. On the other hand, instance methods can access static

members, so the use of static methods can indicate common functionality. For
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cohesion metrics that consider connectivity between methods (e.g., TCC, LCC,

DCD, and DCI), the omission of static methods from consideration can cause lower

measurements than if they were included.

Sometimes there is very little difference between static methods and instance

methods. Programmers may write methods in a procedural style, where all access

to data is via the objects provided to the method as arguments. Because there are

no direct attribute accesses, these methods may or may not be declared static. In

these cases, it seems inconsistent to treat static and instance methods differently.

It is also unclear how to best handle static attributes, particularly static final

“constants”. Some constants are provided primarily for the use of external

classes, and would lead to misleadingly low scores; however, others may indicate

legitimate connections within the class. For example, in a GUI class, a constant

might be used for a button label, and that same constant may be used within

the class to help process the “button pressed” event. Use of constants in this

way indicates a meaningful relationship between the method that constructs the

button and the method that processes the button’s events. In these circumstances,

for cohesion metrics that consider connectivity between members, omission of

constants from consideration would cause lower cohesion measurements than if

they were included.

Inheritance

There are alternative perspectives in deciding whether a class is cohesive when

it inherits from another class [BK95, BDW97, EKS94]. One perspective is to

consider only the subclass’s extensions of its superclass and determine whether

the members defined in the subclass constitute a cohesive class independent of the

members of its superclasses. Another perspective is to evaluate the combination

of the subclass’s members and its superclasses’ members to see whether the

combination constitutes a cohesive class.

Most papers describing metrics do not state how they deal with inherited

members. In most cases, it appears that they concentrate on the first perspective.

This is a simpler case to handle, because cohesion can be calculated by examining

the code within a single class, without having to look at the class hierarchy. For

cohesion metrics that consider only the non-inherited members, methods that

access inherited attributes, but not their own, cause the cohesion score to be

misleadingly low.
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There are similar problems when measuring classes that are inherited from,

i.e., superclasses. A superclass may define methods or attributes that are not used

directly by itself, but which provide common functionality for its subclasses. As

far as we are aware, no cohesion metrics consider this case, which can lead to

seemingly noncohesive superclasses.

If one does consider inherited members, there are several options. Bieman and

Kang [BK95] state that TCC and LCC have three options relative to measuring

cohesion – (1) ignore the inherited members, (2) include the inherited members,

(3) include the inherited attributes, but not the inherited methods; however, they

do not go into detail about how the calculations should be performed.

There are several options for how inherited members might figure into a

cohesion calculation. For example, inherited members could be given different

weights than non-inherited members. Alternatively, the cohesion calculation could

be performed by “flattening” the inheritance hierarchy, as though the inherited

members were moved into the inheriting class. For now, the state of the practice

seems to be to ignore inherited members.

Methods imposed by interfaces

Java interfaces give program designers the ability to specify combinations of

methods and constants responsible for providing desired behaviors. Disparate

groups of programmers can use interfaces as contracts that specify how their code

interacts [ZHR+06]. Because interfaces serve as contracts, they are less conducive

to change than groups of methods that are not parts of interfaces [Fow02].

We are not aware of any cohesion metrics that treat methods required by

interfaces specially. For cohesion metrics that are attempting to measure the

quality of a class based on the interconnections of the class members, this is not

a problem. However, the constraints imposed by interfaces are important when

the cohesion metric is to be used for other purposes, e.g., detecting classes that

should be refactored. For determining whether classes are amenable to refactoring,

existing cohesion metrics will provide a lower score than desired, because they

do not recognize the requirement for keeping together the members imposed by

interfaces.
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Abstract methods

Abstract methods are methods that are declared but not yet implemented;

implementations will be supplied by subclasses. Nevertheless, the abstract

methods may be accessed by other methods in the abstract class. Because abstract

methods do not reference any of the other class members, they cause misleadingly

low scores for most metrics.

Data transfer classes

When we reviewed the results of a large class query that did not contain a WMC

complexity term, we noticed a large number of classes that were little more than a

collection of attributes with associated accessors and mutators (sometimes referred

to as data transfer classes [PNA10] or value classes [Blo08]). These are meant to

package data but not behavior. Classes like these give low cohesion scores when

measured by most cohesion metrics that just examine interactions within the class,

because there is no behavior in the class causing interaction between the various

members.

This does not necessarily mean that these data classes should be split into

smaller ones. Rather, classes like these need to have their cohesiveness judged

on the basis of how their clients access them, e.g., whether different sets of client

classes consistently access the same subsets of members. This proposed interclass

analysis goes beyond the intraclass analysis of most cohesion metrics, so client-

based cohesion techniques [ML07, ML09] are needed.

Indirection

Some code within a class does not call other code within the class directly, but may

use that code through an intermediary (e.g., event listeners, callbacks). In such

cases, cohesion metrics will produce a value that underestimates the cohesion of

the class.

Consider the code in Figure 2.7. The createEdgeTypeCombo method creates

a JComboBox GUI component. Without knowledge of the GUI event model, it is

not obvious by examining this code that the GUI user can cause the component

to generate an ActionEvent and that the event will have the JComboBox GUI

component stored as its source.

The actionPerformed method listens to ActionEvents. If it detects an
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private JComboBox createEdgeTypeCombo ( )

{

Vector<Str ing> edgeTypes =

new Vector<Str ing >() ;

JComboBox edgeTypeBox =

new JComboBox ( edgeTypes ) ;

/ / . . .

edgeTypeBox . setName ( ”EDGE TYPE COMBO” ) ;

return edgeTypeBox ;

}

public void actionPerformed ( ActionEvent event )

{

/ / . . .

i f ( source instanceof JComboBox ) {

JComboBox box = ( JComboBox ) source ;

i f ( ”EDGE TYPE COMBO” . equals ( box . getName ( ) ) ) {

handleEdgeTypeRequest ( box ) ;

}

}

}

Figure 2.7: Example use of an event listener

ActionEvent from a JComboBox and the box’s name is “EDGE TYPE COMBO”,

it executes the handleEdgeTypeRequest method. Although there is no calling

relationship between the createEdgeTypeCombo and the actionPerformed

methods visible within the class, there is a relationship via the unseen event

forwarding and handling mechanism. This relationship is not handled by any

cohesion metric that we know of.

In the general case, discovering these indirect relationships is a computationally

expensive problem to solve, because there can be arbitrarily long chains of methods

that lead to the indirect member access.
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Object c l a s s i f i e r = t h i s . getUserObject ( ) ;

/ / ( c o d e o m i t t e d )

Method g e t t e r = m Propert ies [ i ] . getReadMethod ( ) ;

/ / ( c o d e o m i t t e d )

Object value = g e t t e r . invoke ( c l a s s i f i e r , args ) ;

Figure 2.8: Example use of reflection

Reflection

Java’s reflection capabilities enable a programmer to write code that accesses a

class or members of a class without statically naming that class or those class

members. The use of reflection is particularly common in GUI frameworks, e.g.,

JavaBeans. In these situations, there is a requirement for a method to be present,

or there may be a hidden relationship between methods, but it is difficult to

determine that relationship through simple source code examination. Often, these

“required” methods are specified via a property file generated from a GUI builder.

Situations like these are very difficult to detect.

As an example, consider the code in Figure 2.8, taken from Weka’s Generic-

ObjectNode class. This method obtains and invokes methods, but the specific

methods being invoked can not be determined by examining the code of the class.

Many Weka classes use reflection. Consider the intraclass dependency graph

of the DataGenerator class in Figure 2.9. It appears to have many disconnected

methods with names ending in “TipText”. A more thorough examination of Weka

code in other classes shows that reflection is used to get the properties available for

an object, and then to see if there is a <propertyName>TipText method. The

weka.gui.PropertySheetPanel class is an example of a class that does this.

Serialization

The serialVersionUID attribute is present in many classes that implement

the Serializable interface. It is often not accessed by any other code in the

class, only by the virtual machine’s serialization code. The same is true of the

readObject and writeObject methods. These members will appear to be

disconnected from the rest of the class. Practically speaking, these methods will

have a small effect on the cohesion measurements of a large class, so they will not

be discussed further.
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Figure 2.9: Reflection in DataGenerator (*TipText methods)

Nested classes

We have seen no metrics that explicitly address nested classes (e.g., inner classes,

anonymous inner classes). This is not surprising, since some cohesion metrics were

targeted at languages without nested classes, while other metrics were developed

before nested classes entered Java. By default, the implementations we have seen

treat nested classes the same as non-nested classes, therefore, any interactions

between the containing class and the nested class do not contribute to cohesion.

This approach seems consistent with the description of static nested class in the

Java Tutorial [ZHR+06]: “A static nested class interacts with the instance members

of its outer class (and other classes) just like any other top-level class. In effect, a

static nested class is behaviorally a top-level class that has been nested in another

top-level class for packaging convenience.”

On the other hand, for non-static nested classes (a.k.a. inner classes), this seems

wrong. These classes are created to provide some additional encapsulation of

data for the use of the enclosing class, and one might expect extensive interaction

between the members of the enclosing class and the members of the nested class.

The Java Tutorial [ZHR+06] states “An instance of an inner class can exist only

within an instance of its enclosing class and has access to its enclosing class’s

members even if they are declared private.” Using this rationale, inner classes
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are little more than convenient packaging of functionality for use of the enclosing

class, and for cohesion purposes, might best be treated as part of the enclosing

class.

2.4 A technique for improving structural cohesion

metrics

We see two major axes of variation in structural cohesion metrics:

1. The data (methods, attributes and their inter-relationships) that are consid-

ered in the calculation.

2. The algorithms used to calculate the metric values based on this data.

Our examination of the sources of illusory and hidden cohesion convinced us

that many of the unintuitive results were not due to the cohesion algorithms

themselves, but rather due to the data on which they operated. We decided to

implement a technique that would enable analysts to modify the input data based

on their knowledge of project-specific coding conventions.

2.4.1 Approach – restructuring graphs

While there are opportunities to create improved algorithms, there are already

many cohesion metrics based on sound underlying ideas. Rather than introduce

another algorithm, we have attempted to make existing cohesion algorithms more

effective by manipulating the data on which they operate. In effect, our approach

transforms the input space by filtering out nonessential members and relationships,

and introducing additional inter-member relationships (beyond method calls and

attribute accesses).

Some existing cohesion metrics handle some sources of illusory cohesion by

treating certain class members and inter-member relationships specially [BK95,

BDW97, CKB00], but there is little consistency in how they do so. Consider the

metrics discussed in Section 2.1.3. The original LCOM has no concept of special

methods. TCC and LCC operate on “visible” methods but exclude constructors.

DCD and DCI consider public methods, exclude constructors, and treat overloaded

methods within a class as a single method. CBMC excludes constructors, access

methods, and delegation methods. These are all instances of filtering the input

data before calculating cohesion values, and each metric has its own filter.
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If one views the representation of the input data as a graph representation

problem, one sees that most existing metrics use a fairly simple transformation

from code to graph, where methods and attributes are represented by nodes, and

the accessing relationships are represented by the unweighted edges between them.

The existing cohesion metrics differ in their determination of which members get

included as nodes. In effect, special methods are handled by omitting their nodes

from the intraclass dependency graph. More generally, we may choose not just to

omit nodes, but also to add, delete, and/or merge both nodes and edges. Illusory

cohesion is handled by removing nodes or edges. Hidden cohesion is handled by

combining nodes or adding edges.

2.4.2 Cohesion metrics – modified implementations

Section 2.3 discussed how certain Java constructs can cause cohesion metrics to

produce measurements which do not suit an intended use of the metrics. In

addition, metrics may produce unsuitable measurements due to lack of simple

domain knowledge. To address these deficiencies, I added flexibility to an existing

metrics suite.

The Metrics2 [SB10] Eclipse plug-in provides several cohesion metrics. Because

metrics can be used for multiple purposes, and because projects can follow various

coding conventions, I modified Metrics2 to allow users to indicate the handling

of various language or design constructs by specifying preferences. Preferences

provide analysts the ability to modify the output of the metrics based on their

intended use and to adjust the behavior of the metrics based on project-specific

knowledge, i.e., analysts can tune the metrics package to suit their needs.

The preferences control the construction of the input graphs used by the

cohesion metrics but do not otherwise alter the metrics’ algorithms. Users can

specify that the cohesion metrics should process the class members as originally

described in the metric definitions, or they can specify the members to be

considered in the calculations by setting other preferences. There are two types of

these preferences.

1. Boolean user preferences indicate whether certain language or design features

(e.g., constructors) should be included in the cohesion calculations. These

are useful when the feature is easy to detect programmatically. In most cases,

these preferences indicate which types of nodes should be excluded from
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the input graph, but some preferences indicate that certain nodes should be

merged.

2. Filter patterns specify Java regular expressions to be used for excluding class

members with matching names. These are useful for removing sources of

illusory cohesion based on project-specific knowledge.

The following subsections describe the user preferences in more detail.

Illusory cohesion

There are several boolean preferences useful in eliminating illusory cohesion.

The following preferences control whether or not particular constructs should be

considered when calculating cohesion.

• countConstructors – If false, eliminates nodes representing constructors from

the input graph.

• countObjectsMethods – If false, eliminates nodes representing methods

declared by the Object class (toString, etc.).

• countLoggers – If false, eliminates nodes representing attributes whose type

is java.util.logging.Logger.

In addition to the boolean preferences, the ignoreMembersPattern can be used to

filter class members whose name matches the provided pattern. When these

members are highly connected to others, removing the corresponding node from

the graph can decrease the cohesion scores. For example, a pattern of “init” can

eliminate from consideration nodes representing initialization code. Because

initialization code often accesses many attributes, removing the matching “init”

nodes removes a highly cohesive part of the input graph. Similarly, a pattern of

“log.*Util” might be used to help eliminate user-defined logging members that are

highly connected to other methods in the class.

Hidden cohesion

The following boolean preferences are useful in dealing with hidden cohesion

by specifying whether or not particular constructs should be considered when

calculating cohesion.

• connectInterfaceMethods – If true, methods imposed by interfaces should be

considered as connected in the input graph (as though they called each

other).
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• countStaticAttributes – If true, adds nodes representing static attributes to the

input graph and links these to the nodes of the methods that access them.

• countStaticMethods – If true, adds nodes representing static methods and

links these to the nodes of the methods that access them.

• countAbstractMethods – If true, adds nodes representing abstract methods to

the input graph.

The ignoreMembersPattern can also help compensate for some additional cases

of hidden cohesion. It can increase cohesion scores by filtering out seemingly

disconnected member nodes. For instance, there is no easy way to detect class

members that are linked via reflection. However, if one knows that certain methods

appear disconnected but are “secretly” connected (e.g., via JavaBean properties),

the corresponding nodes can be removed from the input graph. Thus, in the case

of DataGenerator (Figure 2.9), a user could indicate that members matching

“TipText” should not be considered in the cohesion calculation.

2.4.3 Cohesion metrics – input restructuring experiments

We ran experiments to assess the influence of some of the structural transforma-

tions described above on cohesion measurements. One group of experiments

measured cohesion on classes in our cohesion test suite [CAGN10]. Using these

classes as input, we evaluated the effects of various language constructs on the

cohesion measurements in a controlled manner.

Another group of experiments compared the original results of a god class

query to those produced using transformed input data. This group of experiments

was performed on two mature open source projects – Weka 3.6.2 [HFH+09]

(Appendix B.2.6) and JHotDraw (Appendix B.2.5) 5.3.0 [GE07]. Measuring mature

open source projects gives an idea of the effect of the transformations on the

cohesion measurements of real code.

The Metrics2 Eclipse plug-in provided measurements for four cohesion metrics

– TCC, LCC, and slight variants3 of DCD, and DCI. We chose TCC, because Lanza

and Marinescu [LM06] have used it to help locate large, noncohesive classes, and

we used LCC, because Etzkorn’s study [EGF+04] indicated that LCC was the

preferred cohesion metric of two groups of professional programmers. DCD and

3Metrics2 modifies the original DCD and DCI in the following ways: (1) classes with fewer than

two methods receive a value of 1.0 (max. cohesion); (2) overloaded methods within the same class

are treated as separate methods.
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DCI are closely related to TCC and LCC, but also consider connecting methods in

their calculations.

Test suite results

The results in this section show the effects of preferences on the cohesion scores of

three similar classes. Table 2.1 shows the cohesion scores for the three PersonCar

classes in Figure 2.4 using non-transformed inputs. For what is essentially the

same class, the scores vary considerably, both between metrics and between

classes. PersonCarDisjoint is the most obviously noncohesive class, and all

the normalized metrics (all except LCOM) show it being under the 0.5 midpoint,

although the metrics that measure indirect connections via class members, LCC

and DCI, are near that midpoint. On the other hand, PersonCarSpecial is

shown as cohesive. LCC and DCI show both it and PersonCarDirect as being

maximally cohesive, despite its fundamentally dual nature.

Table 2.1: Original, non-transformed cohesion measurements

Class TCC LCC DCD DCI

PersonCarDisjoint 0.23 0.47 0.23 0.47

PersonCarDirect 0.32 1.0 0.32 1.0

PersonCarSpecial 0.81 1.0 0.81 1.0

When the same classes are measured again, using a transformation that

removes loggers and methods inherited from Object from consideration, the

results become consistent. The measurements for the three PersonCar variants

are now the same and equal to those of the PersonCarDisjointwhen measured

with no transformations. For all three classes, TCC and DCD are 0.23, and LCC and

DCI are 0.47, scores that seem to better represent fundamentally disjoint classes.

Open source results

God class queries based on cohesion metrics can be useful for identifying classes in

need of refactoring [CLM06, LM06, TM05, CAG11, OCS10, WL08]. We wanted to

determine how changing preferences affected the results produced by god queries.

Our god class detection SQL query identifies classes that meet the following

conditions:
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1. number of instance methods > 20

2. tight class cohesion (TCC) [BK95] < 0.34

3. weighted method count (WMC) [CK94] ≥ 47.0

4. depth in the inheritance hierarchy = 1.0

The first three conditions specify a class’s size, cohesion, and complexity. The

fourth simplifies the analysis by eliminating the effects of inherited members.

The NOM threshold is based on a recommendation by Lorenz and Kidd [LK94],

while the WMC and TCC thresholds are based on recommendations by Lanza and

Marinescu [LM06]. In addition to the above conditions, the query specifies the

graph transformation preferences that were in effect for the TCC calculation.

We collected measurements on JHotDraw and Weka using various preferences.

The results discussed in this section are based on two of these result sets. The

original preference set specifies the use of the original definitions of the metrics,

without transformations.

The choice of a modified preference set was based on two things: (1) the intended

use of the cohesion metric, i.e., to identify classes that could be split, and (2) on

manual examination of the results produced by the god class query using the

original preference set. We were using the query to locate classes in need of

splitting, so the modified preference set specifies that methods defined in the

same interface should be connected (as discussed in Section 2.4.2). There is a

preference to include static members, because static members provide meaningful

connectivity information. The final difference from the original preference set

is to exclude class members with “TipText” as part of their identifiers. Many

of the Weka classes had seemingly isolated methods with “TipText” as part of

their names. As discussed in Section 2.3.3, these methods are actually used via

reflection.

Weka We ran god class queries using the two preference sets. Overall, 18

different Weka classes met the god class criteria for at least one set of preferences;

17 of the classes satisfied the god class query using the original inputs, but only

12 satisfied the god class query using the transformed inputs. 11 classes satisfied

both queries. Manual inspection of the results showed that the reduction in the

result set generated using the transformed input graph was predominately due to

the effects of filtering out nodes representing methods that matched “TipText”.

The only class in the result set for the transformed inputs that was not in the

result set for the original was XMLDocument, which has a large number of static
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final attributes. Static attributes were not included in the original calculations, so

that TCC score (0.48) was above the 0.34 threshold, while the transformed inputs

resulted in a 0.27 score.

Table 2.2 contains statistics regarding the amount of change (∆) seen in the

Weka classes’ cohesion measurements between the two preference settings. While

the average change was about 0.15 for the four metrics shown, the largest change

seen was an increase of 0.61 in the DCI measurement for Weka’s weka.data-

generators.DataGenerator class (see Figure 2.9), again due mostly to the

filtering out of *TipText methods.

Table 2.2: Weka cohesion measurement changes

Statistic TCC LCC DCD DCI

Average ∆ 0.13 0.14 0.15 0.16

Max ∆ 0.38 0.41 0.38 0.61

Min ∆ -0.21 -0.24 -0.22 -0.17

The above results show that modifying the input graph processed by cohesion

metrics can alter the cohesion scores considerably. Modifying the cohesion

preferences had a beneficial effect for identifying Weka god classes amenable to

refactoring, mostly by eliminating from consideration the false positives, produced

by seemingly isolated TipText methods.

JHotDraw We also ran god class queries on JHotDraw classes using the same

preference sets as for Weka. Overall, 5 different JHotDraw classes met the god

class criteria for the original specification, but none met the criteria using the

transformed inputs. This was mostly due to the JHotDraw classes’ heavy use of

interfaces. Condensing the nodes representing the inherited methods resulted in a

more highly connected graph and higher cohesion scores.

Table 2.3 contains statistics regarding the amount of change seen in the

JHotDraw classes’ cohesion measurements. The average change was about 0.46

for the four metrics shown, and the largest change was 0.73 for DCD.

The effects of a particular preference can be large. The AbstractFigure class

has a TCC value of 0.21 with the original preferences; however, it has 46 methods

imposed on it by the Figure interface. Many of these methods simply return null

or a constant in AbstractFigure. When these imposed members are condensed,
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Table 2.3: JHotDraw cohesion measurement changes

Statistic TCC LCC DCD DCI

Average ∆ 0.43 0.38 0.53 0.49

Max ∆ 0.60 0.55 0.73 0.70

Min ∆ 0.08 0.08 0.26 0.26

the TCC score becomes 0.81. A similar situation occurs in two of the other classes

– AbstractHandle and AbstractTool. Modifying the cohesion preferences

had a beneficial effect for identifying JHotDraw classes amenable to refactoring,

mostly by eliminating from consideration classes that seemed noncohesive based

on the structure of methods imposed by interfaces.

2.4.4 Cohesion experiments – conclusions

Our test suite results indicate that restructuring the inputs to cohesion metrics

can improve the metrics’ usefulness for detecting classes in need of refactoring

and also for making the results of different metrics more consistent with each

other. The technique can have a dramatic effect in cohesion metrics that are based

on connectivity, because the numbers produced by some metrics are extremely

sensitive to the addition or removal of a small number of edges.

Measuring cohesion is not the main emphasis of this thesis; however, the

techniques provided should facilitate analysis of the sensitivity of cohesion metrics

to different code constructs. We have shown how the presence of a toString

method can cause a cohesion score for a class to jump from just under the mid-

point of the metric’s range to the maximum possible score.

The cohesion metrics are likely to give the most useful results when the

preferences are used to adjust for local coding practices. Analysts who are

familiar with a code base can adjust preferences based on their knowledge, thereby

compensating for some sources of illusory and hidden cohesion. This claim has not

yet been verified. In the future, we would like to do a more complete investigation

of the effects of restructuring the inputs on the cohesion scores to better quantify

how much each restructuring affects the various metrics.
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2.5 Metrics and refactoring

Research in software metrics has helped our research in two main ways. This

section discusses the use of software metrics as a means of measuring the quality

of classes, e.g., locating potentially problematic classes, and also discusses how

the qualities that are considered important by metrics can be used to help choose

appropriate clustering algorithms.

2.5.1 Metrics as quality measurements

Several metrics based on the internal characteristics of software may correlate with

maintainability [LH93, BBD01]; however, there is still considerable debate [DJ03,

EBGR01, BWZ02, BEGR00, SK03, LH93], and there are remarkably few empirical

studies. Given this lack of conclusive data, we rely on the conventional wisdom –

small, non-complex, cohesive classes are preferable to large, complex, noncohesive

ones [CSC06, BBG08, DJ03, LH93, MPF08, ASKM07, CDK98].

Prior work provides some guidance for choosing metrics for size and some

aspects of complexity. Like other refactoring researchers [LM06, TM05, CLM06],

we typically measure size based on the number of methods and/or attributes. We

also follow the lead of prior researchers in measuring the complexity of a class.

The WMC metric measures one aspect of class complexity, by adding up measures

of the methods’ complexity, and the methods’ complexity is measured using the

cyclomatic complexity metric [LM06, TM05, CLM06].

Cohesion metrics measure another aspect of class complexity. Choosing an

appropriate cohesion metric is more difficult, because there are over 40 cohesion

metrics in the literature, and there is no consensus on which of these metrics is

most suitable for a particular purpose.

Based on the lack of correlation between many of these cohesion metrics [MP05,

BT07], it seems clear that, at best, they measure different aspects of cohesion. In

some cases, this is by design – the metrics are intended to measure different aspects

of cohesion, e.g., structural characteristics vs. semantic characteristics. In other

cases, this may be due to deficiencies in the metrics, such as those discussed in

Section 2.3.

Rather than rely on any single cohesion metric, we use multiple cohesion

metrics (LCOM, LCOM*, TCC, LCC, DCD, DCI, C3) in an attempt to get “truth by

consensus”. Analogous to some work in expert systems [MD85], we treat each
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of several metrics as a source of expertise and then combine the opinions of the

experts for a final result.

2.5.2 Metrics as hint providers for clustering

The software characteristics that are measured by software quality metrics also

provide insight on how to refactor classes using clustering techniques. For

example, structural cohesion researchers value interconnectedness among the

members of a class. Classes with highly interconnected methods and attributes

tend to receive high cohesion scores. The metrics discussed in Section 2.1.3

emphasized common access of methods to attributes. Some of the earlier metrics,

e.g., LCOM, calculate their cohesion scores based on methods that directly access

attributes. Chapter 5 discusses how agglomerative clustering can be used to

cluster class members based on local structural information, e.g., methods directly

accessing attributes.

Later cohesion metrics, e.g., LCC and DCI, took a more global view of structural

connectedness. These metrics take into account methods indirectly accessing

attributes through chains of methods within the class. CBMC and ICBMC took

the idea further by representing the access structure as graphs and determining

cohesion by measuring the effort needed to disconnect the graphs. These ideas

are similar to how graph-based clustering techniques are used to form clusters in

Chapter 6.

Likewise, the criteria used in semantic cohesion metrics can be used as a

basis for deciding how to cluster the methods and attributes of classes. Semantic

cohesion researchers value overlap in meaning between the words found in the

identifiers and comments in the different class members of a class. Section 5.3.2

discusses how agglomerative clustering can be used with semantic information to

form clusters of members with similar semantic content, and how those clusters

form the basis of revised classes.

Some of the characteristics of classes that can cause problems for metrics

(Section 2.3) can also cause problems for clustering algorithms. Future chapters

discuss how techniques like those discussed in Section 2.4.1 can be used to improve

the results of clustering.
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2.6 Summary of contributions

Cohesion measurements are used for many purposes. We used existing cohesion

metrics to help identify classes from a variety of test classes and open source

systems that may need refactoring. Some of those measurements did not

correspond to our intuitive notion of cohesion. Further analysis of the classes that

produced these measurements identified deficiencies in the metrics’ handling of

certain Java language features and constructs.

This chapter described our modification of certain graph-based cohesion

metrics to address these deficiencies by restructuring the input graphs on which

the metrics operate, based on user preferences. Most preferences indicate whether

nodes corresponding to certain class members should be present in the intraclass

dependency graph. Others affect the edges that are included in the graph.

The “best” preferences to use may vary by software project, depending on the

programming conventions being used. Knowledge of these conventions can

enable the analyst to use preferences that adjust the input graph appropriate to

the project.

While there has been previous work on reducing illusory cohesion by filtering

specific “special methods” from the input, we believe that our modifications

to Metrics2 create the first implementation of cohesion metrics with a general

model for filtering special methods, and that our technique is also the first to

address hidden cohesion. These enhancements to the metrics enable more accurate

identification of classes amenable to refactoring.

The generality of our approach for specifying the features to measure should

also be beneficial to analysts using cohesion metrics for purposes besides

refactoring. However, cohesion measurement is not the emphasis of this thesis,

and this claim has not yet been tested.

Doubtless, there are other language features and programming idioms not

mentioned in Section 2.3 that affect cohesion. Some of these will be amenable to

this transformation technique; others will not.



Chapter 3

Background – Refactoring and

Clustering

This chapter presents background material on refactoring and clustering, including

relevant definitions and high level concepts. It provides a description of some

specific class-based refactorings and issues related to them, which will be helpful

for understanding the refactoring results discussed in later chapters. This chapter

also discusses clustering, how it relates to refactoring, and how the results of

clustering can be evaluated. This material provides the basis for understanding

Chapters 5-7, which discuss the application of particular clustering techniques to

refactoring classes.

3.1 Refactoring

Refactoring [Opd92, FBB+99] refers to the restructuring [Arn89] of software,

typically to make it more maintainable. The earliest use of the term “refactoring” as

a software engineering discipline, seems to have been in work by William Opdyke

and Ralph Johnson [Opd92, OJ90] in the early 1990s, who were interested in

supporting the iterative design of object-oriented frameworks. Refactoring gained

popularity with the publication of Fowler et al.’s book on refactoring [FBB+99] and

the advocacy of the extreme programming [Bec00] community, who saw refactoring

as an integral part of the rapid development of quality software. Since that

time, “refactoring” has been used by many people in a variety of contexts,

including ontologies [BS06], UML models [Ste11], and databases [CDPV07],

among others [MT04]. With this increase in popularity, the meaning of “refactoring”

51
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has become somewhat vague. This section provides definitions for the important

terms used in this thesis and discusses some of the important issues pertaining to

refactoring class structures.

3.1.1 Terminology

In this thesis, restructuring is the modification of software to make it easier to

understand and change, or less susceptible to error when future changes are made.

Refactoring is similar, but more restrictive. Rather than add to the confusion, this

thesis will use Fowler, et al.’s [FBB+99] definitions:

Refactoring (noun) : a change made to the internal structure of software to

make it easier to understand and cheaper to modify without changing its

observable behavior.

Refactoring (verb) : to restructure software by applying a series of refactor-

ings without changing its observable behavior.

In terms of maintaining behavior, the refactoring discussed in this thesis will only

address black box functional behavior, i.e., a given set of input values should

produce the same output values before and after refactoring. Our definition of

refactoring is not concerned with maintaining other aspects of behavior that may

be critical requirements for particular kinds of software, e.g., maintaining low

execution times for real-time software.

This thesis makes an additional distinction between strict and loose refactoring,

which is based on assumptions about potential client code. Strict refactoring means

that all client code that worked before refactoring must also work after refactoring.

In contrast, loose refactoring refers to code changes where known clients are not

adversely affected by code changes, but unknown clients could be. In general,

loose refactoring is used in situations where there are no unknown clients (or

where potentially breaking client code is an acceptable risk).

Strict refactoring is appropriate for situations where released code supplies

functionality for unknown clients. For example, object-oriented frameworks

provide functionality to client programs via public classes, which imposes

significant constraints on potential code changes. In particular, public and

protected methods can not be removed or have their signatures altered unless

all clients of that code can also be modified in the same refactoring operation;

otherwise, the client code may not work as before.
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Loose refactoring seems to be what is more commonly referred to in the

refactoring literature. Indeed, many published refactorings [FBB+99, Ker05] are

guaranteed to break unknown client code that depends on the maintenance of

public interfaces, e.g., Remove Parameter or Rename Method. Loose refactoring

depends on an assumption that all clients can be modified as part of the refactoring,

as is the case for unreleased code or standalone programs. Section 3.1.3 includes

an example of Extract Class that illustrates the differences between strict and loose

refactoring.

Some researchers [MT04, PC09] use the terms restructuring and (loose)

refactoring interchangeably, consistent with the opinion expressed by Mens and

Tourwe [MT04] that “Refactoring is basically the object-oriented variant of

restructuring”. However, unless otherwise specified, our work on refactoring

open source software employs strict refactoring, based on a lack of knowledge

regarding potential clients of that code and the impact of potentially breaking

client code.

3.1.2 Refactoring using automated tools

There are often alternative ways to refactor to fix a particular bad smell [PC09,

FBB+99]. Generally, it is up to the programmer to decide which refactoring to

apply, although some smell detectors make recommendations [FTSC11, SB10].

In some cases, while multiple refactorings might improve the system quality,

none of them may be advisable. The costs of doing a refactoring can exceed the

benefit. Even a seemingly simple renaming of a public method requires multiple

checks. Programmers must determine whether the new name would cause a

conflict with another in the same scope; they need to identify all clients of the

method, so that the client method calls can be modified to reflect the new name,

and they need to check subclasses of the modified class, so that overriding methods

can also be modified, etc. There are also the costs of updating associated software

artifacts, e.g., tests and documentation. There are risks involved with any software

change.

Automated refactoring tools [Jem08, FTSC11, Wid06] lessen the risks of unin-

tended consequences and can decrease the cost of maintenance by mechanically

restructuring source code, given the appropriate inputs. The “automated” term

is misleading, because the programmer still has the responsibility of deciding

the inputs, i.e., the programmer needs to specify what should be changed. For
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example, IntelliJ’s [Jem08] implementation of the Extract Class refactoring requires

programmers to specify which methods and attributes should be moved from

the original class to the extracted class. The automated refactoring tools have the

responsibility of seeing whether the refactoring can be made legally, e.g., whether

the inputs provided by the programmer can produce a legal refactoring given the

rules of the programming language. This typically requires extensive checking of

preconditions before the restructuring takes place [KS08, Wid06, AEF08, Jem08].

After checking preconditions, the tool performs the code transformations that

effect the refactoring, including changes to all client classes of the class being

refactored.

Correctly restructuring classes semi-automatically is difficult [MS98, SEM08,

CCS10]. Existing tools do not guarantee correctness. For example, Abadi, et

al. [AEF08] note a number of difficulties with Eclipse’s implementation of the

Extract Method refactoring. Extract Class is considerably harder. Nevertheless,

these tools are great aids to programmers modifying code, because they perform

most of the tedious consistency checking that used to be done by programmers.

Meanwhile, there is ongoing research [BM06, CCS10] on making refactoring

provably correct.

3.1.3 Refactoring class structures

Many refactorings modify the structure of object-oriented classes – Move Method,

Extract Class, etc. [FBB+99]. The common theme of the refactorings discussed in

this section is that closely associated attributes and methods get put together in

the same class.

Move Method and Move Field

The Move Method refactoring [FBB+99] moves a method from one class to another.

Often, methods are moved when the method is using significant functionality in

another class, so the method is moved to that class. Similarly, Move Field [FBB+99]

moves an attribute from one class to another. This is often done when an attribute is

used more heavily by a class other than the one in which it is defined. Alternatively,

methods and fields may be moved because a programmer feels they are more

conceptually related to one class than another. Both Move Method and Move Field

typically decrease coupling between the two classes involved in the refactoring.
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Figure 3.1: Client with original PersonCarDirect

As an example, consider a situation where an AutoRegistration class uses

a PersonCarDirect class to store information about persons and cars, as shown

in Figure 3.1. This figure shows the important methods and attributes of the classes,

but omits the accessors (get- and set- methods) to avoid clutter. Figure 3.2

contains some of the code from AutoRegistration, including two of its calls

to methods of PersonCarDirect, namely setId and setVin. Suppose there is

also an Automobile class. Because a vehicle identification number is an attribute

of an automobile, a programmer might decide to move vin and its accessors from

PersonCarDirect to Automobile, because he thinks that is a better conceptual

fit.

When a class member is moved from one class to another, all accesses to

that member need to be updated to reflect its new class. If all client classes are

known, e.g., AutoRegistration is in the same project as PersonCarDirect,

then a loose refactoring is feasible, and there is a simple update to the client class

(AutoRegistration) to call the moved setVin method, as shown in Figure 3.3.

If all client classes are not known, e.g., AutoRegistration is in a different

project than PersonCarDirect, then a strict refactoring is necessary. Auto-

Registration can not be updated; it is the “unknown” client, and it calls

PersonCarDirect’s setVin method. Consequently, PersonCarDirect must

continue to have a setVin method. With strict refactoring, the moving of

a class member can be handled via delegation, as shown in the code listing

of Figure 3.4. PersonCarDirect’s setVin method now calls setVin on an
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public c l a s s AutoRegis t ra t ion {

public void r e g i s t e r C a r ( i n t ssn , i n t vin ) {

/ / . . .

PersonCarDirect personCar = new PersonCarDirect ( ) ;

personCar . s e t I d ( ssn ) ;

personCar . setVin ( vin ) ;

/ / . . .

}

}

Figure 3.2: Original AutoRegistration source code

public c l a s s AutoRegis t ra t ion {

public void r e g i s t e r C a r ( i n t ssn , i n t vin ) {

/ / . . .

PersonCarDirect personCar = new PersonCarDirect ( ) ;

personCar . s e t I d ( ssn ) ;

Automobile auto = new Automobile ( ) ;

auto . setVin ( vin ) ;

/ / . . .

}

}

Figure 3.3: AutoRegistration.registerCar after a loose Move Method

associated Automobile object. This avoids breaking AutoRegistration, but

adds coupling between AutoRegistration and Automobile.

The Move Field refactoring is much the same as Move Method, with one exception.

It is common practice for programmers to make their attributes either private or

protected. Consequently, when an attribute is moved from one class to another,

it may be necessary either to relax the access rights on the attribute, or to make

sure there are available accessors for the attribute in its new class. Due to such

considerations, refactorings may affect software metrics in ways that at first

seem surprising. For example, a Move Field refactoring may cause an increase in

the number of methods in the software system, due to the necessity of creating
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public c l a s s PersonCar {

private Automobile m auto ;

/ / . . .

public void setVin ( i n t vin ) {

m auto . setVin ( vin ) ;

}

}

Figure 3.4: PersonCar.setVin after a strict Move Method

additional accessors and/or delegation methods.

Extract Class

The Extract Class refactoring splits a large class that has too many responsibilities

into two smaller classes with more focused responsibilities, so an Extract Class

refactoring should improve the average cohesion of the system. We refer to the

class that gets refactored as the original class, the post-refactoring class that is most

like the original class as the modified class, and the other post-refactoring class as

the extracted class.

The PersonCarDirect class, illustrated in Figure 3.1 and described in

Section 2.3.1, combines the traits of a person with that of a car. Because it represents

two concepts, it can be split into two classes using the Extract Class refactoring.

If there is a situation where all clients of PersonCarDirect are known, e.g.,

all code is part of an unreleased prototype, then we can perform a loose refactoring.

In the loose refactoring, PersonCarDirect is split into cohesive Person and

Car classes, and the offensive PersonCarDirect can be removed. All known

clients, e.g., the AutoRegistration code in Figure 3.5, are modified to access

Person and Car directly. The resultant classes might look like those shown in

Figure 3.6.

If there is a situation where some clients of PersonCarDirect are not known,

e.g., the PersonCarDirect code is part of a released framework, then it is

reckless to perform a loose refactoring, because the unknown clients of Person-

CarDirect can not be modified to use the Person and Car classes that replaced

it, and they will no longer compile.

In the strict refactoring, PersonCarDirect is split into a modified Per-
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public c l a s s AutoRegis t ra t ion {

public void r e g i s t e r C a r ( i n t ssn , i n t vin ) {

/ / . . .

Person person = new Person ( ) ;

person . s e t I d ( ssn ) ;

Car car = new Car ( ) ;

car . setVin ( vin ) ;

/ / . . .

}

}

Figure 3.5: AutoRegistration source code after loose refactoring

Figure 3.6: Client with PersonCarDirect after loose refactoring
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sonCarDirect class and an associated Car class. Figure 3.7 shows the UML

after a strict refactoring of the PersonCarDirect class. A modified version

of the PersonCarDirect still exists, because of the requirement to maintain

the original interfaces. The logic of the original car methods has moved to the

extracted Car class, while the PersonCarDirect class has proxy methods that

forward calls to the corresponding Car methods. This refactoring approach avoids

potentially breaking an external client’s code. Any pre-existing code that used the

original PersonCarDirect still works after the refactoring. Known clients can

be refactored to use the extracted Car class; however, unknown clients continue

to use the modified PersonCarDirect as they did before the refactoring.

The use of strict refactoring means that the original class’s dual nature persists,

which has negative effects on system quality as measured by certain metric

values. The overall number of fields in the system generally increases, because the

modified classes may include new fields that point to the extracted classes. The

overall number of methods generally increases, because of additional accessors,

and because the modified classes maintain the original public interfaces of the

classes by using proxy methods that delegate to the corresponding methods

in the extracted classes. To remove this duality, and improve the system

quality, requires some administrative coordination with clients, e.g., through

the use of a deprecation process [Fow02, ZHR+06]. Fortunately, there is research

underway [DJ06, cRGA08] to determine how to provide automated assistance to

clients to adjust APIs that were changed via refactoring.

3.2 Clustering

Clustering algorithms put entities into groups (or clusters), where the members

of a cluster are somehow related to each other. Highly related or similar entities

should be put into the same cluster. The criteria that determine whether entities are

highly related or similar is determined by the analysts performing the clustering.

There are many different clustering techniques described in the litera-

ture [JMF99, Ber02, Sch07, New10]. Berkhin [Ber02], for example, lists over 20

categories and subcategories of clustering algorithms. Each algorithm has its own

strengths, and because they have distinct ways of operating, different algorithms

may produce different results with the same data set. (In fact, some algorithms are

stochastic [JMF99, HW79], so those algorithms may produce different results on
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Figure 3.7: Client with PersonCarDirect after strict refactoring

public c l a s s PersonCar {

/ / . . .

public void setVin ( i n t vin ) {

m car . setVin ( vin ) ;

}

}

Figure 3.8: PersonCar.setVin after strict refactoring
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Figure 3.9: Clustering of mammals

consecutive runs using the same input data.) This section discusses some common

themes of clustering. In chapters 5-7, we discuss specific clustering techniques,

and how they apply to refactoring classes.

It is important to choose an appropriate clustering algorithm. It is also

important to provide the clustering algorithms the appropriate entity attributes

and relationships that enable the algorithm to form useful clusters. For example,

morphological similarity might be used to determine whether two animals belong

in the same cluster. Physical proximity might be used to determine clusters in

a geographical application. For clustering web pages, it might be the pattern of

hyperlinks connecting web pages that is important. One of the objectives of our

research is to identify which clustering techniques and which relationships are

useful for determining how classes should be refactored.

Whether entities should be put together in a cluster is often determined by

analyzing the results of a distance function, which computes the distance between

two entities based on the attributes and relationships of the entities. A good

distance function should indicate that two similar entities are nearer to each other

than two dissimilar entities. One of the challenges for the designers of clusterers

is creating an effective distance function when the entities which will form the

clusters are of different types, with different characteristics. For example, Java

methods and attributes have some characteristics in common, while others differ.

Some clusterers are hierarchical; they identify clusters that are composed of

more highly related subclusters. Agglomerative clustering produces hierarchical

clusters by iteratively merging smaller clusters into larger ones, whereas divisive

clustering produces hierarchical clusters by breaking up larger clusters into smaller

ones.

Figure 3.9 shows an example of a hierarchical clustering of five animals, created

using a distance function based on genetic similarity. The tree structure represents
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the hierarchical clusters. The more similar animals are clustered together towards

the bottom of the diagram, e.g., the dog and wolf are most similar, and the human

and gorilla are the next most similar. The lemur is somewhat similar to the

human and gorilla, so it is put in a cluster with the subcluster containing human

and gorilla. The topmost, most general cluster combines the subcluster with

the dog and wolf with the subcluster with the human, gorilla, and lemur. For

some domains, hierarchical clusters give insight into the fundamental hierarchical

structure of the domain, e.g., in the animal example, the levels of clustering may

indicate important phylogenetic categories. In other domains, the nested clusters

may not be significant, yet prove to be convenient for an analyst. For example,

one can break up the tree into arbitrarily many clusters by slicing it at a given

level (equivalent to cutting the tree structure in Figure 3.9 by drawing a horizontal

line across it). Section 5.1.3 provides a detailed discussion of some agglomerative

clustering algorithms that have been applied to refactoring classes.

Not all clusterers are based on explicit similarity or distance functions.

For some domains, entities are considered part of the same group based on

connectivity information (e.g., social networks, web pages). For these domains,

graphs provide a convenient abstraction, based on their explicit representation of

connections. Nodes that are highly connected may be clustered together. For

example, imagine a graph representing a citation network, where the nodes

represented researchers, and the edges represented one researcher citing another.

The nodes representing researchers in any particular field, e.g., biology or physics,

would be relatively highly interconnected compared to the number of connections

between researchers in different fields. Certain graph-based divisive clustering

algorithms use information about relative connectivity to split graphs and create

clusters. Section 6.1 provides a detailed discussion of the graph-based divisive

clustering algorithms that have been applied to refactoring classes.

3.2.1 Refactoring based on clustering

Because clustering techniques are useful for identifying entities that belong

together, they have been applied to identifying software subsystems (e.g., the

files that should be in the same package) and to modifying the module structure

of software systems [AFL99, KE00, Lak97, MM06, Wig97]. Recently, a number of

researchers [BDLO11, FTSC11, CC08, PLM+09, SC08] have begun using clustering

techniques to determine how to refactor classes.
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For the task of refactoring classes, clustering algorithms group together entities

representing attributes and methods, and the resulting clusters indicate which

methods and attributes belong in the revised classes. For example, a programmer

might decide how to perform an Extract Class refactoring by forming clusters of

a large class’s members, and using these clusters as the basis for the refactored

classes. Identifying clusters of methods and attributes that belong together in

classes is a similar problem to the subsystem identification problem, but harder.

To refactor classes requires the clustering techniques to be able to group disparate

entities (e.g., methods and attributes), while maintaining certain relationships

between the members, e.g., methods in an interface being kept together.

It is not clear which properties of object-oriented classes and their members are

most suitable for using clustering as a basis for refactoring. Some properties are

common to multiple kinds of entities, e.g., visibilities (public, protected, etc.).

Other properties are unique to a particular kind of entity, e.g., only methods have

return types. Important relationships in the object-oriented domain include the

calling relationship (i.e. which methods call which other methods) and the class

inheritance relationship. Some properties of an entity are more important than

others for determining which entities belong together. For example, clustering

together methods with the same visibilities would likely result in a poor class

design.

The software characteristics measured by software metrics, especially those

considered by cohesion and coupling metrics, give insight on the characteristics of

classes that may provide a useful basis for clustering. As discussed in Chapter 2,

many cohesion metrics consider the structural relationships within a class, e.g.,

which methods are called by other methods and which attributes are accessed by

methods.

Structural information can be represented in a variety of ways. Some

researchers [BDLO11, FTSC11, SC08] represent structural information as property

sets and use distance functions to calculate similarity between the members of

classes. Other researchers [PLM+09, CAGN09] use graph-based representations

and clustering techniques. Chapters 5 and 6 discuss the strengths and weaknesses

of these approaches.

Other cohesion and coupling metrics consider semantic or conceptual informa-

tion embedded in identifiers and comments. This information can be exploited by

agglomerative clustering algorithms, as discussed in Section 5.3.2.
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3.2.2 Evaluating the results of refactoring based on clustering

We are interested in determining the relative utility of various clustering

algorithms for determining how to refactor classes. Software metrics can help

indicate whether refactoring has improved the quality of software, but they do

not indicate whether the refactoring was the “optimal” refactoring.

It is possible for a programmer to perform a refactoring that improves certain

metric scores, but replaces one software maintenance problem with another. For

example, a programmer can eliminate a god class smell by breaking up a large,

noncohesive class into small, cohesive classes. However, the small, cohesive

classes might contain little functionality (the lazy class smell [FBB+99]). For the

PersonCarDirect example introduced in Section 2.3.1, extracting a cohesive

class consisting of id, setId, and getId is probably not desirable, because such

a class does little – it only provides access to a simple data value. (We are not

aware of any studies that rate the relative undesirability of various bad smells, e.g.,

god classes vs. lazy classes.) Some tools [CAG11, BDLMO10a], including ours (see

Chapter 4), have built-in checks to help prevent the introduction of lazy classes

when refactoring large classes; however, others do not [Fok10, FTCS09, SC08].

Determining a standard

A well-designed test suite helps analysts understand the applicability of algo-

rithms to an intended domain. Given a standard set of inputs with expected

outputs, an analyst can test algorithms to determine their fitness for a given

purpose. For evaluating clustering algorithms, researchers frequently apply

their algorithms to a known input data set and compare their results to some

predetermined preferred clusters [Sht10, WT04, ST09, KE00, TH99]. The preferred

output clusters are known as the “gold standard”.

In 2000, Koschke and Eisenbarth [KE00] discussed the need for having a

reference corpus of software systems to help determine the efficacy of clustering

techniques on software. As far as we know, there are no such corpora for Java

systems. To help address this need, we built an initial test suite [CAGN10] for

use in analyzing the results of Extract Class refactorings. This test suite provides

a simple basis for evaluating clustering outputs and facilitates comparison of

different algorithms. Evaluating algorithms relative to a known test suite indicates

how well the algorithms work for those data sets, but may not indicate how well

the algorithm works on different data sets. Our test suite is intended to provide a
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noncontroversial baseline, and will need to expand over time.

It takes effort to create a good test suite from scratch. Several researchers have

taken a different approach, where they choose a pre-existing, well-designed system

(often JHotDraw [GE07]) to serve as the output gold standard. From this gold

standard output, they create a set of inputs from which the tested algorithms

should reproduce the gold standard output. There are two main variations

to this approach used by researchers on refactoring based on clustering. The

first variation [SC07, CS06] disassembles the gold standard system’s classes into

attributes and methods. The researchers then determine whether the clustering

algorithms can create clusters equivalent to the original classes. The second

variation [BDLMO10a, DLOV08] creates a poorly designed, “mutant” system by

programmatically rearranging the contents of the gold standard system. The

researchers then determine whether the algorithms they are testing can take the

mutant system as input and produce the clusters that correspond to the original

classes.

While the creation of test inputs from the gold standard output can be a useful

technique, it can also lead to tainted results. The developer of the test inputs

must take care that the formation of those inputs does not bias the tests relative

to the algorithm being tested. For example, when the gold standard is broken

up into its constituent attributes and methods, if the information stored with the

attributes and methods includes information about the original class, as it does

for the techniques [SC07, CS06] discussed in Section 5.2.2, it is not surprising that

many of the original classes get recreated. The creation of a “mutant” system

can suffer from a different problem. Depending on how it is created, a “mutant”

system may present unrealistically simple cases to refactor (akin to refactoring

many PersonCarDisjoints).

Comparison to a standard

Comparing results to a gold standard can be nontrivial. Even when the gold

standard is the “best” design, it may not be the only possible “good” design. In

this situation, it may not be necessary for the clusters produced by an algorithm

to exactly match the gold standard. There are many ways that entities can be

organized into clusters, so there may be acceptable alternative clusterings for a

given set of inputs [ST11]. This is particularly true of clusters produced from

classes composed of hundreds of members. Among the class members, it is
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more important for some members to be in the same class than others – some

methods provide central functionality, while others provide peripheral or auxiliary

functionality. Some clusterings may not be ideal, but may still be acceptable as

the basis for refactored classes. Consequently, there is a need for an algorithm for

evaluating the similarity between a proposed clustering and the gold standard.

There are a variety of algorithms available for measuring the similarity between

two clusterings. Some of these cluster comparison algorithms are fairly generic

and use little software-specific knowledge ([TH99, WT04, ST09]), while others are

geared towards a particular software development task [MM01]. Those cluster

comparison algorithms that are geared towards software development face many

of the same issues that cropped up with measuring cohesion. In the context

of clustering to identify subsystems, Mitchell and Mancoridis [MM01] pointed

out that some entities require special treatment. They recommend excluding

“special” modules, including modules that are highly interconnected to others, and

modules that with a high in-degree and a zero out-degree. This is a similar idea

to the exclusion of special methods while calculating cohesion measurements, as

discussed in Section 2.1.3.

The research in this thesis does not make use of these cluster comparison

functions, because there is no suitable gold standard for which they would

be applicable. The test suite that serves as the gold standard for some of our

experiments has non-ambiguous preferred clusterings that provides a clear-cut

pass/fail evaluation of clustering algorithms. Future work may require more

subtle tests, and the choice of cluster comparison algorithms will be looked at

more closely.

3.3 Summary

This chapter described the Move Method, Move Field, and Extract Class

refactorings and issues related to them. It then discussed how clustering

techniques can help programmers determine how to refactor, and how the results

of clustering can be evaluated. Subsequent chapters will discuss the application of

particular clustering techniques to refactoring classes.
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The Refactoring Environment

The Eclipse IDE [SDF+03] is an extensible Java development environment that

includes code analysis, search, and refactoring APIs [Wid06]. However, Eclipse

lacks some capabilities that can make refactoring object-oriented classes easier.

This chapter discusses my extensions to the Eclipse coding and refactoring

environment to help investigate the use of clustering techniques for refactoring

object-oriented classes. The ExtC (Extract Class) plug-in is useful for both

programmers and researchers. For programmers, it helps identify problematic

classes and provides detail on how to refactor those classes. Researchers have

additional needs. For researchers, ExtC provides the means for investigating

various clustering algorithms and provides insights into how those algorithms

produce their results.

Figure 4.1 shows a high level view of the ExtC environment, including the roles

of some of the more important plug-ins. The metrics plug-in, metrics database,

and database plug-in provide the means of obtaining, saving, and accessing

metric data for Java software. The tables of the database can be populated by

multiple sources. The metrics plug-in role is primarily filled by Metrics2 [SB10],

which communicates with a SQL metrics database using a database plug-in

provided by Apache’s Derby project [Sch08]. While Metrics2 provides a means

of gathering structural measurements, it does not provide a way of measuring

semantic cohesion. ExtC provides a function that measures the semantic cohesion

(C3V) of the classes and stores it to the database. This metric data is used by the

ExtC plug-in to help identify classes that violate metric guidelines and to help

evaluate the results of refactoring. ExtC does not communicate directly with the

metrics plug-in. It gets the metric data from the database, also using the Derby

67



CHAPTER 4. THE REFACTORING ENVIRONMENT 68

Figure 4.1: The ExtC refactoring environment

plug-in.

The ExtC plug-in also provides a graphical user interface (GUI) that helps

programmers visualize Java classes; however, the main purpose of ExtC is

to propose restructurings of Java classes based on clustering results. We are

aware of no other refactoring environments that provide all of these capabilities.

Appendix B.1 provides detail about the open source software used in our research,

including version numbers, web sites, and available documentation.
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4.1 Identifying problematic classes

ExtC provides users the capability of composing SQL queries to locate potentially

problematic classes based on their metric values. Figure 4.2 shows a user interface

containing a user-composed query and a table of matching classes and their metric

values. From such tables, ExtC users can select classes for further processing, e.g.,

to inspect the class’s code, to view its intraclass dependency graph, or to cluster

its methods and attributes.

Figure 4.2: ExtC metrics view

As an example, several chapters in this thesis discuss experiments on large

classes that came from open source Java projects. These classes were identified

using a god class query that searched for classes meeting the following conditions:1

1. number of instance methods (NOM) > 20

1Appendix B.2 provides detail on the four open source projects (FreeCol, Heritrix, Jena, and
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2. tight class cohesion (TCC) [BK95] < 0.34

3. weighted method count (WMC) [CK94] ≥ 47.0

4. depth in the inheritance hierarchy = 1.0

The rationale for these metric criteria is discussed in section 2.4.3. Analysts are not

limited to using pre-built queries such as this; they can compose SQL queries to

identify classes that are appropriate to their task.

4.2 Visualizing classes

Because it is tedious to determine the interrelationships present within large

classes solely by reading code, ExtC provides visualizations of class structure

that highlight key characteristics of class members and the relationships between

them. The ExtC graph view (Figure 4.3) shows the intraclass dependency graphs

of classes, where circular nodes represent methods, stars represent attributes, and

the directed edges indicate methods calling methods or accessing attributes. Node

colors indicate the accessibility of a class member (green, yellow, and red for

public, protected, and private access, respectively), and the nodes’ sizes can be

made dependent on characteristics of the underlying class member through a

menu choice.

The graph view provides options for modifying the graph display and for

altering the graph structure. ExtC users can rearrange graphs by choosing a

graph layout algorithm, or by repositioning nodes using the mouse. Some of the

available graph layout algorithms are force-directed layouts that can be useful

for visually spotting clusters [SSL01]. Some options affect the structure of the

graph. The graph view provides check boxes that permit the analyst to optionally

include nodes that represent members originally defined on Object, constructors,

static members, inner class members, and loggers. It is also possible to “condense”

nodes, for example, to group all methods inherited from Object into a single

node. The provided graph transformations are those discussed in Section 2.4.2.

Weka) and the identified god classes. Out of approximately 3000 top level public classes, 30 classes

(1%) matched the query.
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Figure 4.3: ExtC graph view

4.3 Proposing refactorings

Given a clustering algorithm and some input data, it is fairly easy to run

the clustering algorithm on the input data to produce clusters. Many of the

experiments described in later chapters do so, using ExtC’s batch processing

capabilities. The batch mode is activated by pushing any of several buttons, which

typically causes one or more clustering operations to be run on selected classes

and output on the resultant clusters to be dumped to a file. The drawback of this

mode of operation is that it provides little insight into why the members were put

into those clusters.

To help remedy this problem, ExtC provides three views that help researchers

understand why class members are clustered together. The agglomeration view

(Figure 4.4) provides a tree representation that shows the nested clusters produced

by agglomerative clustering. The view provides menus for the specification

of parameters to the clusterer, e.g., a user can select from alternative distance

calculators to see how the choice of distance function affects the generated clusters.
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Section 5.1.3 discusses hierarchical agglomerative clustering in detail.

Figure 4.4: ExtC agglomeration view

There are also two interactive views that show clustering in action. The

agglomerative clustering view provides the ability to step through agglomerative

clustering, while the results are shown in the context of an intraclass dependency

graph. Section 5.5 discusses this view in detail. The betweenness clustering

view provides users the ability to see the behavior of the betweenness clustering

algorithm as it splits an intraclass dependency graph. Section 6.3.1 discusses

this view. Both of these interactive views help researchers determine whether

the iterations in which members are joined (or separated) is consistent with their

intuition.

The batch mode and the interactive views can all be used to generate clusters

of class members. These clusters serve as inputs to the automated refactoring tool

that will modify the code.

4.4 Performing refactorings

There are many options available when programmers perform certain refactorings,

e.g., Extract Class. For example, when a programmer moves a private attribute

from the original class to an extracted classes, but that attribute still need to be
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accessible, he could make the attribute public, or he could create one or more

accessors.

Automated refactoring reduces the variability of how classes are refactored,

and makes evaluation and comparison of results more consistent. Our original

intent was to have the output of the clustering step be usable as a programmatic

input to Eclipse’s Extract Class refactoring. Eclipse 3.6.2 offers an Extract Class

refactoring; however, it is extremely limited. Eclipse’s refactoring is restricted to

transferring user-specified attributes to the extracted class; it does not offer the

capability of transferring methods also.2

As far as we are aware, there are no publicly available programs that are

highly effective for splitting large, complex classes. The IntelliJ IDEA version

8.1 development environment [Jem08] provides an Extract Class refactoring

that transfers both user-specified attributes and methods. IDEA does the code

manipulation necessary to form the new class and to modify other classes that

might be affected by the refactoring; however, due to some defects, the classes

it extracts will sometimes not compile. (The JDeodorant Eclipse plug-in3 can

extract classes, but it only does so given the inputs provided by JDeodorant’s

clustering [FTSC11]).

Our experiments described in Chapters 6 and 7 use the Extract Class capability

provided by IntelliJ, whose refactoring approach is similar to the strict refactoring

approach described in Section 3.1.3 and illustrated in Figure 3.7, but differs in

its handling of static members. IntelliJ modifies client code to use any moved

static members. IntelliJ’s approach to performing Extract Class means that client

code will remain as cohesive as it was prior to the refactoring, although coupling

may increase if the client code used any static members that were moved to the

extracted class.

There is no convenient programmatic way of sending the clustering results

generated in the Eclipse environment to serve as the inputs to IntelliJ’s Extract

Class, so the inputs are entered manually, using the IntelliJ GUI. While the classes

IntelliJ generates do not always compile, they can usually be fixed with a small

amount of manual coding. The most common bugs pertain to methods in one

class lacking access to another class’s attributes. This can be fixed by increasing the

attributes’ visibility or by providing accessors. The main manual actions required

to complete the refactoring are adding back in the features that were filtered out

2Eclipse bug 312347 – https://bugs.eclipse.org/bugs/show_bug.cgi?id=312347
3http://jdeodorant.com/

https://bugs.eclipse.org/bugs/show_bug.cgi?id=312347
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in earlier steps. For example, the initialization via constructors is filtered out to

simplify the analysis, so the initialization within the refactored classes needs to be

performed manually.

4.5 Contribution Summary

There are many software development environments available for use in develop-

ing Java code, and some of these provide capabilities for refactoring. However, we

are unaware of any IDE that provides the combination of capabilities that ExtC

adds to the Eclipse environment – identifying problematic classes, visualizing

classes, visualizing the clustering of the classes’ members, and proposing the

reorganization of class members to facilitate the refactoring of problematic classes.

ExtC is open source software.



Chapter 5

Refactoring Using Distance-Based

Clustering Techniques

Many clustering techniques determine which entities belong in the same cluster

based on the notion of distance between entities. This chapter discusses the

use of distance-based clustering for determining how to refactor object-oriented

classes. It begins with background material about representing domain entities

and measuring distance, and then discusses two of the major distance-based

families of clustering algorithms that have been applied to software refactoring

– agglomerative clustering and partitional clustering. Section 5.2 discusses how

other researchers have applied distance-based clustering to refactoring, including

their choices of how to represent the object-oriented software that serves as

input, and their algorithms for processing those inputs. Section 5.3 contains our

evaluation of various distance-based clustering techniques using object-oriented

classes from our test suite as inputs, while Section 5.4 examines the clustering

techniques using open source classes as inputs. Following a discussion of our

visualization of agglomerative clustering in Section 5.5, the chapter concludes

with an evaluation of the distance-based techniques as applied to refactoring and

a summary of our contributions.

5.1 Background – distance-based clustering

In terms of clustering, distance is an abstract concept. Distance is made concrete

by analysts, who devise functions that calculate distances between entities, based

on characteristics of those entities. The effectiveness of the clustering relative to
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the analysts’ needs is partially dependent upon the characteristics chosen by the

analysts, and how the differences in those characteristics are mapped to numeric

values. This section discusses issues related to entity representation, together with

some popular representations and distance functions that use them, followed by a

discussion of some of the more popular distance-based clustering techniques.

5.1.1 Entity representation

One of the key determinants to the success of clustering is the choice of information

upon which the clustering algorithm operates. This section uses an example where

the information that provides the basis for clustering the class members consists

of the words that comprise their identifiers, e.g., the properties for a method

named getDatabaseValues are the words get, database, and values. An

advantage of this generic scheme is its usability for many entities that are dissimilar

in many ways. This does not necessarily imply that it is useful for a particular

purpose. (Counting the number of “e”s in the identifiers is also a generic scheme,

but one that is not likely to be useful.) Section 5.2 discusses representations

that have been used with clustering techniques and applied towards refactoring

object-oriented classes.

After one determines the important entity information, it should be stored in a

form that is amenable to computation. Two of the more popular representations

for use in distance-based clustering are property sets and feature vectors.

Property sets

Property sets provide a flexible and concise way of storing unstructured information

by grouping together the properties (information bits) in a set. In the example,

the property set consists of the words that are part of the member identifier, e.g.,

the property set for the getDatabaseValues method is a set that contains the

words get, database, and values.

Feature vectors

Feature vectors are more structured than property sets. In a feature vector

representation, each entity (e.g., class member) has an associated vector, and each

element of the vector consists of a value for a particular feature of the domain being
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represented. All entities have this same vector representation, so the information

stored at a given index is the same for all entities.

For the member identifier example, the vector might have an index for each

distinct word that occurred in some identifier in the class. The value for that

index might be the number of times that word occurred in the identifier. For

getDatabaseValues, there might be “1” entries in the vector positions for get,

database, and values and “0” entries for the words that were present in other

identifiers, but not in getDatabaseValues.

5.1.2 Similarity and distance functions

Distance-based clustering techniques determine whether entities should be in

the same cluster based on the results of a similarity function or distance function.

Because a similarity function can be considered a kind of distance function

(two similar things are less distant conceptually), this thesis will generally use

the term “distance function”. Some distance functions measure distances in a

continuous multidimensional space. Entities exist at various coordinates in the

space, and distances are typically measured using any of several “generic” distance

measures, e.g., Euclidean distance or Manhattan distance [Ber02]. Other distance

functions are independent of any underlying spatial representation, and may

be highly specialized to calculate distances between two entities based on their

characteristics. The remainder of this section describes distance and similarity

functions that have been used for clustering based on the characteristics of software

entities as contained in property sets or feature vectors.

Jaccard similarity and distance

The Jaccard similarity measure [SGM00] is often used to compute the similarity

of pairs of property sets. For a given two entities, the Jaccard similarity is the

size of the intersection of their properties divided by the size of the union of

their properties (or zero in the unusual case of both entities having no properties).

Consequently, the Jaccard similarity ranges from 0 for the most dissimilar entities

to 1 for the most similar entities. The Jaccard distance is one minus the Jaccard

similarity.

In our example, the Jaccard similarity is the number of words two identifiers

have in common divided by the total number of distinct words in the two

identifiers. Therefore, the Jaccard similarity for getDatabaseValues and
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saveDatabaseValues is 0.5, because there are two common words, database

and values, out of a total of four different words. The Jaccard distance is also 0.5,

because 1.0− 0.5 = 0.5.

Euclidean distance

The Euclidean distance is the “straight-line” distance between two points in space.

For two vectors, ~va and ~vb:

dist(~va, ~vb) =

√

∑

i

(ai − bi)2 (5.1)

where ai is the number at index i for vector a. Because our example is not

space-based, Euclidean distance is not applicable.

Cosine similarity and distance

The cosine similarity is useful for comparing two feature vectors when all of the

features have numeric values. For two vectors, ~va and ~vb:

cos(~va, ~vb) =
~va · ~vb

‖~va‖‖~vb‖
(5.2)

where ‖~v‖ represents the Euclidean norm of a vector. The cosine similarity ranges

from 0 to 1, with values increasing as more terms are shared. The cosine distance is

one minus the cosine similarity. For our example, the cosine similarity is 0.67 and

the cosine distance = 0.33.

5.1.3 Agglomerative clustering

Agglomerative clustering is an iterative process of combining clusters into larger

clusters based on a distance function. Often, the initial clusters consist of single

entities. The clustering starts by combining those clusters that are closest together

and proceeds to combine more distant clusters. This section gives a brief overview

of generic agglomerative clustering issues. There are many sources available that

provide a more detailed picture, e.g. [Ber02, JMF99, WFH11].

For agglomerative clustering to be effective, several questions need to be

answered, including:

• Representation – What information about the entities is important for

determining whether they should be in the same clusters, and how should

this information be stored?
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• Entity comparison – What determines when individual entities should be

combined?

• Group comparison – What determines when groups of entities should be

combined?

• Completion – Which collection of clusters is the most desirable one, i.e., when

should the iterative clustering stop? (A single cluster containing everything

is seldom the desired outcome.)

This section discusses these questions in the context of clustering the members

of a test class, AnonymousPersistence, whose source code can be found in

Appendix A.1.

Representing nested clusters as dendrograms

Agglomerative clustering generally uses distance functions to determine when

clusters should be combined. The result of agglomerative clustering is often

displayed as a dendrogram, a tree structure that indicates when clusters get

combined into bigger clusters. Figure 5.1(a) shows a dendrogram that represents

agglomerative clustering using a Jaccard distance based on the words in the

member identifiers. The x-axis represents distance, generally ranging from 0.0 to

1.0. The y-axis merely provides space to distribute the initial clusters, which

will often consist of single individuals. Horizontal lines extend to the right

of each cluster. Vertical lines indicate when clusters get merged into a larger

cluster. In this document, these larger clusters are generally labeled with the

iteration in which the merger occurred and the distance between the merged

clusters. Moving from the left, the first vertical line encountered connects the

horizontal lines for saveDatabaseValues and getDatabaseValues clusters,

indicating that these are the two clusters that are nearest to each other. The

label next to the vertical line, “it1-0.50”, indicates that these clusters got merged

at the first iteration, and the distance between them was 0.5. handleSerial-

izableException and handleSQLException are joined at the same level,

because they also have a Jaccard distance of 0.5. Two more clusters form at a

distance of 0.6 – saveToDB combines with saveSerializableToFile and

readSerializableFromFile combines with readFromDB.
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(a) Single link clustering

(b) Average link clustering

(c) Complete link clustering

Figure 5.1: Agglomerative clustering
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Group comparison

Thus far, the example of Figure 5.1(a) has only shown the merging of clusters

consisting of single entities. How to merge clusters consisting of multiple entities

is less clear; there are multiple options. This section discusses three of the most

popular ways of measuring the distance between multiple-entity clusters – single

link, complete link, and average link clustering [JMF99].

Single link clustering merges clusters based on the nearest individuals (a.k.a.

nearest neighbors) of the different clusters as computed by the distance function.

For entities that can be represented spatially, it tends to produce non-compact,

“stringy” clusters, where some entities may be much farther apart from entities in

their own cluster than they are from some entities in different clusters.

The first merger of multiple entities clusters in Figure 5.1(a) is at it5-0.67.

The it4-0.60 and it3-0.60 clusters are merged, because saveSerial-

izableToFile and readSerializableFromFile share two out of six words

for a Jaccard distance of 0.67. One more cluster is formed at a distance of 0.8,

before the final clusters are formed at the maximal distance of 1.0.

Complete link clustering merges clusters based on the smallest distance between

the most distant members of each cluster. For entities that can be represented

spatially, it tends to produce compact clusters. Figure 5.1(c) shows the same

members being clustered as in Figure 5.1(a), but using complete link clustering

rather than single link. The initial four merged clusters are the same. However,

after their formation, the distance between the most distant members of each pair

of clusters is 1.0, so nothing else gets merged until the maximal distance value of

1.0.

Average link clustering combines clusters based on the average distance between

the members of the two different clusters. It tends to produce clusters intermediate

between single link and complete link clustering. Figure 5.1(b) shows the same

members being clustered as in Figure 5.1(a), but using average link clustering

rather than single link. In this example, the clusters produced by average link

clustering are the same as those produced by single link clustering, but with the

multi-member clusters being merged at a greater distance. The top four entities

are merged at a distance of 0.67 for single link clustering, but at a distance of 0.87

for average link clustering. Although the pattern of formation of clusters is the

same for single link and average link clustering in this example, this does not

generally happen.
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Result collection

The examples of Figure 5.1 do not illustrate when to stop clustering, i.e., they

do not stop the clustering process when the “best” clusters have been formed.

When to stop clustering is generally a domain-specific decision that is based on

the number of clusters desired or on a quality criterion for the clusters. Without

criteria regarding what constitutes a good cluster relative to a particular domain,

there is no way of knowing whether any of the clusters formed are good relative

to that domain.

In most potential class refactoring investigations, computational costs are not

an issue, so it is convenient to cluster everything into a single nested cluster

and examine the cluster formation history afterward in a search for the clusters

that best match the quality criteria mentioned in Chapter 2. Because clusters are

composed of subclusters, an analyst can examine intermediate results embedded

in the dendrograms. One possibility is to examine all clusters that existed at a

given iteration of the clustering. By drawing a vertical line through a dendrogram

at a specific distance value, an analyst can identify the clusters that existed at

that point in the clustering. For example, Figure 5.1(a) contains four clusters at

a threshold of 0.9 – one cluster of six entities, one cluster of two entities and two

clusters of a single entity. Figure 5.1(c), on the other hand, has six clusters at

0.9. However, an analyst does not need to be constrained to accept a given set of

clusters produced at a particular distance, any subcluster may provide insight into

a possible organization of entities.

5.1.4 Partitional clustering

Given a set of entities to cluster and an input k, partitional clustering algorithms

split the set of input entities into k clusters. Unlike hierarchical algorithms,

partitional clustering produces “flat” clusters, rather than nested clusters. Two

well-known families of partitional clustering algorithms are k-means and k-

medoids.

K-means

K-means [Har75, HW79, Ber02, JMF99] is an iterative process of choosing points

in space to serve as nuclei for clusters and then clustering about those nuclei.

K-means starts by choosing k points in space that will serve as the initial nuclei.
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Depending on the variant of k-means being used, the initial nuclei can be chosen

either randomly or using domain knowledge. The algorithm forms clusters

by associating each entity with the nearest nucleus based on the distance (e.g.,

Euclidean or cosine distance) between them. K-means then computes the mean

location (a.k.a. centroid) for each of the clusters. These centroids serve as the nuclei

for the next iteration of clustering. This process repeats until it reaches either a

stable state or a threshold of iterations.

K-means is fast, simple, and generally effective. It is an efficient algorithm,

so it can be used on data sets of millions of nodes [FLE00]. Because the clusters

are formed around the centroids, k-means produces compact clusters that locally

minimize the total squared distance of the cluster’s entities to the cluster center.

K-means has limitations. One of the reasons it is fast is because it is a heuristic

solution. The quality of the solution depends in large part on the selection of

the initial nuclei chosen for the clusters. An optimal solution is not guaranteed,

especially when outlying entities are chosen as initial nuclei. K-means also tends to

produce compact clusters of roughly the same diameter; it is not good at detecting

clusters of different diameters or long, stringy clusters. This can be a problem for

many domains.

Figure 5.21 illustrates this problem in two-dimensional space. The entities in

Figure 5.2(a) are divided into the preferred set of three circular clusters in a Mickey

Mouse-like arrangement2 – a large “head” cluster (labeled “C”) and two smaller

“ear” clusters (labeled “A” and “B”). For a k of 3, k-means can create clusters

like those in Figure 5.2(b). Because k-means tends to make clusters of similar

diameters, the “ear” clusters produced by k-means include entities that were part

of the “head” in the preferred clustering.

The quality of the clusters produced by k-means is also dependent on the input

value for k. For a k unequal to 3, k-means will split at least one of the preferred

clusters of Figure 5.2(a).

K-medoids

The k-medoid family [Ber02] of partitional clustering algorithms is similar to k-

means. Like k-means, k-medoids is an iterative process of choosing points in space

to serve as nuclei for clusters and then clustering about those nuclei. It differs

1This figure is based on a public domain image [Chi10].
2This example is based on http://en.wikipedia.org/wiki/K-means_clustering.

http://en.wikipedia.org/wiki/K-means_clustering
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(a) Preferred clusters (b) K-means clusters

Figure 5.2: Spatial clusters

from k-means in how it chooses those nuclei. K-means chooses the mean location

(centroid) of a cluster to serve as a nucleus for the next iteration of clustering;

k-medoids chooses the most representative member of the cluster (a.k.a. medoid)

to serve as a nucleus. The k-medoid algorithms share most of the strengths and

weaknesses of the k-means algorithms, particularly regarding the choice of the

number of partitions to create, and the tendency to create clusters of similar

diameters.

Unlike k-means, k-medoids does not require its entities to be represented in

continuous space, because there is no need to compute means. Consequently, the

entities to be clustered can contain non-continuous properties (e.g., categorical

properties), as long as the distance function can accommodate them, so that a

medoid can be chosen.

5.2 Related work – applying distance-based cluster-

ing to software

This section discusses other researchers’ applications of distance-based clustering

techniques to refactoring software, especially as applied to modularizing sub-

systems and to the Move Method and Extract Class refactorings. In this section,

we review their choices of representation, distance functions, and clustering
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algorithms for these refactoring tasks, and evaluate the strengths and weaknesses

of those choices. In much of this research, entities were represented using property

sets. The property sets are summarized in Section 5.2.4, after all of the individual

property sets are discussed.

5.2.1 Modularization

Some of the earliest work on applying distance-based clustering to software

involved reverse engineering tasks, particularly the modularization of soft-

ware [AFL99, KE00, Lak97, MM06, Wig97]. Modularizing software encompasses

a broad spectrum of topics, including grouping files or classes into packages,

grouping subpackages into packages, grouping functions and variables into

classes, etc. This section will concentrate on the higher level modularization tasks,

the grouping of files or subpackages into packages. The lower level grouping of

methods and attributes into classes will be discussed in Sections 5.2.2 and 5.2.3.

It is generally easier to apply clustering techniques to higher level modular-

ization than to class refactoring. In forming high level modules or packages, it is

not generally necessary to maintain interfaces or behavior, and the components to

be repackaged are generally of the same or very similar types. However, because

many of the issues pertinent to high level modularization are also pertinent to

refactoring class structure, high level modularization serves as a useful starting

point for discussions on the Move Method and Extract Class refactorings.

Entity Representation

One way of classifying the characteristics of software entities is to divide them

into formal and informal features, where formal features consist of information

that directly affects the behavior of the software (e.g., type information, calling

relationships, etc.) and informal information does not (e.g., identifier names and

comments [AFL99]). Some researchers use the terms “conceptual” or “semantic”

when discussing certain informal features, perhaps emphasizing a programmer’s

intent to produce meaningful identifier names. (Lack of meaningful identifiers

and comments severely limits the effectiveness of many “semantic” techniques.)

For example, consider AnonymousPersistence’s saveToDB method,

shown in Figure 5.3. Formally, it references several of AnonymousPersistence’s

local methods directly (e.g., loadDriver and saveDatabaseValues), and

it also references methods in other classes (e.g., the DriverManager class’s
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public void saveToDB ( Object ob j ) {

S t r i n g u r l = ” org . apache . derby . jdbc . C l ie n tDr i ve r ” ;

loadDriver ( u r l ) ;

Connection connect ion = null ;

PreparedStatement statement = null ;

t r y {

connect ion = DriverManager . getConnection ( u r l ) ;

/ / TODO p o p u l a t e t a b l e s us ing v a l u e s o b t a i n e d from

r e f l e c t i o n

S t r i n g s q l S t r i n g =

”INSERT CLASS TABLE VALUES ( ? , ? ) ” ;

s tatement = connect ion . prepareStatement ( s q l S t r i n g ) ;

saveDatabaseValues ( obj , s tatement ) ;

} catch ( SQLException s q l e ) {

handleSQLException ( s q l e ) ;

} f i n a l l y {

re leaseResources ( connection , statement , null ) ;

}

}

Figure 5.3: saveToDB method

getConnectionmethod). There is also informal information encoded in variable

names (e.g., statement), string constants (e.g., INSERT), and comments (e.g.,

tables).

While much of the modularization research concentrates on clustering using

formal features [MM06, Wig97], some research suggests that informal features can

give better results [AFL99]. Regardless of whether formal or informal features

were used, most of the research used either property sets or feature vectors to store

the features.

Similarity and distance functions

Anquetil and Lethbridge [AFL99] studied a variety of similarity and distance

functions in the context of re-modularization. They recommend the Jaccard

similarity function based on the agglomeration results it produced and also due to
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its simplicity.

Group clustering

Lakhotia [Lak97] examined many programs that organized software components

into subsystems. Of those that used agglomerative clustering techniques, the

majority used single link clustering.

Anquetil and Lethbridge [AFL99] recommended complete link clustering. They

claim that it emphasizes having modules with high cohesion, whereas single link

clustering emphasizes the creation of modules with low coupling. Theirs is a

theoretical argument based on the idea that complete link clustering forms compact

clusters when the entities can be represented spatially, while single link clustering

produces “stringy” clusters for spatially represented entities. They equate compact

clusters with highly cohesive clusters. This argument has flaws. First, the software

under consideration may not have a good spatial representation for the desired

clustering task. Second, even for those cases where the software entities can be

represented spatially, dense clusters do not necessarily indicate cohesive software

from the standpoint of object-oriented cohesion. Such a correspondence would

be highly dependent on a correlation between the similarity function and the

object-oriented cohesion metric.

5.2.2 Moving attributes and methods

When a class member is used more heavily by a client class than by the defining

class, it may make sense for the definition to be moved to the client class. A

distance function can be used to determine which members should be moved

to which classes. All of the work discussed in this section involves the idea of

measuring the distance or similarity of object-oriented classes and their members.

The clustering step varies from being manually performed, as in Crocodile, to

being automated, as in CASYR.

Crocodile

Frank Simon and others at the Technical University of Cottbus [SSL01] created

a visualization of the distances between class members to help programmers

determine whether members need to be moved from one class to another. Their

Crocodile tool created property sets for attributes and methods as follows:
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• Attributes – the identifiers of all methods that access an attribute, and the

attribute itself.

• Methods – the identifiers of all invoked methods, all accessed attributes, and

the method itself.

They used a Jaccard metric to calculate the distances between the class members’

property sets.

Based on the distances between the various classes’ members, the authors pro-

duce a visualization of those members using a spring-embedder algorithm [SSL00].

By coloring the members based on the class in which they originated, it is possible

for a user to see when a member is more closely associated with a class other than

the class in which it was defined. Effectively, it is manual clustering utilizing a

visualization. The authors point out that that this visualization can be useful for

the Extract Class refactoring also.

The researchers did not actually perform any automated clustering of class

members using their proposed distance function; they concentrated on visualizing

clusters. However, it is easy to use their distance function within a distance-based

clustering framework, and JDeodorant has used it to help determine how to extract

classes (see Section 5.2.3).

JDeodorant

While they do not use automated clustering techniques for deciding whether

to move members from one class to another, researchers at the University of

Macedonia make use of the Jaccard distance measure in their JDeodorant plug-

in [TC09]. JDeodorant creates property sets for attributes and methods based on

the classes, methods, and attributes they are associated with. Based on Jaccard

distances between class members and classes, they determine whether feature

envy exists. When JDeodorant detects a class member that is closer to another

class than the class in which it is defined, JDeodorant suggests Move Method

refactorings that can correct the problem.

With some exceptions, they define the property sets for the various entities as

follows:

• Attributes – the identifiers of all methods from any class that directly access

the attribute, and methods from other classes that access the attribute through

accessor functions (a.k.a. getters and setters).
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• Methods – the identifiers of all attributes accessed by the method either

directly or through accessors, directly accessed methods in the same class,

and methods from other classes that are accessed via references.

• Classes – the identifiers of all attributes and methods defined in the class.

The exceptions incorporate knowledge about the software domain via special

rules. The rules involve special handling of accessors, static members, delegates,

recursive methods, and access to library classes, analogous to the special methods

discussed in Section 2.1.3.

CASYR

Serban and Czibula [SC08] were among the first researchers to apply agglomer-

ative clustering techniques to the problem of restructuring classes. They have

experimented with several different ways of clustering the entities, including

several agglomerative algorithms. These algorithms vary according to how they

determine the number of clusters to produce and their criteria for merging clusters.

Their Clustering Approach for Refactorings Determination (CARD) system enables

experimentation with ways of recombining the attributes and methods of a

system into classes. CARD’s Clustering Algorithm for Software Systems Restructuring

(CASYR) algorithm is intended to be useful for Move Method, Move Field, and

Extract Class refactorings [SC08]. CASYR creates property sets for all classes,

methods and attributes in a system. The property sets for the various entities are

defined as follows:

• Attributes – the identifiers of the attribute itself, the application class where

the attribute is defined, and all methods that access the attribute.

• Methods – the identifiers of the method itself, the application class where

the method is defined, and all attributes accessed by the method.

• Classes – the identifiers of the application class itself, and all attributes and

the methods defined in the class.

Because the property sets for the different entities are similar, they can calculate

the Jaccard distance between entities of different types and use these distances

to determine which entities to put together. For a given step, a class might be

combined with another class, a method, or an attribute.

It is clear that their approach to creating property sets has some problems.

Their algorithm produces poor results under certain circumstances, because their
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property sets for methods do not include either called or calling methods. As

an example, for a class that contains no attributes, each method has a property

set consisting of itself and the class. Because there is one shared property (the

class) and two non-shared properties (the two methods), each pair of methods

is equidistant, with a Jaccard distance of 0.67. Agglomerative clustering can not

form useful clusters under these conditions, because there are no methods that are

closer together than any others.

They say that average link clustering gave better results than single link or

complete link clustering, but do not go into any detail about how the results

differed. In another part of the paper, they make a theoretical claim that complete

link clustering is “generally more useful” than single link clustering, but they do

not offer any further backing for this claim either.

kRED

Czibula and Serban [CS06] experimented with partitional clustering using their

CARD system. Their k-means for REfactorings Determination (kRED) algorithm is

a variant of the k-means clustering algorithm that can be used to recommend

restructurings for the classes in a software system.

The kRED algorithm creates a vector for each entity (class, attribute, or method)

in the software system. The vector for an entity has one entry for each class in

the system, containing the distance of the entity to the class. Thus, their spatial

“coordinate system” is based on distances from the original classes. To compute

the distances, they use the same Jaccard distance measure and property sets as for

their CASYR system.

One of the challenges of using k-means effectively is choosing the desired

number of partitions/clusters to be created. Czibula and Serban set this number

to equal the number of classes in the system, which is a reasonable choice if the

designers of the original system have a class structure that is mostly well-designed,

but less suitable for situations where classes need to be split or merged. They put

the initial centroids at the locations of the original classes, so kRED’s clustering

is biased towards maintaining the existing classes in the system. Because of this,

Move Method or Move Field refactorings are the most likely recommendations.

However, in a variation from the typical k-means, kRED will reduce the number

of clusters whenever an empty cluster is produced, so kRED may also recommend

Inline Class refactorings [FBB+99], where all of the members of one class will be
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inserted into another class.

The kRED approach has some drawbacks. First, the effectiveness of the

algorithm depends on the initial nuclei chosen for the clusters, so an optimal

solution is not guaranteed. Second, the user needs to specify the number of

desired clusters in advance. This is difficult when one of the desired results is a

determination of how many classes there should be. Using the existing number

of classes is a reasonable heuristic, and their modification to k-means permits

the number of classes in the system to decrease. However, the kRED algorithm

provides no way of increasing the number of classes in the system, as might be

desirable when god classes exist.

The major part of Czibula and Serban’s evaluation was on JHotDraw 5.1.

Because JHotDraw is considered a well-designed system, they clustered the entities

in JHotDraw to see how close they came to reproducing the original class system.

They state that only six methods were placed in different classes than they were

originally. They then analyzed those six methods and considered the refactoring

recommendations to be reasonable.

While these results seem impressive, their kRED technique is biased towards

maintaining the status quo. Their coordinate system is based on distances to the

original classes; the choice of the number of clusters to create is based on the

number of original classes, and the initial centroids are the positions of the original

classes. Furthermore, the property sets used to calculate the Jaccard distances

for a class member include a property for the class in which the class member is

defined, so there is a built-in bias for a class member to cluster with its original

class and the class members of that class.

5.2.3 Extracting classes

When classes contain too much functionality, the functionality can be redis-

tributed into additional classes using the Extract Class refactoring [FBB+99] (see

Section 3.1.3. Several researchers have used agglomerative clustering to determine

how class members should be apportioned to the revised classes. Most of these

researchers [SC08, FTCS09, BDLO11] use property sets when determining the

clusters of members that belong together. The property sets of a class member

generally consist of the identifiers of other class members that are related to it via

a calling or accessing relationship.
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JDeodorant

The JDeodorant researchers [FTCS09, Fok10, FTSC11] have published papers

about extracting classes based on the results of single link agglomerative clustering

using a Jaccard similarity function. Depending on the paper, the Jaccard similarity

function operates on either of two different property sets, both of which differ

from those used in CASYR. In all cases, the entity sets are built solely from the

class to be split. In 2009 [FTCS09, Fok10], they used the same property sets for

class members as were used by Crocodile (Section 5.2.2). In 2011 [FTSC11], the

property sets consist of the “local neighborhood” of the class member:

• Attributes – the identifiers of all of the members of the class that use or are

used by the attribute.

• Methods – the identifiers of all of the members of the class that use or are

used by the method.

They do not explain why they changed their property sets, and in some cases, the

newer property set gives worse results (see Section 5.3.1).

JDeodorant does not determine when to stop clustering or decide which are

the best clusters. Rather, its shows the clusters as they exist at 0.1 increments of

the distance function and lets the users decide which they like best.

Fokaefs, et al. [FTCS09] used the JDeodorant Eclipse plug-in to recommend

classes to extract from a student project and a research project. Then, the proposals

were discussed with the programs’ designers. For both projects, the designers

thought that it was worthwhile to apply 43% and 64% of the suggested refactoring

changes to increase maintainability. Unfortunately, the programs they examined

are not publicly available, so we could not do a comparative study.

University of Salerno

Researchers based predominately at the University of Salerno use both structural

and semantic information to cluster members and extract classes. They describe

two separate techniques, a “two-step” technique [BDLMO10a, BDLMO10b] and a

max flow/min cut technique [BDLO11], that use a common similarity function.

In contrast to the previously mentioned research in this chapter, their similarity

function is not a Jaccard similarity function. This section begins with a description

of the common similarity function, and then discusses how the two-step technique
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makes use of it. Their max flow/min cut technique is discussed in Section 6.2.2 in

the chapter on graph-based clustering techniques.

Salerno similarity function

Both University of Salerno techniques [BDLMO10a, BDLO11] use a similarity

function that combines structural and semantic information to calculate pairwise

similarities between all of a class’s methods. Their similarity function has three

weighted terms. Two of these pertain to structural characteristics of the code,

while the third uses semantic information.

The first structural component of the distance function calculates the Structural

Similarity between Methods (SSM). SSM measures the similarity of methods based

on the common attributes they reference. It is equivalent to a Jaccard similarity

measure for methods, where the property set for a method consists of the attributes

it references. The paper does not mention whether or not the attributes need to be

accessed directly.

The second structural component of the distance function calculates the Call-

based Dependence between Methods (CDM) [BDLO11], a.k.a Call-based Interaction

Between Methods (CIM) [BDLMO10a, BDLMO10b]. The CDM considers the

exclusivity of access between two methods. Two methods are most similar if

one of them only accesses the other. The CDM of two methods, mi and mj , is

the maximum of the two directional CDM values for the method pair, where the

directional CDM value for a method mi to a method mj is the number of method

calls from mi to mj divided by the total number of method calls to mj .

The third component of the similarity function is the Conceptual Similarity

between Methods (CSM), previously discussed in Section 2.1.3. CSM measures the

amount of similarity in word usage between two methods.

They empirically determined the best weights to use for the three components

of the similarity function based on refactoring results from their two-step

technique [BDLMO10b] (described below). In their experiments, they randomly

combined pairs of classes from well-designed open-source systems to create

artificially noncohesive classes. They then split these noncohesive, merged classes

multiple times using their two-step technique, using different weightings on the

three components of the similarity function each time. After refactoring, they

compared the refactored classes to the original (pre-merger) classes to determine

which weightings caused the refactored classes to most resemble the original
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classes. The best weightings for the three components of the similarity function

varied somewhat, but had broad consistency. For all three projects, they got the

best refactoring results when the semantic component (CSM) had the highest

weighting (0.6 - 0.7), followed by the structural components SSM (0.2 - 0.3) and

CDM (0.1). It is not surprising that the semantic component warranted the highest

weighting, because CSM considers all of the semantic information available in a

method, whereas both structural elements consider only a portion of the available

structural information.

Salerno “two-step” technique

Bavota, et al.’s “two-step” technique [BDLMO10b, BDLMO10a] consists of an

initial step that creates multiple clusters, followed by a second step that reconnects

small clusters to larger clusters. Using the similarity measures described in the

preceding section, they create a fully connected graph, whose nodes are the class’s

methods and whose edges are weighted with the similarity scores between the

connected nodes. Then, all edges with a weight below a threshold of 0.1 are

removed, which disconnects the graph. This is equivalent to agglomerative single

link clustering, where the “cut” to determine clusters is set at a particular distance.

Their second step combines clusters containing fewer than three members with the

larger ones using the same similarity function discussed above, using the average

link method. Because the two-step technique combines aspects of agglomerative

clustering and graph-based clustering (see Chapter 6), it will be discussed in more

detail in Section 7.1.

They evaluated their approach by randomly combining pairs of classes from

well-designed systems and then seeing whether their technique would extract

the original classes when applied to the hybrid classes. They got good results;

however, that is not surprising given that the hybrid classes were based on pairs

of classes randomly chosen from the system. In general, each of the pre-merger

classes would likely have little connectivity with the other, so the resultant hybrid

classes were likely to be highly noncohesive, facilitating class extraction.

5.2.4 Property set summary

Table 5.1 lists the items that go into each of the property sets discussed in previous

sections, plus one new one, Nhood, which is a composite of most of the other

property sets in the table. The property sets are:
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• Sim01 – described in Section 5.2.2 and used by JDeodorant in 2009 [FTCS09,

Fok10].

• Ser08 – described in Section 5.2.2 and used in CARD/CASYR [SC08].

• JD11 – described in Section 5.2.3 and used by JDeodorant in 2011 [FTSC11].

• SSM – described in Section 5.2.3 – one component of the University of

Salerno’s distance function [BDLMO10a, BDLMO10b].

• Nhood – a union of the property sets Sim01, JD11, SSM. It does not include

all of Ser08’s properties, because including the class in the property set

serves as noise when clustering is being performed on a single class.

Because some researchers assign different properties to attributes and methods,

each property set configuration listed in Table 5.1 has a row for the attribute’s

properties and a row for the method’s properties. A “+” in a column indicates

that the item in the column header is included in the property set corresponding

to the row. For example, the Sim01 property set for attributes does not include

any called methods. It does include all calling methods, and it also includes the

attribute itself, but does not include the class in which it is defined. The table

shows considerable variability between what properties are considered important

by the different refactoring researchers. The only consensus is that the property

set of a method should include called attributes.

Table 5.1: Property sets used for extracting classes

Prop Set Member Called Calling Itself Class

attr meth meth

Sim01 attribute + +

method + + +

Ser08 attribute + + +

method + + +

JD11 attribute +

method + + +

SSM attribute

method +

Nhood attribute + +

method + + + +
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All of the entities put into the property sets are connected methods and/or

attributes, with the exception of the enclosing Class property, which is used only

by CARD/CASYR. Presumably, CARD/CASYR make use of the Class property

to make a class member slightly closer to its original class, when methods and

attributes are being moved between classes or when the class hierarchy is being

reorganized. For the case of attempting to extract a class based only its members,

adding the class to the property set ensures that all members will have something

in common, but will not serve to distinguish the class members in any way.

It is interesting to compare these property sets with what is considered

important by the object-oriented cohesion metric researchers. As discussed

in Section 2.1.3, there are many structural cohesion metrics that center around

methods accessing common attributes. The earliest cohesion metrics, like LCOM,

generally considered methods directly calling attributes, although later cohesion

metrics, like TCC, also considered methods indirectly accessing attributes. Later

still, cohesion metrics like DCD also took into account methods calling other

methods, regardless of whether those methods eventually accessed a common

attribute.

Many structural cohesion metrics have been viewed from a graph-theoretic

basis [CKB00, HM95, ZLLX04, AD10], asserting that the edges between adjacent

nodes (class members) are important. Some of these have emphasized directed

dependency graphs, e.g., LCOM, TCC, and DCD. The property sets that are not

symmetric correspond to these. For example, the method property sets for Sim01

include the called methods but not the calling methods. Other cohesion metrics

emphasized undirected dependency graphs, e.g., LCOM4, LCC, and DCI. The

symmetric property sets correspond to these. For example, the method property

sets for JD11 and Nhood include both the called and calling methods.

5.3 Test suite experiments

We wanted to assess the effectiveness of the prior research, but the work is difficult

to repeat. The JDeodorant plug-in is publicly available, but the other software

is not, and the descriptions of the algorithms are insufficiently specific to enable

duplication in many cases. In addition to the inaccessibility of the refactoring

software, there is a lack of access to the software that serves as input. Most of the

experiments done using JDeodorant, CARD, and CASYR refactor software that
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Figure 5.4: AnonymousPersistence intraclass dependency graph

is proprietary or otherwise unavailable. The University of Salerno researchers

refactor open-source software, but the basis of many of their experiments involves

randomly merging classes using software that is unavailable to us.

In an attempt to help address the problem of lack of reproducibility in the

refactoring of object-oriented classes, we created a publicly available test suite for

use in testing cohesion metrics and Extract Class refactorings (see Appendix A).

For the Extract Class portion of the suite, a technical report [CAGN10] describes

the expected results of the refactoring.

In this section, we discuss experiments we ran to evaluate the effective-

ness of various agglomerative clustering approaches for determining how to

refactor two simple classes from our test suite, AnonymousPersistence and

PersonCarDisjoint. The code for AnonymousPersistence can be found

in Appendix A.1 and its dependency graph in Figure 5.4. The code for

PersonCarDisjoint can be found in Appendix A.2 and its dependency graph

in Figure 2.4(a). The clustering algorithms we test are our implementations, based

on the descriptions from the research literature, as described in Section 5.2.

The figures show that both classes have two structurally distinct parts. They

differ in that AnonymousPersistence is composed solely of methods, while

PersonCarDisjoint has both methods and attributes. AnonymousPersist-

ence performs two main tasks. It has three methods that handle saving and

restoring serializable objects to files and another seven methods that handle

saving and restoring objects to a database. Clustering algorithms should be

able to produce two clusters for AnonymousPersistence, one consisting of

three serialization members and one consisting of seven database members.

PersonCarDisjoint has a nice property for analysis purposes. It is structurally
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Figure 5.5: PersonCarDisjoint intraclass dependency graph

symmetric; the eight methods and three attributes in the person parts of the class

have the same pattern of member access as the eight methods and three attributes

in the car parts of the class. Clustering algorithms should be able to produce two

clusters for PersonCarDisjoint, one consisting of the eleven person members,

and one consisting of the eleven car members.

5.3.1 Refactoring based on structure

All of the work on refactoring classes previously discussed in this chapter makes at

least some use of local structural information within the property sets of a class’s

members, that is, a member’s properties include a subset of those members to

which it is directly linked via accesses or calls relationships. All of the approaches

use a Jaccard similarity function to compare property sets. They differ in what

they put in the property sets and in how they combine clusters.

This section examines how combinations of various structure-based property

sets and cluster linkage schemes affect the results of clustering. For each of the

property sets, we perform three agglomerative clustering runs – one time each

for single link, complete link, and average link clustering using a Jaccard distance

function, and the clusters produced are compared to the expected results for the

test classes. Because the two test classes each have two structurally distinct parts,

a structure-based cluster algorithm should identify the class members in those
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two parts as the penultimate clusters.

Test class clustering results

We ran the agglomerative clustering algorithms on the PersonCarDisjoint

and AnonymousPersistence test classes. For each of the property sets of

Table 5.1, we ran single, complete, and average link agglomerative clustering

on the members of the two classes using a Jaccard distance measure to calculate

the distance between entities in the clusters.

Table 5.2: Test classes – clustering results

Prop Set Link PerCar AnonPer Ref

Sim01 single + + [FTCS09, Fok10]

average + +

complete - -

Ser08 single + -

average + - [SC08]

complete + -

JD11 single - - [FTSC11]

average - -

complete - -

SSM single - -

average - - [BDLMO10a, BDLMO10b]

complete - -

Nhood single + +

average + +

complete - -

Table 5.2 summarizes the results. If the clustering produced the preferred

clusters at some distance less than 1.0, then a “+” appears in the column

corresponding to the class (“PerCar” for PersonCarDisjoint and “AnonPer”

for AnonymousPersistence). For example, the first data row of the table

indicates that agglomerative clustering with the Sim01 property set and single

link clustering produced the preferred results for both PersonCarDisjoint

and AnonymousPersistence, whereas the third data row indicates that
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Figure 5.6: Clusters produced – JDeodorant’s 2011 distance function (single link)

agglomerative clustering with the Sim01 property set and complete link clustering

did not produce the preferred result for either class.

Results – property sets

Sim01 and Nhood are the property sets from Table 5.1 that produced the best

results. They both produced the desired clusters for PersonCarDisjoint and

AnonymousPersistence when either single link or average link clustering was

used.

There appear to be two main properties that distinguish these from the other

property sets relative to the quality of the results. First, both Sim01 and Nhood

include the member in its own property set, which promotes similarity between

adjacent class members. Consider the AnonymousPersistence test class, whose

handleSerializableException method is called by two methods. The

property sets produced by configuration JD11 for handleSerializableEx-

ception will only contain the two methods that call it. Both of those methods

have property sets that only contain handleSerializableException, but

not themselves. Consequently, handleSerializableException will not

cluster with any other members until a distance of 1.0. Figure 5.6 contains a

dendrogram showing this situation, where the cluster containing handleSerial-

izableException is purple, and the cluster with the two methods that call it,

saveSerializableToFile and readSerializableFromFile, is red.

The second main property that distinguishes the Sim01 and Nhood configu-

rations from the others is that their property sets for methods include all called

methods. This is the only difference between Sim01, which works for the test

classes, and Ser08, which does not.
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Based on these results, we conclude that agglomerative clustering works best

for determining how to split classes when the property sets for class members

include the member itself and all methods and attributes that are connected to it

via calling or accessing relationships. This is consistent with how many structural

cohesion metrics (e.g., TCC, DCD) use these relationships when calculating

connectedness as part of their cohesion calculations.

Results – cluster linkage

Table 5.2 shows that single link and average link clustering gave better results than

complete link clustering for the property sets we examined. The dendrograms

produced for each of these linkage methods for the AnonymousPersistence

test class help to explain why.

Figure 5.7 shows the dendrograms produced by agglomerative clustering

using the Sim01 property sets for the three different cluster linking schemes. In

each dendrogram, the final two clusters are shown in blue and red. Figure 5.7(a)

shows the dendrogram produced for AnonymousPersistence using single link

agglomerative clustering, the configuration used by JDeodorant in 2009 [FTCS09].

This dendrogram shows that the preferred two clusters are produced for distance

cutoffs greater than 0.8 and less than 1.0.

Figure 5.7(b) shows the dendrogram when average link clustering is used.

It is quite similar to the dendrogram produced via single link clustering, with

the exception of the distance values at which many of the clusters are merged.

In particular, the preferred two major clusters can not be distinguished until a

distance threshold of 0.97, not far from the maximum possible distance of 1.0.

Agglomerative clustering does not produce the preferred clusters when

complete link clustering is used with Sim01, as shown in Figure 5.7(c). This is due

to the interaction of the Jaccard distance function acting on property sets based on

local neighborhood information and the functioning of complete link clustering,

which merges clusters based on the distances between the most distant members

in the two clusters. Both saveDatabaseValues and getDatabaseValues are

only called by a single, distinct method, so each of them has a property set that is

composed of the method itself and the single calling method. As a consequence,

each of these methods will have a Jaccard distance of 1.0 when compared with

any class member that is not connected to its single calling method. This problem

with complete link clustering and Jaccard distances based on local connectivity



CHAPTER 5. REFACTORING USING DISTANCE-BASED CLUSTERING 102

(a) Single link

(b) Average link

(c) Complete link

Figure 5.7: Agglomerative Clustering – SIM01

information is not particular to this test class. More generally, for any chain of four

or more members, any class members that are separated by more than two other

members will have no common nearest neighbors, so those members will never
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be in the same cluster for any distance less than 1.0.

Although the combination of local neighborhood information and complete

link clustering may not produce the preferred clusters for many classes, it does

not mean that complete link clustering is useless. A perceptive programmer might

still be able to use some of the clusters formed early in the process to form ideas

about how best to refactor the class. Nevertheless, single link and average link

clustering appear to be better choices.

Restructuring clustering inputs

The graph restructuring technique we introduced in the context of cohesion

measurement in Section 2.4.1 is also useful in the context of agglomerative

clustering. Consider the PersonCarSpecial class in Appendix A.5, which has

the same basic code as PersonCarDisjoint, but with many methods originally

defined in the Object class being overridden, such as toString, equals, etc.,

and the addition of a logger attribute. These methods that were inherited from

Object tend to structurally connect the other methods.

The dendrogram in Figure 5.8(a) shows single link agglomerative clustering

with the Sim01 property set when Object’s methods are not filtered out. The

equals and hashCode methods both access all of the attributes, so they are

the nearest class members and get clustered first. The getPersonName and

getPersonInfomethods get clustered, because they both access multiple person

attributes. Similarly, the getCarInfo and getCarDescription methods get

clustered because they both access multiple car attributes. Because all of these

clusters access many of the same attributes, they are combined at a distance of

0.63, resulting in a subcluster that has a mixture of person methods, car methods,

and general purpose methods from Object. This cluster is near the middle of the

dendrogram and is shown in red.

The dendrogram in Figure 5.8(b) shows single link agglomerative clustering

with the Sim01 property set when Object’s methods are filtered out. This has

the preferred clusters for the person functionality and the car functionality, colored

blue and red, respectively.

5.3.2 Refactoring based on semantics

A smaller number of researchers [BDLO11, BDLMO10b, AFL99] have refactored

based on informal (conceptual or semantic) features, mostly in the context of
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(a) with Object methods

(b) without Object methods

Figure 5.8: Single link agglomerative clustering of PersonCarSpecial (structure)
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modularization. It is more difficult to analyze these approaches, due to the

variability in the features considered and lack of detail in the papers.

The University of Salerno’s approach [BDLMO10a, BDLO11] is the only one

we know of that applies informal features to refactoring object-oriented classes.

As discussed in Section 5.2.3, they parse identifiers and comments, and use the

extracted words to compute the CSM term of their similarity function, which is

emphasized more than the two structural terms in the function. Their papers do

not provide sufficient detail to enable us to reconstruct their similarity function;

however, the semantic distance function we use in the following analysis appears

to be sufficiently similar to enable an adequate evaluation.

The idea behind our semantic distance function is based on document

clustering techniques [FWE03]. A class’s methods and attributes are treated as

documents, and the documents’ contents are the words present in the identifiers,

constants, and non-Javadoc comments. The distance function compares the words

present in two given documents. Code adapted from TopicXP [SDGP10] extracts

this information. For example, the words extracted from the saveToDB method

in Figure 5.3 include savetodb, object, obj, url, drivermanag, driver,

manag, todo, popul, tabl, etc. The words stored are the stemmed forms, so

manag would be produced from either of manager or manages. The words

stored include the stemmed form of the full identifier, e.g., drivermanag, and

the stemmed form of its components, e.g., driver and manag. Certain common

words are filtered out, including Java reserved words like void and common

classes, like String.

We use UCLA’s S-Space package [JS10] to create a vector space model [SWY75] of

these documents. In a vector space model, documents are represented as vectors,

where each element in the vector corresponds to the number of occurrences of a

unique word in the corpus (the collection of documents). We can then compute the

distance between two documents (class members) based on the cosine similarity

of their vectors.

Our distance function differs from Salerno’s CSM in several ways. CSM

constructs its vectors using latent semantic indexing (LSI), while we use vector

state models. (The underlying semantic cohesion research on which this is

based [MP05] states that either can be used.) CSM only computes similarity

between methods, while our function also calculates distances involving attributes.

It is also unknown whether the words stored in the feature vectors used in the

semantic comparisons are the same for the two distance functions. There are likely
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Figure 5.9: Agglomerative clustering of PersonCarDisjoint (semantics)

to be differences, e.g., in how identifiers are parsed, which words are ignored,

etc. Despite these differences, we believe the results generated by our distance

function on the two simple test classes are likely to be similar to theirs; however,

we are less confident that the results would be consistent for larger, more complex

classes.

We used our distance function to cluster the members of the PersonCar-

Disjoint and AnonymousPersistence classes. The results of single link

clustering for these classes are shown in Figures 5.9 and 5.10.

The clustering for PersonCarDisjoint produces the preferred clusters,

which are colored blue and red. It is interesting to note that, although the class is

structurally symmetric, the dendrogram produced by single link agglomerative

clustering is not. This has multiple causes. For example, some accessors, e.g.,

getFirstName, contain more words than others, e.g., getVin, and this causes

slight differences when computing distances. Similarly, set- methods contain

more words to be compared (because of their method arguments) than get-

methods, so the set- and get- methods are slightly different distances from the

attributes they access.
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Figure 5.10: Agglomerative clustering of AnonymousPersistence (semantics)

The clustering for AnonymousPersistence does not produce the preferred

set of clusters. In particular, it is interesting to note that handleSerialization-

Exception and handleSQLException form a cluster (shown in red) early on,

because they contain many of the same words. Functionally, they also perform

similar tasks, and from an aspect-oriented point of view, some might argue that

these methods should be clustered together.

As with agglomerative clustering based on structure, the average link

clustering produced the same clusters as the single link clustering, while the

complete link clustering failed to produce the preferred clusters for both test

classes.

5.4 Open source studies

The experimental results in Section5.3.1 show that several of the agglomerative

clustering techniques described in the literature can not determine how to divide

simple classes that were designed to be easy to split. This section discusses further

investigations of the effectiveness of the two techniques that were successful. We

used agglomerative clustering with a Jaccard distance function and the Sim01 and

Nhood property sets to cluster the members of thirty open source classes that were

selected using the query described in Section 4.1. For each of the thirty classes,

we created clusters of their members using single, complete, and average link

agglomerative clustering.

Table 5.3 contains the median number of clusters that existed for each of the

six combinations of property set and linkage at four different distances (0.5, 0.75,

0.9, and 0.999), where the distance function returns values ranging from 0.0 to 1.0.
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Appendix C.2.1 contains detailed data for the number of clusters for each of the 30

classes. At the midpoint of the distance scale, 0.5, the median number of clusters

exceeded 41 for every combination of property set and linkage. Even at a distance

of 0.999, the median number of clusters exceeded 8 for every combination. Clearly,

for these open source classes, it is seldom useful to determine how to split classes

by choosing the last two clusters to be merged.

Table 5.3: Open source classes - median number of clusters

Linkage Property Set 0.50 0.75 0.90 0.999

Single Nhood 41.5 14.5 8.5 8.5

Sim01 43.5 19.5 10.0 8.5

Average Nhood 44.5 28.0 20.5 8.5

Sim01 45.0 31.0 22.5 9.0

Complete Nhood 45.5 30.5 23.5 23.5

Sim01 47.0 31.5 27.5 26.5

Another possibility for determining whether the clusters are suitable for

determining whether to extract classes is to set a cutoff value at which the largest

clusters can be used as the basis for new classes. Because the average class has

approximately seven methods [LM06], we collected data to determine at which

points in agglomerative clustering there were at least two clusters having at least

seven members. Table 5.4 summarizes this data. Appendix C.2.2 contains more

detailed data about the cluster sizes at the various cutoffs.

Table 5.4: Number of open source classes with 2 clusters of over 6 members

Linkage Property Set 0.50 0.75 0.90 0.999

Single Nhood 0 20 7 7

Sim01 0 17 7 7

Average Nhood 0 2 15 7

Sim01 0 2 13 7

Complete Nhood 0 2 4 4

Sim01 0 1 5 5

Table 5.4 shows that, of the six combinations of property set and group linkage,
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the highest number of clusters of suitable size for forming revised classes is

produced by single link clustering and the Nhood property set at a 0.75 cutoff.

Here, 20 classes (67%) produced at least two clusters containing at least seven class

members.

While two thirds of the classes produced clusters of an appropriate size for

creating revised classes, there is a question of whether these clusters would form a

sound basis for revised classes. There is an important additional issue as well –

how the many, smaller clusters should be distributed to the revised classes.

Figure 5.11: CommandLine intraclass dependency graph

This section examines Jena’s (Appendix B.2.4) CommandLine class as a case

study. CommandLine is close to the median number of clusters at the various

cutoff values for the combinations of linkage and property sets. Figure 5.11
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displays the intraclass dependency graph for CommandLine. Structurally,

CommandLine has a group of methods (in the bottom left of the diagram) that

is associated with the args attribute, a group of methods (in the upper left) that

are associated with the indirectionMarker, allowItemIndirect, and/or

items attributes, central functionality associated with the process method, and

several outlying groups.

Figure 5.12: Single link clustering of CommandLine (Sim01)
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Figure 5.12 shows a dendrogram for CommandLine after its class members

were clustered using single link agglomerative clustering using a Jaccard distance

function and the Sim01 property set. The two largest clusters at a cutoff of 0.75

are shown in blue and red. The largest blue cluster contains the class members

that are associated with the args attribute, while the red cluster corresponds to a

group of members in the top left of Figure 5.11. At a distance of 0.85, these two

clusters merge with each other and a third subcluster, and there are no longer

multiple clusters of seven or more members.

(a) distance = 0.75 (b) distance = 0.85

Figure 5.13: Single link clustering of CommandLine (Nhood)
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Figure 5.13 shows dendrograms for CommandLine after its class members

were clustered using single link agglomerative clustering using a Jaccard distance

function and the Nhood property set. Figure 5.13(a) depicts the two largest clusters

at a cutoff of 0.75 in blue and red. The blue cluster corresponds to the group of

members associated with the process method, while the red cluster corresponds

to a group of some of the members in the top left of Figure 5.11. The majority of

the class members are outside of the two largest clusters.

Figure 5.13(b) helps illustrate a potential problem when using the two largest

clusters from an arbitrary distance cutoff to form the basis of refactored classes.

It depicts the two largest clusters at a cutoff of 0.85 in blue and red. The largest

blue cluster at a distance of 0.85 contains both clusters that were the largest at a

distance of 0.75, whereas the new red cluster at 0.85 contains the class members

that were associated with the args attribute.

We extracted classes based on the clusters shown in Figures 5.12 and 5.13,

and measured the cohesion of those classes. Table 5.5 shows the values for six

structural cohesion metrics – LCOM, LCOM*, TCC, DCD, LCC, and DCI, together

with the C3V semantic cohesion metric for those classes. The “Class” column

contains entries for the original class (before it was refactored), and the refactored

classes produced based on the clusterings provided by single link agglomerative

clustering. One refactoring was based on clustering with the Sim01 property set,

corresponding to Figure 5.12. The other two refactorings were based on clustering

with the Nhood property set – corresponding to Figures 5.13(a) and 5.13(b). For

each of the clusterings, the modified class was formed from the largest cluster plus

outliers, while the extracted class was formed from the second largest cluster. The

∆ modified rows contain the improvement in the given measurement between the

original and modified classes, and the ∆ extracted rows contain the improvement

in the given measurement between the original and extracted classes. Due to

rounding, the improvement rows may sometimes appear to be off by 0.01.

The refactoring based on the clusters produced by Sim01 and Nhood at a

distance of 0.75 both seem to be slight improvements over the original class.

The refactoring produced by Nhood at 0.75 has a slightly less cohesive modified

class, but a more cohesive extracted class than both the original class and the one

produced by Sim01 at 0.75. The refactored classes based on the clusters produced

by Nhood at a distance of 0.85 have generally higher cohesion than the refactored

classes based on the clusters produced by Sim01 and Nhood at a distance of 0.75.

This is primarily due to the addition of loosely associated class members to the
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Table 5.5: Cohesion metrics - refactored CommandLine

Class LCOM LCOM* TCC DCD LCC DCI C3V

Original 507 0.93 0.22 0.22 0.64 0.64 0.17

Sim01 (dist = 0.75)

modified 449 0.91 0.26 0.26 0.64 0.64 0.17

extracted 3 0.63 0.60 0.60 1.00 1.00 0.34

∆ modified 58 0.02 0.04 0.04 0.00 0.00 0.00

∆ extracted 504 0.30 0.38 0.38 0.36 0.36 0.17

Nhood (dist = 0.75)

modified 483 0.93 0.21 0.21 0.40 0.40 0.17

extracted 0 0.61 0.71 0.72 1.00 1.00 0.37

∆ modified 24 0.00 -0.01 -0.01 -0.24 -0.24 0.00

∆ extracted 507 0.32 0.49 0.50 0.36 0.36 0.20

Nhood (dist = 0.85)

modified 355 0.90 0.22 0.22 0.64 0.64 0.14

extracted 61 0.00 1.00 1.00 1.00 1.00 0.56

∆ modified 152 0.03 0.00 0.00 0.00 0.00 -0.03

∆ extracted 446 0.93 0.78 0.78 0.36 0.36 0.39
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clusters that existed at a distance of 0.75. As previously mentioned, there was only

one cluster with at least seven members produced by Sim01 at a distance of 0.85,

so no classes were extracted.

For average link agglomerative clustering using a Jaccard distance function,

neither Nhood nor Sim01 produced two clusters of at least seven class members at

the 0.9 distance cutoff. However, at a distance of 0.99, both property sets generated

the same top level clusters as Nhood did for single link clustering at a distance

cutoff of 0.85 (Figure 5.13(b)).

For complete link agglomerative clustering using a Jaccard distance function,

neither Nhood nor Sim01 produced two clusters of at least seven class members

at any distance below the 1.0 maximum. As Table 5.4 shows, this is a common

problem with the use of complete link clustering with these property sets.

This case study illustrates some of the difficulties of using agglomerative

clustering as a basis for determining how to refactor classes. While the clusters

produced can lead to the production of more cohesive refactored classes, it is

not obvious which cutoff distance produces the clusters that result in the highest

quality classes. However, manual inspection of the dendrograms in conjunction

with a visual analysis of the class’s structure can be helpful for guiding the

refactoring.

5.5 Visualizing agglomerative clustering

Among the weaknesses of using agglomerative clustering for refactoring is the

difficulty of understanding why clusters are being combined. Distance functions

tend to be opaque, i.e., as the agglomerative clustering proceeds, it is often difficult

to see why clusters are being combined. To partially address this shortcoming,

we devised a novel visualization of agglomerative clustering in the context of the

class’s structure [CAGA11].

This section shows the visualization of clustering using an example distance

function we created based on structural connectedness. While examining open

source classes [CAGA11], we noticed that classes sometimes had chains of method

calls. Based on the idea that a class member that was exclusively linked to another

member could only be joined to that member, we created a novel distance function

that produces a small distance for nodes that have few links except to each

other. For two nodes representing class members, the distance equals the shortest
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undirected path between the two nodes plus an added fractional “exclusivity”

distance based on the number of incident edges on the two nodes. The exclusivity

distance equals 1 when the node have no common edges, otherwise

dist(a, b) = 1− (2/(edgeCount(a) + edgeCount(b))) (5.3)

where the edgeCount function returns the total number of edges incident to a node.

In this agglomerative clustering example, we can recalculate distances based solely

on the properties of the underlying graph representation. This distance function

has the advantage of simplicity. It is calculated based purely on the evolving

graph – it does not require any of the cluster linkage mechanisms described in

Section 5.1.3.

Figure 5.14: Agglomerative clustering view

Figure 5.14 shows the agglomerative clustering view. Due to the importance of

intraclass structure, the basis of the visualization is an undirected version of an

intraclass dependency graph, where stars represent unclustered attributes, circles

represent methods, and white shapes represent clusters consisting of two or more
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members. Clusters of two members are represented as ovals, while larger clusters

are represented by polygons, where the number of sides is equal to the number of

members in the cluster. Cluster nodes are labeled with the name of one of their

members followed by the iteration in which the cluster was formed.

Edges represent either a method calling a method or a method accessing

an attribute. The weights of the edges are the distances between the linked

class members. While implementations of agglomerative clustering typically

maintain distances between all clusters, our graph only shows the distances

between structurally linked nodes, rather than for all node pairs, emphasizing the

significance of the class’s structure.

The user modifies the clustering iteration using a slider. Moving the slider to

the right causes the clustering iteration to advance, and the distance values on the

edges to change. At each iteration, the two nearest nodes are merged. The node

that is farthest from the center is removed, while the more central one “absorbs” it

and changes shape. After the merge step is completed, the edge weights (distances)

are recalculated. While this is happening, the pane on the left displays a textual

representation of the hierarchical structure of the clusters as they evolve.

Figure 5.15 shows agglomerative clustering in action. (The figure only shows

the pane containing the graph, to conserve space.) Figure 5.15(a) shows the

dependency graph before the first cluster is formed. The effects of the first six

iterations of clustering are relatively uninteresting as the nodes on the outskirts of

the graph are being merged with their only neighbors, and no cluster has more

than three members. Figure 5.15(b) shows the graph after the sixth iteration,

where there are three clusters of three members. Each of these clusters consists

of an attribute together with its two accessors, and the distance function seems

to be working as intended. At this point, we expected to see more clustering

of attributes with their accessors. Instead, the cluster consisting of make and its

accessors merges with getCarDescription. Figure 5.15(c) shows the graph

after seven clustering iterations, when this group of four is formed.

This merger was an unintended consequence of our representation combined

with our distance function. As clusters merged, edges disappeared, which affected

the distances between nodes. For example, in Figure 5.15(a), getCarDescrip-

tion is connected to make via an edge with weight 1.7, because make is linked

to several other nodes. In Figure 5.15(b), getCarDescription is connected to

the cluster containing make (setMake+6) via an edge with weight 1.5, because

setMake+6 only has one other edge.
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(a) Iteration 0

(b) Iteration 6

(c) Iteration 7

Figure 5.15: Agglomerative clustering visualization
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It was relatively easy to identify the problem in our representation using the

visualization, because the visualization highlights the structural relationships

between class members and displays a select few of the possible inter-member

distances. While the clustering could have been debugged using a combination of

dendrograms and traces of the distance matrix produced during clustering, that

would likely have been a more time consuming and tedious task.

While this visualization is helpful for debugging some problems in agglomera-

tive clustering, it has limitations. Chief among them is the difficulty of visualizing

clustering involving a large number of entities. In addition to the problem of screen

clutter, there is a potential problem with tedium – there can be many clustering

steps to observe. Consequently, this visualization is perhaps most useful for initial

exploration of agglomerative clustering with a small number of entities.

5.6 Evaluation of distance-based techniques

The previous sections have discussed several distance-based clustering techniques,

their uses for refactoring, and some of their individual strengths and weaknesses.

This section evaluates these techniques at a higher level, and identifies common

strengths and weaknesses.

One of the biggest strengths, and one of the biggest weaknesses, of distance-

based clustering algorithms is the distance functions themselves. Distance

functions are extremely flexible – anything that can be coded to produce a numeric

result can be used as a distance function. While this flexibility is capable of

producing excellent results, it also has drawbacks, particularly when the functions

become complicated. Distance functions tend to be opaque – when clustering

produces unexpected results, it can be difficult for analysts to determine why.

The difficulty of designing good distance functions is exacerbated by some

characteristics of the object-oriented domain. It is hard to create useful distance

functions that cover diverse entities like attributes and methods, and it is hard to

embed knowledge about preferred (software) characteristics of the cluster, e.g.,

that the class produced from the cluster should be of a certain size and cohesion.

Without such domain knowledge, distance-based clustering is liable to produce

clusters unsuitable for forming classes.

In the approaches discussed earlier in this chapter, the researchers have chosen

to create distance functions that treat attributes and methods nearly identically
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during clustering. Some of these researchers concentrated on the structural

neighborhoods of the entities, while others concentrated on the informal features –

the words used in the code and comments. In both cases, the distance functions

capture some of the information important to creating a good class (some aspects

of structural or semantic cohesion), while ignoring others. Consequently, these

functions produce useful results in some cases, but not others.

5.6.1 Evaluation of agglomerative techniques

Earlier sections have shown how agglomerative clustering can identify useful

clusters of classes that facilitate the Extract Class and Move Method refactorings.

Although there has been some success, agglomerative clustering has a number of

drawbacks in regards to refactoring in general, and extracting classes in particular.

Agglomerative clustering is not a good cognitive fit with the Extract Class

refactoring, where the programmer’s goal is to divide a class into more maintain-

able ones. For Extract Class, a programmer wants to divide a class’s members,

while maintaining many of the interconnections between members within each

of the resulting classes. (Chapter 6 discusses refactoring using graph-based

divisive clustering, which seems more conceptually suited to Extract Class.) With

agglomerative clustering, one breaks up a class into its members and reassembles

them, hoping that the distance functions are good enough to recombine cohesive

groups of class members. While agglomerative clustering can produce good

results in this manner, its method for doing so may be different from how most

programmers would produce the same results.

Evaluating clusters

It can also be difficult for a programmer to decide how to use agglomerative

clustering results, particularly for large real-world classes. Consider the clusters

produced from the members of Weka’s RegOptimizer class using a semantic

distance function, shown in Figure 5.16. Unlike for the simple case of Person-

CarDisjoint illustrated in Figure 5.9, merely choosing the last two unmerged

clusters does not provide a good result. For RegOptimizer, the last clusters to

be merged are outliers that have little apparent similarity to any of the other class

members. Programmers are unlikely to be impressed with a suggestion to extract

a new class consisting of the single private attribute serialVersionUID.
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Figure 5.16: RegOptimizer dendrogram

In some cases, it is possible to choose clusters through the choice of a particular

cutoff distance. In the dendrogram in Figure 5.16, it looks as though there may be

useful clusters at a distance of 0.90 – a large blue cluster consisting of the members

wrapUp through seedTipText, a seven member brown cluster consisting

of getEpsilonParameter through setOptions, and three single member

outlier clusters, buildClassifier, getRevision, and serialVersionUID.

However, without experimentation, or a sound theoretical explanation, there is no

way of knowing whether such a cutoff value has any validity. There is not some

universally useful cutoff distance that indicates which clusters might serve as the

bases for classes; however, through experimentation, researchers can establish

useful cutoffs for particular clustering techniques. For example, for the first step
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of their two-step technique, the researchers at Salerno chose to remove all edges

from their similarity graph with a weight less than 0.1 (which is equivalent to

collecting the clusters at a distance of 0.9) based on experimental results with

different thresholds [BDLMO10b].

However, unless the intent is to have fully automated refactoring, it is not

necessary to have a criterion for deciding which clusters are most suitable

for creating clusters. Programmers can manually inspect results and choose

clusters that seem promising as the bases for new classes. Hierarchical clustering

has advantages over partitional techniques here, because programmers can

examine more closely related subclusters and apply their judgment regarding

the potential utility of the subclusters. For example, a programmer might look at

the dendrogram of Figure 5.16, and decide that the first eight members, wrapUp

through m data, might make a good class. However, this manual inspection

requires more effort on the part of the programmers than when programmatic

criteria can be used to identify the most promising clusters.

Evaluating cluster linkage

Based on the flawed results produced by complete link clustering for the simple

test cases presented in Section 5.3.1, and on the clustering results for open source

classes presented in Section 5.4 we feel that both single link and average link

clustering are preferable to complete link clustering for extracting classes. For

deciding where to split classes, it is important to maintain existing connectivity

between class members. Because single link clustering extends clusters based on

shared properties, it tends to maintain connectivity when the distance function is

based on local structure. Complete link clustering, on the other hand, will not form

clusters (before a distance of 1.0) between entities that have no shared information.

Class members that are connected only through methods chains whose length is

greater than two will never be in the same cluster (prior to the clusters formed at a

distance of 1.0).

Our recommendation to use single link or average link clustering contrasts

with the preliminary conclusion reached by Anquetil and Lethbridge [AFL99]

to use complete link clustering for large scale modularization; however, that

modularization task may be less concerned with non-local interactions. We suspect

that further investigation will show average link to be preferable to single link

clustering, because single link clustering is extremely sensitive to the placement of
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individuals; however, this has not yet been verified.

5.6.2 Evaluation of k-means and k-medoids

K-means and k-medoids appear to be worse choices for most refactoring tasks

than the agglomerative distance-based approaches. Besides sharing the burden

of having opaque distance functions, k-means and k-medoids both build clusters

relative to some average, or prototypical, point in space, and it is not clear what

spatial dimensions are suitable for object-oriented software.

It can also be difficult to choose a proper value for the number of partitions,

k. For some refactoring tasks, the choice of the number of partitions is relatively

clear, for example, setting k to 2 for redistributing methods between two classes.

It is harder to set k for some other refactoring tasks. Setting k to 2 for Extract

Class seems a reasonable strategy, but can produce poor results, for example, for

a class that was composed of three distinct spatially-related subsets of attributes

and methods, as in Figure 5.2.

Also, being partitional algorithms, k-means and k-medoids do not provide

an easy means of using partial results. Agglomerative clustering produces

nested clusters, so it is possible for programmers to examine more closely related

subclusters when the higher level clusters are unsatisfactory, and use the members

of the subclusters as the foundation for new classes. There are no such subclusters

produced by partitional algorithms. Of course, an analyst could always calculate

the closest members of a partition after the clustering, but it is unclear what

advantage this would have over using agglomerative clustering from the start.

5.7 Contribution summary

The idea of using agglomerative clustering to organize software is not new;

however, important aspects of clustering have been overlooked, particularly in

regard to refactoring object-oriented classes. This chapter has analyzed several

approaches to refactoring object-oriented software based on their application to

test classes that we have developed and on open source classes. This analysis has

identified areas of weaknesses that have been ignored previously, for example, the

drawbacks of using local connectivity information with complete link clustering.

Consequently, we recommend single link or average link clustering over complete
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link clustering when using agglomerative clustering with local connectivity

information.

We have also provided a mechanism for restructuring the inputs to clustering

algorithms to help eliminate some of the confounding effects of special methods

like toString, equals, etc. By eliminating “noisy” structure that is not related

to the main purpose of the class, we can better split noncohesive classes.

Among the weaknesses of using agglomerative clustering for refactoring is

the difficulty of understanding why clusters are being combined. To address

this shortcoming, we devised a visualization of agglomerative clustering in the

structural context of the class. This visualization showed the clusters growing

with each iteration of clustering, making it easier to discern whether clusters were

forming consistent with the underlying structure of the class.

Most of the approaches discussed in this chapter use local structural informa-

tion to try to determine whether class members belonged together. In Chapter 6,

we present graph-based clustering techniques, an alternative means of clustering

using structure, that we feel is more appropriate to the problem of splitting

classes. Chapter 7 discusses how a combination of graph-based and agglomerative

clustering techniques can produce a result that is better than either technique

individually.



Chapter 6

Refactoring Using Graph-Based

Clustering Techniques

Graphs are a good choice of representation for many domains where the

relationships between entities are important. For these domains, nodes can

represent entities, and edges can represent the relationships between the entities,

e.g., communication.

Graph-based clustering algorithms separate the entities in a graph into clusters,

typically by removing a small number of edges (the cut set), which disconnects

the graph. Each connected component corresponds to a cluster, and the entities

represented by the nodes in the component are the elements of the cluster.

This chapter begins with a discussion of some graph-based clustering

algorithms that have been applied to refactoring software, followed by discussions

of other people’s research in refactoring object-oriented software based on graph-

based clustering. Section 6.3 discusses our approach for applying a graph-based

clustering technique known as betweenness clustering to discovering subsets of

class members suitable as the basis of an extracted class, and Section 6.3.1 describes

our visualization of betweenness clustering operating on object-oriented classes.

Section 6.3.2 discusses how we use betweenness clustering results as the basis

for splitting large open source classes and how that results in extracted classes

with improved cohesion. In section 6.4, we evaluate the relative strengths and

weaknesses of graph-based clustering techniques compared to other clustering

approaches for refactoring classes. The chapter concludes with a summary of our

contributions.

124
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6.1 Background – graph-based clustering

Graph-based clustering algorithms work on an underlying graph representation

of the data, splitting the graphs by removing edges. For graph-based clustering

algorithms, the quality of the result depends on what is represented by the graph’s

nodes and edges, as well as the algorithm used to partition the graph.

Researchers from a variety of fields are interested in graph-based clustering

algorithms. Biological and social network analysis researchers often use graph-

based clustering algorithms to find interconnected communities of individuals,

an activity known as community detection [For10, MW03, RB07, GN02]. The

community detection algorithms they use look for heavily interacting groups

of individuals who do not interact with many individuals outside the group.

Transferring these ideas to the software domain, the groups of highly interacting

individuals correspond to cohesive systems which are loosely coupled to other

cohesive systems.

This section contains a brief overview of some graph-based clustering

algorithms that have been used for refactoring. There are more extensive sources

of information available on graph-based clustering and community detection

algorithms [New10, For10, Sch07].

6.1.1 Splitting a minimum spanning tree

Undirected graphs can represent groups of entities, where nodes represent entities

and edges represent the distances between them. For connected graphs, there are

algorithms [Pri57, Har75] to construct minimum spanning trees, trees that contain

all of the original nodes with the lowest possible sum of edge weights. Figure 6.1

shows a minimal spanning tree for a collection of five mammals.

If an algorithm then iteratively removes the edges with the largest distances, it

separates the spanning tree, and the disjoint subtrees form clusters of entities that

are relatively close together. In the example of Figure 6.1, the first iteration removes

the edge between gorilla and wolf, because that edge has the largest distance (12).

This divides the initial cluster into two clusters – the primates (lemur, human, and

gorilla) and the canines (wolf, dog). The next iteration separates the lemur from

the human and gorilla, and so forth.

This iterative process of splitting the tree produces the same results as

single link agglomerative clustering, only in a divisive fashion, rather than an
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Figure 6.1: Minimal spanning tree – mammals

agglomerative one [GR69]. Because splitting a minimal spanning tree is equivalent

to single link agglomerative clustering, it suffers from the same drawbacks as

the agglomerative clustering techniques that were discussed in Section 5.6.1.

Section 6.2.2 describes a technique somewhat similar to this that is used for

determining clusters of class members that may serve as the basis for the Extract

Class refactoring.

6.1.2 Betweenness clustering

Betweenness clustering algorithms [GN02, Bra01] are graph-based divisive clus-

tering techniques that separate a connected graph into disconnected subgraphs.

Betweenness clustering gets its name because it operates by iteratively removing

the relatively few edges that separate (are most between) densely interconnected

clusters (a.k.a communities) of nodes.

Betweenness clustering has been applied to many domains, including social net-

works [GN02, RB07, For10], scientific collaboration networks [New01], biological

food webs [GN02], and software componentization [DYM+08]. In social networks,

the graphs typically consist of nodes that represent people or organizations,

and edges that represent some kind of communication of information from one

entity to another. Groups of nodes with many communication connections are

communities.

The Girvan-Newman betweenness clustering algorithm [GN02] works by

iteratively removing the edge of a graph that has the highest betweenness value,

where the betweenness value of an edge is the number of shortest paths between

pairs of nodes that pass through it. (If there are multiple paths between two

nodes that tie for the shortest distance, each edge on each path accrues an equal,

fractional weighting.) Figure 6.2 contains two graphs whose edges are labeled with

betweenness values. In both the connected graph on the left and the disconnected



CHAPTER 6. REFACTORING USING GRAPH-BASED CLUSTERING 127

graph on the right, the edge between F and G has a value of 4, because it is on the

shortest paths between (F, G), (G, F), (G, H), (H, G), but no others.

If the graph on the left represented a collaboration network, nodes A through

D might represent researchers in artificial intelligence (AI) and nodes E through H

researchers in refactoring. The edges might indicate that the people represented by

the nodes were co-authors of a paper, and communicate information relevant to

the paper. Thus, the edge from AI researcher D to refactoring researcher E would

represent the rare occurrence of co-authorship of a paper (and communication of

information) between the AI and refactoring communities.

Figure 6.2: Betweenness clustering – edge betweenness values

Figure 6.2 shows the graph on the left being transformed into the graph on the

right by removing the edge with the highest betweenness. For this example, the

first iteration of the betweenness clustering algorithm removes the edge between

D and E, leading to two disconnected subgraphs/clusters, as shown on the right

side of the figure. Depending on the graph’s structure, many edge removals may

be required before a cluster of nodes becomes disconnected from the rest of the

graph. After each edge removal, the algorithm recalculates the betweenness values

of the edges prior to the next edge removal. The successive removal of edges will

disconnect the connected portions of the graph and form additional clusters.

In the variant of betweenness clustering described above, the edges are

undirected and unweighted – the edge labels indicate the betweenness values

as though all edges had a weight of 1.0. Newman [New10] describes additional

variants for directed and weighted edges that we may investigate in the future.
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6.1.3 Max flow/min cut

The maximum flow problem is to determine the maximum amount of something

(e.g., information) that can flow through a network from a source to a destination,

and along which paths. This can be cast as a graph problem. Given a weighted

graph that contains a designated source node and destination (or sink) node,

maximum flow algorithms [FF09] determine the maximum flow from source to

destination and how that flow is distributed across the various edges. In general,

maximum flow algorithms can also be used to determine the minimum cuts in a

graph, that is, the edges with the lowest combined weights that can be removed to

separate subgraphs containing the source and destination.

(a) Separating A and F

(b) Separating E and J

Figure 6.3: Minimum cuts

The minimum cut for a graph can vary depending on the choices for the source

and destination. Figure 6.3 shows two different determinations of a minimum

cut for a graph, produced by using two different sets of source and destination

nodes. Assume that the graph depicts information flow. There are two groups

that communicate relatively much information – nodes A through D, and nodes F

through I. Nodes E and J are relatively isolated outliers that do not communicate

much information.
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When the source and destination are representative members of distinct

groups, e.g., A is the source and node F is the destination, then the minimum

cut algorithm can often detect the groups of highly interacting nodes. Figure 6.3(a)

shows the minimum cut between A and F, the edges (C-G) and (E-J). The newly

separated graph components contain the groups of nodes that most communicate

information.

When the source and destination are not representative members of distinct

groups, e.g., the source and destination are outliers, then the minimum cut algo-

rithm is less likely to detect the groups of highly interacting nodes. Figure 6.3(b)

shows the minimum cut between the E and J, the edges (E-J) and (G-J). The newly

separated graph components do not separate the highly interacting groups.

Determining the minimum cut is somewhat similar to separating a graph using

betweenness clustering. In both cases, one is determining a cut set that disconnects

a graph. However, these algorithms are useful in different circumstances. Max

flow/min cut is useful for disconnecting a graph when a meaningful source and

destination can be chosen; betweenness clustering can separate a graph without a

specified source and destination.

6.2 Related work – applying graph-based clustering

to software

A few research groups have applied graph-based clustering techniques to

refactoring software. This section discusses their approaches and the strengths

and weaknesses of those approaches. Section 6.4 provides further evaluation,

comparing some graph-based and agglomerative clustering approaches to

refactoring.

6.2.1 Modularization

Dietrich, et al. [DYM+08] created the BARRIO Eclipse plug-in as part of a tool

that will suggest a list of refactorings to make programs more modular by better

allocating classes to packages and containers. BARRIO detects and visualizes

clusters of Java classes in dependency graphs. The nodes in the graphs are Java

classes, and the edges indicate extends, implements, or uses relationships between

the classes. BARRIO provides filters that affect the graph display, but the use of
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filtering with clustering was listed as future work.

They use a variant of betweenness clustering to form clusters. They modified

the betweenness clustering algorithm to remove multiple edges in a single iteration,

when all of those edges have the same weight. This is not an optimization over

the Girvan-Newman betweenness algorithm; it produces different results.

These researchers do not report on their criteria for determining what

constitutes a good cluster, e.g., they do not stop clustering when a cluster exhibits

any particular properties. Instead, their clustering algorithm runs for a specified

number of iterations. Consequently, an iteration may break apart a cohesive

package.

They recognize two refactorings. When multiple clusters exist in a package,

they recommend splitting the package into multiple packages. When a cluster

contains multiple packages, they recommend merging those packages into a single

package. Their paper emphasizes visual aspects of component determination

and does not indicate whether they performed any refactorings based on the

betweenness clustering results.

6.2.2 Extracting classes

Researchers at the University of Salerno [BDLO11] use max flow/min cut to

help determine how to split large classes. Their technique constructs a fully-

connected graph whose nodes are the class’s methods and whose edge weights

are the similarity scores between the connected nodes. (The similarity function is

discussed in Section 5.2.3.) Next, all edges with a weight below a certain threshold

are removed. In contrast to their “two step” clustering technique described in

Section 5.2.3, the edge removal step is not intended to disconnect the graph. They

do not state how they avoid disconnecting the graph.

After edge removal, they form clusters using a max flow/min cut algorithm.

After setting the source and destination nodes to the nodes of the most dissimilar

methods, they remove the minimum edge cut set (a set of edges whose removal

disconnects the graph, and the sum of whose weights has the minimum possible

value) as determined by max flow/min cut. The two subgraphs form the basis for

the new classes. They acknowledge that their choice of using the most dissimilar

nodes as the source and destination can cause problems, because the source and

destination may be outliers.

As with their two-step technique, they evaluated their Extract Class approach
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by randomly combining pairs of classes from well-designed systems and then

seeing whether their technique would extract the original classes when applied to

the hybrid classes. In this study, they took some LCOM cohesion measurements

on the classes before the merger, after the merger (the hybrid), and after the extract

class was performed. The LCOM measurements indicated that the hybrid classes

were significantly less cohesive than the original classes and the extracted classes,

and that the extracted classes were nearly as cohesive as the originals. However,

as mentioned in Section 2.1.3, LCOM scores correlate with class size. In general,

one would expect the larger, hybrid classes to have higher LCOM scores than the

smaller classes to which their LCOM scores are compared, particularly when the

classes that were merged were unlikely to be highly related.

It is not clear what the underlying conceptual basis is for the Salerno algorithm

– the graph’s edges indicate similarity measures, not structural connectedness/in-

formation flow. Their approach somewhat resembles the separation of a minimum

spanning tree as described in Section 6.1.1, which gives the same result as single

link agglomerative clustering. Instead of separating a minimal spanning tree by

removing the edges with the greatest distances, their algorithm separates a graph

by removing the cut set determined by max flow/min cut, which typically consists

of a small number of edges with low similarities.

6.3 Experiments – applying betweenness clustering

to Java classes

Based on the idea that interactions between methods and attributes are analogous

to the interactions between people, we use betweenness clustering to try to identify

the clusters of methods and attributes within a large class that most belong together.

In the graphs of large classes, the nodes represent the class’s members, and the

undirected edges represent dependencies between members, e.g., a method calling

a method or accessing an attribute. The next section explains how betweenness

clustering works on the members of a class using our interactive betweenness

view. Section 6.3.2 discusses some experiments we ran on open source classes to

determine whether betweenness clustering could effectively determine how to

split large classes.
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6.3.1 Visualizing betweenness clustering

ExtC provides a betweenness clustering view for visualizing the activity of the

betweenness clustering algorithm on undirected intraclass dependency graphs.

The view shows the algorithm removing edges from the graph, changing

betweenness values of the remaining edges, and forming clusters. It is based

on a demo provided by the JUNG graph framework [OFWB03] that illustrates

betweenness clustering using social network data.

Figure 6.4: Betweenness view

Figure 6.4 shows the betweenness clustering view, whose primary display

components are an intraclass dependency graph, and a text area. In the graph, all

of the nodes in a cluster (i.e., connected subgraph) are shown in the same color,

and different clusters have different colors. The text area on the left displays the

class members in each cluster.

The view has a slider at the bottom that allows the user to specify the number

of edges to remove. Dragging it causes edges to be removed, which causes

the betweenness values on the remaining edges to change. When the removed
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edges constitute a cut set, the appearance of a new color notifies the user of the

appearance of a new cluster.

As a simple example, consider the PersonCarDirect class from Ap-

pendix A.3, that contains the mixed characteristics of both a person and a car. Its

primary methods (getPersonName, getPersonInfo, getCarDescription,

and getCarInfo) ultimately access the fields one would expect. From the source

code of this class, ExtC creates an intraclass dependency graph like the one shown

in Figure 6.5, where the edges are labeled with betweenness values. (Some of these

nodes have been manually repositioned for readability.)

Figure 6.5: Betweenness clustering – PersonCarDirect before start

As shown, the top half consists of a subgraph containing the car-related

methods and attributes, while the bottom half contains the person-related methods

and attributes. Tying these together is the toString method, which calls

getCarInfo and getPersonInfo. In Figure 6.5, the edges with the maximum

betweenness are the ones leading from toString, near the center right of

the graph. (When two edges have the same betweenness score, the JUNG

implementation of the betweenness algorithm chooses one arbitrarily. When

this occurs, multiple tests may produce slightly different results, and there is no

clear reason to prefer one result over the alternatives. This situation occurs here,

because the example is a symmetric, artificially constructed test case. With large,

real-life classes, like the open source classes used in the experiments in Section 6.3.2,
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(a) After iteration 1

(b) After iteration 2

Figure 6.6: Betweenness clustering – PersonCarDirect iterations 1 and 2

such situations are rare for the edges with the initial highest betweenness scores.)

As the analyst drags the slider, the betweenness clustering algorithm will first

remove one of the edges leading from toString. This will effectively break

the graph in two (Figure 6.6(a)). One subgraph will be composed primarily of

the methods and attributes pertaining to a person, and the other subgraph will

have methods and attributes pertaining to a car. At this point, the algorithm

will recompute the betweenness scores for the edges and once again remove the
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highest scoring edge.

After removing the second edge, there are three clusters, as shown in

Figure 6.6(b):

1. The top left part of the graph, consisting of the methods and attributes

pertaining to cars, except for those pertaining to the car’s vin.

2. The top right part of the graph, consisting of the methods and attributes

pertaining to the car’s vin.

3. The bottom part of the graph, consisting of the methods and attributes

pertaining to a person.

A user can choose to display a graph in either “ungrouped” or “grouped”

form. When ungrouped, each node in the ungrouped view is labeled with the

corresponding member name, and the edges between the nodes are labeled

with their betweenness values. The nodes are laid out using a force-directed

algorithm [FR91]; however, analysts can reposition nodes manually to better show

relationships between particular class members. It is relatively easy to discern

clusters in the ungrouped view when the graph is composed of fewer than 50

nodes, as in Figure 6.6.

However, larger intraclass dependency graphs tend to make the unclustered

graph view resemble a ball of yarn, so the grouped view may be preferable.

Consider Weka’s ResultMatrix class, which has over 300 class members and

whose graph has 27 disconnected subgraphs prior to any edges being removed.

The graph’s many nodes and edges can make analysis difficult. For example,

Figure 6.7(a) shows the ungrouped view after eight edge removals has produced a

new cluster. The two largest clusters are slightly different shades of blue and close

together spatially.

By clicking a button, analysts can toggle to the grouped view (Figure 6.7(b)).

This lays out the nodes of a cluster in a tight circular pattern. In the grouped view,

only a single node in a cluster is labeled to help eliminate clutter, and most edges

within the cluster are obscured. The most noticeable edges in the grouped view

are the gray inter-cluster edges, the ones that were removed to form the clusters.

If the clusters are used as the basis for forming revised classes, the relationships

represented by the gray edges represent coupling between the classes. Because

there is a preference for low coupling between classes, a large number of gray

edges is a counter-indicator for a potential refactoring.

Certain methods and fields obscure the fundamental structure of the class.
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(a) Ungrouped

(b) Grouped

Figure 6.7: Betweenness clustering views
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As discussed in Section 4.2, the graph view provides options for whether to

include toString, loggers, etc., and those options apply to the betweenness

view also. However, there may be less predictable causes of clutter in graphs that

obscure the fundamental purpose of the class. For example, a particular company

might mandate that its programmers use certain information gathering or debug

methods. To help alleviate this problem, the betweenness clustering view provides

a list by which the user can optionally remove nodes from the graph. The nodes

on the list are ordered based on their betweenness values, because nodes that are

connected to many other nodes tend to have high betweenness. Because high

placement on the list does not necessarily indicate noise, the selection of nodes to

filter out is left to the user. By filtering out noisy nodes, analysts can obtain better

clustering results.

Consider Weka’s Script class. Figure 6.8 shows betweenness clustering

on the members of Script when no members are filtered out. Figure 6.8(a)

shows the initial state. Figure 6.8(b) shows the formation of the first new cluster

after one edge has been removed. This cluster appears in the upper left and

contains four members – listOptions, makeOptionString, runScript, and

setOptions.

The Script class contains an initialize method that only sets the values

of five attributes. If we filter out initialize, betweenness clustering produces

different results, as shown in Figure 6.9. Figure 6.9(a) shows the initial state,

without initialize. Figure 6.9(b) shows the state after two edges have been

removed and the first additional cluster appears – a cluster of nine members

that does not include the members produced by the non-filtered betweenness

clustering illustrated in Figure 6.8.

In general, it requires some domain expertise to interpret which are the noisy

nodes and which are the “best” clustering results. Our betweenness visualization

helps with that analysis.

6.3.2 Refactoring god classes using betweenness clustering

Our visualizations convinced us that betweenness clustering was useful for

determining how to split some classes. For example, betweenness clustering

easily identifies the preferred divisions of the PersonCarDisjoint and Anon-

ymousPersistence classes that were used as a preliminary test for analyzing

the effectiveness of agglomerative clustering algorithms in Section 5.3.1. The next
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(a) Iteration 0

(b) Iteration 1

Figure 6.8: Betweenness clustering – Weka’s Script class
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(a) Iteration 0

(b) Iteration 2

Figure 6.9: Betweenness clustering with filtering – Weka’s Script class
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step was to test betweenness clustering on a less controlled input set, four mature

open source Java projects – FreeCol, Heritrix, Jena, and Weka. Appendix B.2

provides detail on these open source projects.

The tests were performed on a low end PC, a Dell Vostro 1000 PC with an

AMD Athlon(tm) 64 X2 Dual-Core Processor TK-57 1.90 GHz with 1.87 GB of

RAM. Because other applications were running at the same time as the tests, any

execution times reported are approximate and likely to be on the high side.

The tests consisted of the following steps:

1. We used software metrics to identify large noncohesive classes in the open

source projects.

2. Betweenness clustering separated each class’s members into at least two

clusters.

3. With the two largest clusters as input, we used IntelliJ’s Extract Class

refactoring to split each of the original classes into two classes.

4. Software metrics quantified the changes caused by the refactoring.

Identifying large, noncohesive classes

We used Metrics2 to collect the size and structural measurements on the classes,

and ExtC to collect the semantic measurements. All measurements were stored

in a database. The query described in Section 4.1 identified thirty god classes

out of approximately 3000 top level public classes. These classes are listed in

Appendix B.2.

Clustering the members

An examination of the structure of the thirty matching classes revealed that there

was a high degree of disconnectedness in their call graphs, i.e., even before edge

removal, there were distinct structural clusters. After removing some special

methods (see Appendix C.1 for detail) that might link together functionally

unrelated members, we checked the classes to determine the number of connected

subgraphs and the size of those subgraphs. Because seven is approximately the

average number of methods per class [LM06], we used that as a threshold for large

and small clusters. For the thirty classes:

1. None had a completely connected dependency graph.
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2. The average number of clusters per class was 11.2, and the median was 8.5

clusters per class.

3. Multiple large clusters were relatively rare. Only six (20%) of the classes had

more than one cluster of seven or more members, and no class had more

than two such clusters.

4. Multiple small clusters were extremely common. Fifteen (50%) of the classes

had seven or more clusters of fewer than seven members.

Appendix C.3.1 contains detailed data about the cluster sizes.

ExtC provides a batch mode of operation to cluster the members of the classes

that match the god class query. The results determine whether the classes are good

candidates for an Extract Class refactoring. There are two conditions that trigger a

refactoring: (1) when betweenness clustering identifies two clusters of seven or

more without removing any edges, (2) when the first new cluster formed by edge

removals consists of seven or more members. On average, the clustering step took

less than six seconds per class. Based on the results of the clustering, 12 of the 30

classes did not warrant refactoring, because they did not produce two clusters

with at least seven members each. It is worth noting that, had the criterion for the

number of members in a cluster been reduced from seven to six, an additional

four classes would have warranted refactoring.

Refactoring the large classes

The two largest clusters formed the basis for the revised classes. The class members

of the second largest cluster were the basis for the extracted class, and they served

as inputs for IntelliJ’s Extract Class refactoring, as described in Section 4.4. Except

to correct compilation errors, no manual editing was done to the classes generated

by IDEA.1 It typically took from 15 to 30 minutes to perform each refactoring, with

most of the time spent specifying the class members to be extracted by the IntelliJ

GUI.

Quantifying the changes caused by refactoring

Metrics2 calculated most of the measurements on the software. The data collected

included the number of fields (NF), number of methods (NM), weighted method

1E.g., see the defects at http://youtrack.jetbrains.com/issue/IDEA-24608 and

http://youtrack.jetbrains.com/issue/IDEA-50421

http://youtrack.jetbrains.com/issue/IDEA-24608
http://youtrack.jetbrains.com/issue/IDEA-50421
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count using computational complexity (WMC), and six structural cohesion metrics

(LCOM, LCOM*, TCC, DCD, LCC, and DCI). ExtC provided the semantic cohesion

(C3V) of the classes. Appendix C.3 contains the detailed metric data.

Table 6.1: Average metric values (excluding cohesion)

Class NF NM WMC

original 26 54 132

modified 24 52 114

extracted 3 14 29

Table 6.2: Cohesion measurements

Class LCOM LCOM* TCC DCD LCC DCI C3V

Original 1392 0.97 0.19 0.25 0.48 0.51 0.09

Modified 1117 0.96 0.21 0.25 0.49 0.51 0.09

Extracted 133 0.47 0.65 0.70 0.83 0.89 0.32

Table 6.1 summarizes the metric results for the number of fields, number of

methods, and weighted methods per class. It shows a decrease in the average

values for number of fields, number of methods, and weighted methods per

class for both the modified and extracted classes. Almost all classes showed a

decrease in complexity as measured by WMC. However, the sum of the values

for the modified and extracted classes exceeds the values for the original classes,

especially for the number of methods. As discussed in Section 3.1.3, this is an

expected consequence of strict refactoring.

Table 6.2 summarizes the cohesion results for the same classes. (Remember

that LCOM and LCOM* are “lack of cohesion” metrics, so higher numbers for

these indicate less cohesion.)

Figure 6.10 uses box plots to summarize the cohesion distributions of the

normalized cohesion metrics for the original, modified, and extracted classes. The

box boundaries are the values for the first and third quartiles; the lines within

each box represent the median. The lines that extend from the boxes reach to the

furthest data value that is no more than 1.5 times the size of the box. The outliers
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beyond this limit are shown as dots. Because LCOM* is a lack of cohesion metric,

the values shown in the figures for the column labeled “LCOMHS” is (1 - LCOM*).

This makes it easier to compare the cohesion metrics – better cohesion scores will

always be towards the top.

The cohesion values for the original classes (Figure 6.10(a)) and the modified

classes (Figure 6.10(b)) are not much different. For the normalized metrics (all

except LCOM), the average cohesion results for the modified classes differ from

those of the original classes by 0.02 or less. There are two main reasons for

the overall lack of improvement in cohesion for the modified classes. First,

the classes being refactored are highly noncohesive, typically having many

structurally disconnected parts. After the refactoring, many of the small,

structurally disconnected portions of the original class remain as small, structurally

disconnected portions of the modified class. Second, for every public method that

was part of the original class, there is a proxy method in the modified class. These

proxy methods do not interact with most of the attributes of the modified class, so

they contribute to the apparent lack of cohesion.

On the other hand, the average cohesion scores for the extracted classes

(Figure 6.10(c)) are generally much better than those of the original class. For

the normalized metrics, the average improvements ranged from 0.23 for C3V

to 0.5 for LCOM*. This increased cohesion for the extracted class is due to

betweenness clustering identifying a structurally well-connected portion of the

original intraclass dependency graph, and this well-connected subgraph is used

to identify the members that form the extracted class.

Only three (8.3%) of the 36 modified and extracted classes had a majority (four

or more) of the seven cohesion scores worsen by 0.01 or more, and even in these

cases, at least two cohesion scores improved. For the other 33 (91.7%), the majority

of the cohesion scores improved or stayed the same. None of the original classes

were split into classes where both the modified and extracted classes had a majority

of cohesion metrics show a decrease in cohesion. Based on these results, it appears

that betweenness clustering provides useful assistance for the programmer who is

trying to break apart god classes.

It is worth examining some of the classes whose cohesion decreased. These

do not necessarily indicate a bad outcome of refactoring. Consider Weka’s XML-

Document class, which was one of the classes whose modified class had lower

cohesion than the original. The betweenness clustering, shown in Figure 6.11,

identified one cluster that produced a highly cohesive extracted class. This cluster
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(a) Original class

(b) Modified class

(c) Extracted class

Figure 6.10: Cohesion distributions

is brown and towards the upper right of the figure. The cluster contains five

methods that all call the eval method, which in turn accesses the sole attribute –

m XPath. Because of this structure, the extracted class produced from this cluster
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Figure 6.11: Betweenness clustering – XMLDocument

has maximal TCC, DCD, LCC, and DCI cohesion scores. On the other hand, the

modified class is formed from the remainder of the class members. Because there

are many small clusters, and because a cohesive portion of the original class (the

brown members) has been extracted, the modified class now has lower cohesion

than before. Nevertheless, this refactoring is arguably a better class structure than

existed previously.

There are also some exceptional extracted classes. The extracted class for

Heritrix’s CandidateURI class has a cohesion of 0.0 for many of the metrics. It

is composed solely of methods, except for a field that references the modified

class, that is used only by the constructor. The extracted class for Jena’s Rule has

a similar problem – it is composed exclusively of static methods – those metrics

that require access to attributes give it a score of 0.0, even though the methods

are inter-related. These oddities are due more to idiosyncrasies of the cohesion

metrics than they are to poor refactoring.
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6.3.3 Using betweenness clustering on directed graphs

The betweenness clustering experiments discussed in Section 6.3.2 operated

on undirected versions of intraclass dependency graphs. We also investigated

betweenness clustering working on directed graphs.

Betweenness clustering with directed intraclass dependency graphs forms

clusters that seldom produce effective object-oriented classes. Consider Figure 6.12

which shows betweenness clustering on the PersonCarIndirect class, whose

source code can be found in Appendix A.4. As with the other PersonCar

classes discussed previously, PersonCarIndirect should split into two clusters,

one having the class members pertaining to persons and the other having

class members pertaining to cars. Instead, the first iteration of this clustering

(Figure 6.12(b)) produces a cluster that contains a subset of the person functionality.

Due to results such as these, we recommend using betweenness clustering on

undirected graphs over betweenness clustering on directed graphs for extracting

classes.

6.4 Evaluation of graph-based clustering techniques

In contrast to agglomerative clustering, graph-based divisive clustering is a

cognitive match for Extract Class, where the goal to split a class into more

maintainable ones. Graph-based clustering can also be useful for determining

inputs to other refactorings, e.g., Move Method and Move Field, as discussed in

Section 5.2.2.

In Section 2.1.3, we noted that cohesion researchers value connectivity between

a class’s members and often represent that connectivity using graphs. In particular,

it is worth noting that betweenness clustering and max flow/min cut are similar

in spirit to the previously discussed (Section 2.1.3) ICBM technique [ZXZY02] for

measuring cohesion, which relies on determining the cut sets for a dependency

graph. In fact, the creators of ICBMC mention that it could be used as a basis for

class restructuring.

The betweenness clustering and max flow/min cut algorithms form clusters by

splitting graphs. In effect, these algorithms use extended structural information

in addition to local structural information, i.e., the extended relationships of

members to other members is embedded in the intraclass dependency graphs on

which the algorithms work, and the graph-based clustering algorithms rely on
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(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

Figure 6.12: Betweenness clustering on directed graphs
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this information when determining the clusters.

Furthermore, these graph-based algorithms retain most existing intraclass

member relationships. These divisive techniques will not combine entities

(attributes and methods) that were not previously together; instead they divide

those entities that were already together into meaningful sets. This is advantageous

for maintaining existing interfaces, particularly for structure-based refactorings

including Extract Class, Move Method, and Move Field.

The edges that were removed from the graph to form a cut set represent calling

relationships that will be re-established between the members of the newly created

classes. Because the graph-based divisive clustering algorithms tend to produce

small cut sets, there will be few interclass calling relationships (except for those

created through the use of proxy methods), and consequently, relatively little

coupling between the refactored classes.

The clusters produced by techniques that use distance functions (e.g., many

agglomerative techniques and k-means) have no innate mechanism for maintain-

ing existing structural relationships, nor do they have any built-in way of limiting

interclass connections. The members in the clusters are a result of the operation of

the distance functions, and the functions previously discussed in Section 5.2 only

use local connectivity information in determining how to cluster.

Graph-based algorithms are not a panacea; for instance, they do not provide a

way of associating small, dissociated parts of the graph (outliers) with larger parts.

Chapter 7 discusses how we can compensate for this deficiency by combining

graph-based clustering techniques with agglomerative clustering techniques.

6.5 Contribution summary

Despite their potential benefits, graph-based clustering techniques have been

underutilized by the refactoring community. As discussed in Section 2.1.3,

many researchers who are studying object-oriented cohesion represent class

structure using graphs. Meanwhile, researchers interested in detecting highly

associated communities of individuals have been developing clustering techniques

based on partitioning graphs. Yet, we believe that our use of betweenness

clustering [CAGN09] is the first application of graph-based techniques for

determining how to refactor classes based on their structure.

Betweenness clustering is good at forming groups based on structure, but it
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lacks the capability of using domain knowledge. Programmers may have difficulty

discerning class structure, but have applicable domain knowledge. Our ExtC

Eclipse plug-in helps bridge the gap by providing programmers an interactive

visualization of betweenness clustering operating on class structure. The formation

of clusters within a visual graph display helps the programmer locate important

interrelationships between class members, and a filtering capability allows

iterative exploration of the class structure as clutter is removed.

The filtering capability has the same foundation as the graph restructuring

discussed in Section 2.4.1. In that section, the graph was restructured to remove

noise from the cohesion measurements. It has a similar purpose in the context of

graph-based clustering; it removes relationships that obscure the primary intent

of the class and facilitates more meaningful clustering.

Section 6.3.2 discussed our semi-automated betweenness clustering approach

to refactoring god classes from open source projects. It indicates that betweenness

clustering provides an effective mechanism for determining how to partition the

members of a god class for an Extract Class refactoring. In general, the extracted

classes’ cohesion scores were considerably better than the original classes’ scores.



Chapter 7

Refactoring Using Multiple

Clustering Techniques

Previous chapters have discussed the strengths and weaknesses of various

clustering techniques relative to refactoring object-oriented classes. This chapter

discusses how multiple clustering techniques can be combined, so the strengths of

one clustering technique can compensate for the weaknesses of another.

Section 7.1 briefly reviews the only previous research we are aware of that

combines multiple clustering techniques – the approach taken by the University

of Salerno researchers [BDLMO10b, BDLMO10a]. Section 7.2 discusses our

dual clustering technique for the Extract Class refactoring. This technique

uses betweenness clustering, combined with agglomerative clustering based on

“semantics”, to create two clusters of class members that form the basis for revised

classes. Section 7.2.2 presents a case study that shows how dual clustering works

on a large, open source class. Section 7.2.3 discusses Extract Class refactoring

experiments we did using dual clustering to split large open source classes and

the resulting changes in quality metrics. It then compares the results of refactoring

based on dual clustering to the results of refactoring based on betweenness

refactoring. The chapter concludes with a summary of our contributions.

7.1 Related work

The University of Salerno researchers [BDLMO10b, BDLMO10a] are the only other

researchers we know of who have combined multiple clustering techniques to

determine how to refactor classes. Their technique uses structural and semantic

150
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information to determine clusters of members that serve as the basis for performing

the Extract Class refactoring. Section 5.2.3 introduced their “two-step” technique

for refactoring large classes and their use of distance functions. This section further

evaluates it.

The fundamental data structure underlying their technique is a graph, whose

nodes are the class’s methods and whose edges are weighted with the similarity

scores between the connected nodes. The similarity function that produces

the edge weights combines a measure of semantic similarity with measures

of structural similarity. They weight the semantic term more highly than the

structural terms.

The first step divides the graph by removing edges with low weights. The

second step recombines the graph by attaching subgraphs with fewer than three

members to larger ones. This step uses average link agglomerative clustering with

the same similarity function that was originally used to determine the similarities

between the members of the clusters.

While their two-step technique combines a graph-based divisive step with an

agglomerative step, it is basically an agglomerative technique. The graph-splitting

step breaks a graph whose edges represent similarities. Thus, it is equivalent to

separating a minimum spanning tree by removing the edges with the greatest

distances (see Section 6.1.1), which is equivalent to single link agglomerative

clustering [GR69]. The second step attaches outliers to the main clusters using

average link agglomerative clustering.

As a consequence, their technique suffers from the same problems relative

to refactoring classes as the agglomerative techniques that were discussed

in Section 5.6.1. Because their graphs are not based solely on existing call

relationships within classes, the clusters produced by their techniques do not

necessarily conserve those calling relationships, i.e., their techniques are not

inherently biased towards producing revised classes that have high structural

cohesion and low structural coupling. Rather, they produce highly cohesive classes

relative to their similarity function, which takes into account both structure and

semantics.
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7.2 Refactoring god classes using dual clustering

Our initial approach to extracting classes [CAGN09] used betweenness clustering

to split intraclass dependency graphs. The clusters produced by this approach

retain most of the existing intraclass relationships, so using them as the basis for

revised classes tends to produce classes that are structurally cohesive. The results

in Section 6.3.2 support this claim.

However, inspection of the dependency graphs of large open source classes re-

vealed that a significant percentage of the graphs were composed of disconnected

subgraphs, and many of these subgraphs consisted of three or fewer members

(see Section 6.3.2). Betweenness clustering does not assist in determining how

those isolated members should be assigned to classes. Lacking any guidance,

the implementation based on betweenness clustering kept the class members

represented by the small, disconnected subgraphs with the original class.

While the intraclass structural information should be the primary guide for

refactoring, there is additional information available that can guide refactoring.

For example, a number of researchers have used semantic information embedded

in identifier names and comments to measure cohesion [CEJ06, Etz06, DLOV08],

to identify topics in source code [Mar04, SDGP10], or to help refactor [BDLMO10b,

DLOV08]. Because clustering based on semantics relies on meaningful terms being

embedded in the identifiers, they are less reliable than structural information, but

can still be useful as a secondary source of information for refactoring.

7.2.1 Dual clustering approach

This section presents an approach that combines two different kinds of clustering

algorithms – a graph-based divisive clustering based on structural information,

followed by an agglomerative clustering based on semantic information. The

first clustering algorithm splits the members of the class into at least two clusters.

Afterward, the second clustering algorithm connects any additional small clusters

with the two largest clusters. The two resultant clusters form the basis for splitting

the original class into two classes, providing they meet certain criteria (to be

discussed). The process can be repeated for those cases in which at least one of the

revised classes is still large and noncohesive.
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Phase 1 – betweenness clustering

The first phase is betweenness clustering (see Section 6.1.2), which operates on an

undirected version of the intraclass dependency graph of the class to be refactored.

If the initial intraclass dependency graph has two disjoint subgraphs with at least

seven members each, then no further divisions of the graph need to be made.

Otherwise, we run betweenness clustering on the graphs and stop the clustering

once the first new cluster is formed. The two largest clusters serve as seeds for the

agglomerative clustering.

Phase 2 – agglomerative clustering using semantics

The second phase is average link agglomerative clustering based on semantics.

The initial clusters are the clusters produced by betweenness clustering. The two

largest clusters are kept separate and the smaller clusters merge with these.

The semantic distance function used by the agglomerative clustering is the

one described in Section 5.3.2, which is useful for clustering documents. Each of

a class’s methods and attributes is treated as a document, and the document’s

contents are the stemmed words present in the identifiers, string constants, and

non-Javadoc comments. The distance function is based on the cosine similarity of

the words present in two given documents.

For each iteration of agglomerative clustering, our algorithm assigns the two

largest clusters a maximum distance to prevent them from being merged. All

other pairs of clusters are assigned a distance that is the average distance between

the members of one cluster and the members of the other. The clustering stops

when there are only two clusters remaining. These final two clusters specify the

class members that will be present in the refactored classes.

7.2.2 Case study

This section discusses our application of the dual clustering approach to refactoring

a noncohesive open source god class, Weka’s RegOptimizer. RegOptimizer is

a good example for showing some of the weaknesses of betweenness clustering

and agglomerative clustering relative to the Extract Class refactoring, and how a

combination of those techniques can be useful.

RegOptimizer has a large group of members that are connected via calling

or accessing relationships, plus eight class members that are not used within
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the class – m sparseWeights and m sparseIndices appear to be dead code,

epsilonParameterTipText and seedTipText are used by the user interface

via reflection, serialVersionUID is used by Java’s internal serialization code,

getRevision and listOptions are public methods required by interfaces, and

buildClassifier appears to be a placeholder method to be overridden by

subclasses.

Figure 7.1: RegOptimizer class after betweenness clustering

Figure 7.1 shows the intraclass dependency graph for RegOptimizer after

betweenness clustering split the large cluster of members into two smaller clusters

by removing two edges. Note that the words that comprise the identifiers of the

some of nodes in the singleton clusters overlap with some of the words present in

the identifiers in the multi-member clusters, e.g., “epsilon”, “seed”, and “options”.

Figure 7.2 shows the dendrogram produced from RegOptimizer, using

agglomerative clustering based on semantics as described in Section 5.3.2. It is not
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Figure 7.2: RegOptimizer class after agglomerative clustering

clear at what distance this dendrogram produces the most useful clusters; however,

if a cut is made at a distance of 0.9, the clusters formed have some similarity with

those produced by betweenness clustering. The largest cluster (shown in blue)

contains most of the class members; a smaller cluster (shown in yellow) contains

seven class members, and there are three leftover singleton clusters. The smaller,

yellow cluster consists of four class members with “epsilon” in their names and

three with “options” in their names. In contrast with the betweenness clusters,

the smaller group does not contain m seed, getSeed, or setSeed, which are

structurally connected to the class members in the yellow cluster, but does contain

listOptions, and epsilonParameterTipText, which are not structurally

connected to members in the yellow cluster.

Figure 7.3 shows the result of dual clustering by adding the results of

agglomerative clustering to the betweenness clusters. The two largest clusters

produced by betweenness clustering are the light blue cluster at the top of the

figure and the light green cluster in the bottom left. Red lines indicate the merger of

clusters during agglomerative clustering. The lines have boxed labels that indicate

the agglomerative clustering iteration in which the clusters were combined. For

example, in the first iteration, the singleton listOptions was clustered with

epsilonParameterTipText. This may seem surprising, given that many of the
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Figure 7.3: RegOptimizer class after dual clustering

other class members have names that are similar. However, a look at the code in

Figure 7.4 shows that, while the two method names are dissimilar, the two method

bodies have many tokens in common – “epsilon”, “parameter”, “insensitive”, etc.

Indeed, with a slight rewriting of the code, listOptions could have used the

result of a call to epsilonParameterTipText, in which case there would have

been a structural connection between the two methods.

The next few clustering iterations can largely be explained based on the words

present in the identifiers (although the words in the bodies of the methods are

equally significant). In the second agglomerative iteration, the two singleton

clusters, m sparseIndices and m sparseWeights, both contain “sparse”. The

third iteration combines the listOptions, epsilonParameterTipText pair

with the smaller betweenness cluster, several of whose member names contain

“epsilon”, “parameter”, or “options”. The fourth iteration combines clusters, some
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public S t r i n g epsi lonParameterTipText ( ) {

return ”The eps i lon parameter of the eps i lon

i n s e n s i t i v e l o s s funct ion . ( d e f a u l t 0 . 0 0 1 ) . ” ;

}

public Enumeration l i s t O p t i o n s ( ) {

Vector r e s u l t = new Vector ( ) ;

r e s u l t . addElement (new Option (

”\ tThe eps i lon parameter in epsi lon−i n s e n s i t i v e l o s s

funct ion .\n”

+ ”\ t ( d e f a u l t 1 . 0 e−3)” , ”L” , 1 , ”−L <double>” ) ) ;

r e s u l t . addElement (new Option (

”\ tThe random number seed . \n”

+ ”\ t ( d e f a u l t 1 ) ” , ”W” , 1 , ”−W <double>” ) ) ;

return r e s u l t . elements ( ) ;

}

Figure 7.4: Source code for epsilonParameterTipText and listOptions
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of whose member names contain “weights”; the fifth combines clusters some of

whose member names contain “build”, and the sixth iteration combines clusters

containing “seed”, “tip” and “text”. The seventh and eight iterations arbitrarily

assign outliers that have nothing in common with the other clusters.

The final result of the dual clustering is two clusters. The smaller cluster

contains eight structurally connected class members, plus three other members

that have similar names to the structurally connected members, plus one extreme

outlier (getRevision). The larger cluster contains everything else.

7.2.3 Experiments on open source god classes

We ran an experiment to try to determine whether the combination of betweenness

clustering and agglomerative clustering provided better results than betweenness

clustering alone. The experiment applied our dual clustering technique to the same

open source classes that were selected by the god class query in Section 6.3.2. We

refactored god classes when the dual clustering produced two clusters containing

at least seven members each. Based on the results of the clustering, seven of the

thirty classes did not warrant refactoring, because the second largest cluster had

too few members.

We refactored the candidate classes using the process described for between-

ness clustering in Section 6.3.2, with the dual clustering results serving as inputs to

IntelliJ IDEA’s Extract Class refactoring. Any compilation errors that were present

in the refactored classes were corrected by manual editing.

As in the betweenness clustering experiments, Metrics2 provided measure-

ments for the number of fields (NF), number of methods (NM), weighted method

count using computational complexity (WMC), and six structural cohesion metrics

(LCOM, LCOM*, TCC, DCD, LCC, and DCI). ExtC provided the semantic cohesion

(C3V) of the classes. Appendix C.4 contains the complete tables of metric values

collected for the classes before and after refactoring. Tables 7.1 and 7.2 summarize

the average measurements for the 22 refactored classes.1

Refactoring based on the results of dual clustering generally had positive effects

on cohesion. Refactoring the 22 candidate classes produced 44 revised classes.

All of these showed improvement in at least one of the seven cohesion metrics.

Only five (11%) showed a decrease in cohesion for more than half of the cohesion

metrics.

1IDEA’s Extract Class failed to operate on one of the classes to be refactored.
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Table 7.1: Average metric values (excluding cohesion)

Class NF NM WMC

original 23 52 119

modified 21 51 108

extracted 4 15 27

Table 7.2: Cohesion measurements

Class LCOM LCOM* TCC DCD LCC DCI C3V

Original 1,249 0.96 0.19 0.24 0.43 0.48 0.10

Modified 1,126 0.95 0.23 0.29 0.51 0.56 0.10

Extracted 85 0.61 0.42 0.46 0.54 0.56 0.30

Figure 7.5 uses box plots to summarize the cohesion distributions of the

normalized cohesion metrics for the original, modified, and extracted classes.

The box boundaries are the values for the first and third quartiles; the lines within

each box represent the median. The lines that extend from the boxes reach to the

furthest data value that is no more than 1.5 times the size of the box. The outliers

beyond this limit are shown as dots. Because LCOM* is a lack of cohesion metric,

the values shown in the figures for “LCOMHS” is (1 - LCOM*). This makes it

easier to compare the cohesion metrics – better cohesion scores will always be

towards the top.

As with the results of refactoring based on betweenness clustering discussed in

Section 6.3.2, there is not much difference between the metric values of the original

classes (Figure 7.5(a)) and the modified classes (Figure 7.5(b)), although there is

generally slight improvement. There is more improvement shown in the extracted

classes (Figure 7.5(c)).

Figure 7.6 compares the average cohesion values for the classes that were

refactored based on the results of betweenness clustering to the average cohesion

values for the classes refactored based on the results of dual clustering. The average

cohesion values for the original god classes to be refactored based on betweenness

clustering (betw-orig) and dual clustering (dual-orig) are nearly the same. They
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(a) Original class

(b) Modified class

(c) Extracted class

Figure 7.5: Cohesion distributions

are not identical, because dual clustering produces 23 candidates for refactoring

(based on clusters of seven or more members) whereas betweenness clustering

produces only 18 candidates. The average cohesion values for the modified classes
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Figure 7.6: Average cohesion values

(betw-mod and dual-mod) are not much different, with the cohesion values for

the classes that were modified based on dual clustering being slightly better. On

the other hand, the cohesion values for the classes extracted based on betweenness

clustering (betw-extr) are much better than those produced by dual clustering

(dual-extr).

The differences are explained by the redistribution of the many small,

structurally noncohesive clusters, many consisting of a single class member.

Refactoring based on betweenness clustering puts all of the small clusters into the

modified class, so the modified class may have many structurally disconnected

parts, whereas the extracted class is structurally connected.

In contrast, refactoring based on dual clustering distributes the class members

from small, noncohesive clusters to both the modified and extracted classes. With

dual clustering, the refactoring forms the extracted classes based on the smaller

of the two largest clusters produced by betweenness clustering, together with

some of the small, structurally disconnected clusters. The presence of structurally

disconnected, small groups of members in the extracted classes has a relatively

large effect on lowering the cohesion scores relative to the classes produced based

on the results of betweenness clustering alone.

Refactoring based on dual clustering forms the modified classes based on the

larger of the two largest clusters produced by betweenness clustering, together
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with some of the small, structurally disconnected clusters. While there are fewer

structurally disconnected parts of the extracted class relative to the ones created

by betweenness clustering, the increase in cohesion is less pronounced than the

decrease in cohesion of the extracted classes, because the modified class is larger

than the extracted class.

7.3 Evaluation of refactoring using dual clustering

While the ideas behind dual clustering are intuitively attractive, it is unclear

whether the dual clustering approach to extracting classes is any better than

the betweenness clustering approach alone. Based on the criterion that the

extracted class should contain at least seven class members, dual clustering

enabled the refactoring of more classes than betweenness clustering (22 vs. 18) in

our experiments. On the other hand, based on the average cohesion scores of the

modified and extracted classes, betweenness clustering generally produces more

cohesive classes than does dual clustering.

7.4 Contribution summary

Previous chapters have discussed several approaches to refactoring object-oriented

classes using various clustering techniques and the limitations of these techniques.

This chapter discussed our dual clustering technique for refactoring god classes,

which goes beyond previous attempts by using two distinct, complementary

clustering phases. Dual clustering identifies structurally cohesive core members

for new classes using betweenness clustering and then uses agglomerative

clustering based on semantic information to add outliers to the core members.

To test the hypothesis that our clustering techniques offer useful advice for

splitting classes, we ran the algorithm on 30 open source classes and collected data

both on the original classes and on the refactored classes. Refactoring based on

dual clustering enabled us to refactor 22% more classes than when we refactored

based on betweenness clustering alone, although there was more improvement in

the cohesion values with betweenness clustering.



Chapter 8

Conclusions and Future Work

Many of the refactorings from Fowler’s book [FBB+99] pertain to rearranging

the members of object-oriented classes such that the members that most belong

together co-exist in the same class. One of the challenges to programmers

attempting to refactor classes is deciding which members belong together.

Clustering techniques form clusters from entities that belong together, and

researchers have been examining their use for better modularizing object-oriented

systems for over twenty years [MU90, Lak97, AFL99, KE00, MM06, Wig97].

We have applied clustering techniques to refactoring large classes in new

ways [CAGN09, CAG11]. Concurrent with our research, other researchers [SC08,

BDLO11, FTCS09] have applied different clustering techniques to refactoring.

While our clustering techniques have some advantages over competing techniques

for determining how to refactor certain kinds of problematic classes, the main

contribution of this thesis is an analysis of the strengths and weaknesses of various

clustering techniques as applied to refactoring classes.

Section 8.1 reviews our research contributions in a narrative format, empha-

sizing the issues as they arose, and how we addressed them. Section 8.2 gives a

concise summary of the contributions. Section 8.3 discusses potential future work.

8.1 Contribution review

Critical to any clustering activity is the choice of entities to cluster. Among the

researchers who have applied clustering techniques to refactoring object-oriented

classes, there is general agreement that the entities to be clustered are the methods

and attributes of the classes [SC08, BDLO11, CAG11, FTCS09], although some

163
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researchers [CS06, CC08, SC08] also include the classes themselves.

The next requirement for effective clustering is to determine which charac-

teristics of the entities determine whether they belong together. Consistent with

much of the cohesion research (see Section 2.1.3), class refactoring research has

concentrated on the structural interactions between methods and attributes, and

the semantic content of code and comments. Some information used by a smaller

number of cohesion metrics (e.g., method arguments and calling relationships

from clients) has been ignored by the cluster-based refactoring researchers, but is

worth investigating in the future.

Of the researchers who have investigated the use of clustering for determining

how to refactor object-oriented classes, most have used agglomerative clustering

in combination with a Jaccard distance function that compares local structural

information encoded as property sets. The particular structural information used

varies between the approaches. Section 5.3.1 evaluated the effectiveness of these

approaches for determining how to refactor two simple classes in our test suite,

PersonCarDisjoint and AnonymousPersistence, using various property

sets. None of them, except for one created by us, and one used by Simon and

Fokaefs et al. [SSL01], were able to generate the preferred clusters. Our property

set used the entire local structural neighborhood of a class member (itself and all

directly calling and directly called class members), whereas theirs omitted the

calling methods from a method’s property set. They do not explain this omission.

We recommend using as much structural information as possible when clustering

to decide how to refactor.

Semantic information has also been used as a basis for determining how

to refactor classes. Some researchers [AFL99] feel that, in general, semantic

information gives better results than structural information when creating

packages; however, they acknowledge that there are cases where code lacks much

semantic information, in which case, clustering based on semantics is not useful.

Section 5.3.2 discussed some experiments on clustering using semantic information

for PersonCarDisjoint and AnonymousPersistence, both of which contain

meaningful identifiers. The clustering produced acceptable clusters only for

PersonCarDisjoint. While clustering based on the word usage in identifiers

and comments is informative, it can also be unreliable, so we recommend using

structural information as the primary basis for determining how to reorganize

classes, with semantic information being secondary.

The conclusions above were based on agglomerative clustering. One of the



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 165

important decisions when using agglomerative clustering is when to combine

clusters. Section 5.3.1 discusses why we recommend average link or single link

clustering over complete link.

Not all distance-based approaches for determining clusters of class members

have been agglomerative. Some researchers [CS06] have used k-means, a

partitional clustering technique. Agglomerative clustering, k-means, and k-

medoids all use distance functions, but in different ways. Agglomerative clustering

determines whether two clusters belong together based on a distance function,

and typically connects together clusters that are “nearest neighbors” according to

the linkage criterion. K-means and k-medoids generally rely on multi-dimensional

spatial distance functions, and instead of clustering based on nearest neighbors,

they cluster based on the nearness of an entity to some central points in space

(k-means) or to prototypical members (k-medoids). Consequently, k-means

and k-medoids tend to produce compact clusters of approximately the same

diameter, which is sometimes undesirable. Section 5.2.2 discusses another problem

with using k-means or k-medoids for refactoring object-oriented programs – the

difficulty in determining what constitutes the dimensions of space for object-

oriented software. Furthermore, partitional approaches give no indications of

which parts of the cluster are more highly related than others. This can be useful

information to a programmer who is trying to refactor, but is not satisfied with

the highest level clusters. Based on the limitations of partitional approaches, we

discourage their use for determining how to refactor classes.

While there has been some success with distance-based clustering techniques,

they have the following drawbacks as a basis for refactoring classes:

• Distance functions are opaque, making it hard to debug the clustering

process.

• It is hard to compose a good distance function that incorporates non-local

structural information.

• Distance-based clustering does not inherently maintain existing relationships

between class members. This makes refactoring more difficult and tends to

introduce more change than graph-based clustering techniques do.

To help with the problem of distance function opacity, we built a novel

visualization that shows the steps of agglomerative clustering superimposed

over the structure of an intraclass dependency graph. Section 5.5 described this

visualization and how it helps the researcher.
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Graph-based divisive clustering techniques remedy some of the problems

with the distance-based approaches. Graphs more easily capture the idea of

connectedness between class components than do distance functions based on

property sets. (The property sets of Section 5.2.4 are all based on the local

connections of a class member.) Also, graph-based divisive clustering techniques

tend to produce clusters that maintain existing relationships between class

members, so refactoring based on those clusters tends to produce structurally

cohesive clusters with little coupling between them. Section 6.3 describes our use

of betweenness clustering to refactor god classes, which appears to be the first use

of graph-based clustering using primarily structural information as the basis for

refactoring classes.

Our experiments showed that betweenness clustering provides a basis to

successfully refactor some god classes, but not others. To help understand why,

we created the visualization described in Section 6.3.1. That visualization helped

reveal “noisy” nodes and edges in the intraclass dependency graphs that affected

the quality of the clustering. After filtering these noisy nodes and edges, the

clustering results improved.

The same class members that can cause problems for betweenness clustering

can also cause problems for cohesion metrics and other clustering techniques.

Section 2.4.1 described our novel approach for restructuring intraclass dependency

graphs to help ameliorate the effects of these special nodes. This graph

restructuring technique has also been incorporated into ExtC’s clustering tools.

Graph-based divisive clustering addresses some of the problems with agglom-

erative clustering, but has its own problems. For example, half of the large classes

discussed in Section 6.3.2 had seven or more disconnected subgraphs with fewer

than seven members. Graph-based clustering techniques can not provide guidance

on placement of these seemingly isolated class members. However, in some of

those cases, there are structural relationships that are not readily apparent, e.g.,

those induced via reflection, that may be addressable using other techniques.

Section 7.2 described how we augment betweenness clustering based on structure

with agglomerative clustering based on semantics to partially address the problem

of structurally disconnected subgraphs.
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8.2 Contribution summary

The primary contribution of this research is the identification of the strengths

and weaknesses of various clustering techniques for identifying groups of class

members that can be used as the basis for refactoring object-oriented classes. As

part of this work, we introduced two new applications of clustering for identifying

what belongs in the refactored classes:

1. Betweenness clustering – Clustering based on the analysis of communication

patterns within a class (Section 6.3).

2. Dual clustering – An initial clustering step based on intraclass communi-

cation forms the major clusters, and a subsequent step based on semantics

handles outliers (Section 7.2).

Both of these techniques produce clusters that serve as the basis for Extract Class

refactorings. Additional contributions include:

• An analysis of cohesion metrics and their limitations (Section 2.3).

• The development of a technique that can make certain structural cohesion

metrics more accurate. This technique eliminates specified “special” class

members and relationships from consideration and includes additional

relationships in the calculations (Section 2.4).

• The use of the above technique for restructuring inputs to clustering, e.g.,

the filtering of certain “noisy” entities and relationships within classes

(Section 5.7).

• The creation of the open-source ExtC Eclipse plug-in (Chapter 4). ExtC

provides an environment for exploring the use of clustering for refactoring,

including interactive visualizations of clusters being formed via agglomera-

tive clustering and betweenness clustering (Sections 5.5 and 6.3.1).

• The creation of a test suite to use for evaluating cohesion metrics and for

evaluating the effectiveness of the Extract Class refactoring (Section 3.2.2).

8.3 Future work

The clustering techniques described in this thesis are helpful for quickly deter-

mining how to refactor some poor quality classes; however, there are other faulty

classes that these techniques do not handle well. This section discusses some
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potential future work that may assist in the detection and correction of these

problematic classes.

8.3.1 Cohesion metrics – comparative study and sensitivity anal-

ysis

Despite the amount of research that has been done, making good use of object-

oriented cohesion metrics is difficult. There are many different cohesion metrics,

and many of them do not correlate well [DJ03, MP05, BT07]. It is also often hard to

determine how to best use the metrics for a given purpose, e.g., detecting classes

in need of refactoring.

It would be useful to perform an empirical study, similar to one performed

by Barker and Tempero [BT07], that analyzes many cohesion metrics. Barker and

Tempero’s study showed significant differences between the results of different

families of cohesion metrics. An updated study should analyze the major sources

of differences between the metrics. The study should also determine how sensitive

the metrics are to the sources of illusory and hidden cohesion that were discussed

in Section 2.3. Some of these seemingly minor variations in class structure can have

large effects on cohesion scores. For example, Section 2.4.3 discussed how two

classes that were designed to be noncohesive had LCC values of 0.47 and 1.0 where

the only difference between them was the presence of a toString method in the

maximally cohesive class, that connected two parts of the intraclass dependency

graph that were disconnected in the less cohesive class. Such a study would

provide software engineers the ability to more effectively use existing cohesion

metrics and give researchers insights into how to develop more robust metrics.

8.3.2 Handling inheritance

The techniques discussed in this thesis have concentrated on refactoring classes

that do not inherit from anything besides Object; however, the presence of

additional inheritance makes software development, including refactoring, more

complicated [MS98, KS08]. Changes to classes that involve inheritance may need

to be propagated up and down the inheritance hierarchy. There has been some

research on moving class members up or down the inheritance hierarchy [ST98,

SS04, MHVG08]; however, we know of no refactoring research about extracting or

moving functionality outside of the hierarchy. For example, examining the internal
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structure of a class may suggest that it be split into two classes. However, such a

split might break subclasses, unless the subclasses can be split in a similar fashion.

There are many such issues, involving superclasses, subclasses, and implemented

interfaces.

Inheritance also complicates the use of clustering techniques. For example,

a superclass may call a placeholder method, where all of the connectivity and

behavior for that method is in the subclass, or, a subclass may have a method

that is seemingly disconnected, but actually calls superclass members. In both

of these cases, clustering based merely on the members defined within a single

class is likely to give misleading results. However, it is not clear how members

of related classes in the class hierarchy might best be combined to allow usage of

most traditional clustering algorithms. Because inheritance plays such a large part

in object-oriented languages, these issues need to be investigated further.

8.3.3 Additional applications of clustering algorithms

There are many clustering algorithms that are potentially applicable for helping to

determine how to refactor object-oriented classes. This section discusses two of

them.

Max flow/min cut based refactoring

Although the University of Salerno researchers have used max flow/min cut to

separate a graph where the edges are weighted with similarity scores, we are not

aware of anybody who has used max flow/min cut on a purely structural graph

to determine how to refactor object-oriented classes. Max flow/min cut is a good

cognitive match for the problem of determining how to redistribute a set of class

members into two classes using either the Move Method, Move Field, or Extract Class

refactorings. The structural graph represents the flow of information (e.g., via

method parameters and return values) and the minimum cut represents a likely

class boundary.

When the intent of clustering is to identify the members involved in Move

Method or Move Field refactorings, the graph can be comprised of the intraclass

dependency graphs of the two examined classes conjoined with additional edges

representing the calls from the members of one class to the members of the other.

The source node would come from one class and the destination node from the
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other. The source and destination nodes should each be “core” members of the

respective classes.

It is not yet clear how to best determine the core class members. In cases

where there is not a knowledgeable programmer available to make the choice, it is

possible to use any of a number of graph-based algorithms to identify candidate

source and destination nodes based on their positions in the graph [New10, Kle99].

For example, a heavily connected node or centrally located node within a class’s

graph might be a good candidate for the source or destination. This task requires

care. For example, a logger field or a debug method might be the most heavily used

member of a class, but they might make poor choices as the basis for determining

how to split functionality between classes.

Max flow/min cut may also be applicable to splitting an intraclass dependency

graph to determine an Extract Class refactoring; however, it is harder to determine

how to choose source and destination nodes when attempting to perform Extract

Class. The two nodes from a given class with the highest score on some importance

metric may well be closely connected with each other, in which case they probably

should not be separated. One alternative for source and destination determination

is to use “semantics” to determine which are the two main topics (i.e., core semantic

clusters) present in a class [SDGP10, LPF+09], and use one class member from

each of these topics as a source and destination.

Frequent pattern analysis

Many of the clustering techniques discussed in this thesis were based on analyzing

the dependencies within one or more classes that may be in need of refactoring.

A different strategy is to determine attributes and methods within classes that

tend to be used together by external clients. For refactoring, these class members

that are commonly used by external classes may indicate members that might best

belong together in an extracted class, or they may indicate the potential for an

interface. As an example, consider the PersonCarDirect class. If there were 100

client classes that all used just the “person methods” and a different 100 classes

that all used just the “car methods”, that would seem a good indication to split

PersonCarDirect into Person and Car classes, or to extract Person and Car

interfaces.

The basic idea is to find a significant subset of clients who commonly use a

specific subset of a given class’s methods. The idea is analogous to how retail



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 171

businesses employ market basket analysis to find sets of sales items that commonly

occur together in customers’ purchases. In this analogy, a “purchase” corresponds

to the collection of method calls made by a particular client, and each sales item

corresponds to a method call.

There are many algorithms developed by the frequent pattern mining [HCXY07],

subspace clustering [KKZ09, PHL04], and biclustering [BPP08] communities that are

applicable to this task. As far as we know, nobody in the refactoring community

is using these algorithms as the basis for refactoring classes. We have done a

small amount of exploratory research that makes use of one such algorithm,

FPGrowth [HPY00], to examine client usage of a class’s members. This research

has raised a number of questions. For example, what degree of common usage of

a class’s members indicates that the members constitute a potentially desirable

new class? It seems easy to say that if 100 client classes all use exactly the same

eight “person methods” and a different 100 classes all use exactly the same eight

“car methods”, then two new classes or interfaces should be created, one with

the eight person methods, and one with the eight car methods. The situation

becomes muddled when the client classes use different subsets of methods. Some

client classes may just use the get- accessors of the person attributes, while other

classes may just use the set- accessors of the person attributes. Other clients may

use different subsets of the get- accessors and set- accessors, etc. There needs to

be some way of reconciling slight differences in client usage of methods, perhaps

by combining client usage patterns with structural or semantic information.

Another question to be resolved is how to determine when clusters are worthy

of being the basis for interfaces. The design criteria for what constitutes a

meaningful and useful interface specification are even less clear than the rules

for what constitutes a good class [SM07]. Some advocates of interface-based

programming argue for having many interfaces, each of which contains the

minimal functionality required for a given client [Ste07]. On the other hand,

Steimann [Ste07] points out that the Java libraries do not themselves make heavy

use of interfaces, e.g., there was no interface corresponding to its heavily used

String class until Java 1.4. It would make an interesting study to see how well

the client usage of popular libraries, e.g., those provided by Java, corresponds to

the interfaces provided by those libraries.
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8.3.4 Adding domain knowledge

For almost any computation, the quality of the output is dependent on the quality

of the input. Most of the techniques that have been discussed in this thesis have

used a relatively small amount of the information available to a programmer to

determine how classes might be refactored. This section discusses additional

information that might be used and how it can be represented.

Semantics

The “semantic” similarity measures discussed in Section 5.3.2 are statistical

techniques based on similar usage of words in identifiers and within comments,

and on patterns of co-occurrence of words in the corpus. One of the advantages

of the statistical techniques is that they are inexpensive to set up, relative to

the cost of manually constructing a knowledge base. On the other hand, the

statistical measures provide only a weak approximation of true semantic similarity,

especially when the corpus from which the words are extracted is small, as when

the corpus is based on the code of a small number of projects.

The usefulness of statistical techniques (like LSI [DDF+90]) can be increased

through the use of a larger or a domain-specific corpus. For example, the Google

similarity distance [CV07] computes “semantic” distances using a non-specialized

corpus, i.e., all of the documents that the underlying search engine has indexed.

For software applications, a better refinement might be to use a more specialized

software corpus, e.g., one built from the Qualitas Corpus [TAD+10]. Then, relative

word frequencies of software terms would come into play. Words like “exception”,

“stack”, “factory”, etc. occur with a different frequency in code than they do in

general speech, and they typically have more specific meanings.

An alternative approach to using statistical approximations of meaning is

to use explicit representation of meaning, e.g., knowledge bases or ontologies,

that can be either general-purpose or application domain specific. Building

knowledge bases by hand is expensive; however, it should be possible to

use existing knowledge bases, or to programmatically construct one. There

are some existing general-purpose knowledge-bases, e.g., Cyc [Len95] and

WordNet [BH06, Mil95], to choose from, as well as several repositories for domain-

specific ontologies [SAR+07, oM08]. The cost of integration for these knowledge

sources will vary.

It is possible to automate some aspects of the construction of a software-specific
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knowledge base. For example, a Java library has built-in information about how

classes are inter-related through inheritance, type information, etc., and the code

analysis capabilities provided by many IDEs are capable of providing knowledge

about how these code entities inter-relate. When one method uses a Vector and

another method uses a List, statistically-based semantic techniques may or may

not note similarity, depending on the word patterns in the underlying corpus.

On the other hand, it can easily be determined programmatically that Vector

and List are related, because Vector implements List. One of the research

issues to be resolved is how to numerically represent this similarity, and how these

similarities might be integrated with scores produced by other functions, e.g., the

scores produced by statistical techniques.

Acknowledging differences in class roles

There is more to the software engineering of object-oriented software than the

idealized development of some prototypical class. Often, software engineers are

encouraged to build classes of a certain size, with certain complexity, etc.; however,

not all classes fulfill the same roles. Classes in design patterns [GHJV94, Ker05,

OCS10] have particular roles, and depending on the roles, the characteristics of

the classes may differ greatly. For example, classes involved in a Model-View-

Controller (MVC) pattern may seem to exhibit feature envy when the view classes

access data in the model; however, this is by design. The MVC pattern explicitly

separates data members from the UI code that uses them.

Bad smell detectors need to be improved to acknowledge the various roles

a class can play. Similarly, a system that recommends refactorings will be

more useful if it has knowledge about how the classes should be restructured

relative to the role of the classes. There is some work already underway; for

example, Marinescu [Mar06] takes enterprise application context into account

when determining whether a class emits the data class or feature envy smells.

There are many more smells and application contexts that have not been analyzed,

and as far as we know, there is no overarching theory about how to handle role-

specific refactoring.

Adding knowledge to graphs

While the clustering algorithms previously described have sufficient information to

generate good recommendations for refactoring some classes, the use of additional
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information about the classes and their members should enable more effective

recommendations. The graphs used in betweenness clustering (Section 6.1.2) have

nodes that represent methods or attributes, and undirected, unweighted links

that represent calling or accessing relationships. In addition, the basic graph

representation can be restructured by removing specified nodes and condensing

others, as discussed in Section 2.4.1.

There is additional software information that can be incorporated in the graphs

and used by graph-based clustering techniques. For example, we have coarse-

grained boolean control of the class members and their relationships – they are

either considered in the clustering, or they are not. There is no weighting of nodes

or edges based on software knowledge. Some enhancements to the representation

might include:

• Weighting the importance of nodes and edges based on characteristics of

the underlying code, e.g., modifying node weights based on their number of

lines of code.

• Distinguishing relationships between entities, e.g., inheritance, uses, imple-

ments, reads, writes, etc.

As more information gets added, the underlying graph representation becomes

less like simple, generic graphs upon which generic algorithms (like betweenness

clustering) work, and becomes more like semantic networks [BS91] upon which

more specialized knowledge-based algorithms work.

The use of semantic networks and knowledge-based techniques may produce

more accurate results, but these techniques incur costs associated with the

development of the knowledge base and associated algorithms. The relative

usefulness and cost of semantic techniques will need to be evaluated.

8.4 Conclusions

The high level goal of this research is to decrease the overall maintenance cost of

software by facilitating refactoring of object-oriented classes. This thesis discusses

experiments that refactored classes based on suggestions provided by clustering

techniques, where the refactored classes generally showed improvements in

several object-oriented software metrics associated with maintainability.

The clustering techniques described in this thesis provide a relatively low cost

refactoring aid that provide immediate benefit to a programmer. The clustering
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tools are available now as an open source Eclipse plug-in, and many of the

algorithms can be run in seconds to minutes. However, while the tools are useful

to programmers performing maintenance, these are auxiliary benefits.

The main contribution of the research was the analysis of clustering techniques,

and their application to refactoring object-oriented classes. This analysis included

the determination of the usefulness of the information from which the clusters are

derived (e.g., structural information and “semantic” information), as well as the

determination of the characteristics of the clustering algorithms that made them

more or less suited to generating useful refactoring suggestions.

There are many ways this research can be extended. Some of the potential

extensions described above may provide better guidance for people interested in

refactoring. Future research may determine whether the potential added benefit

of these proposed enhancements is worth the added cost.
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Appendix A

Test Suite Source Code

The cohesion-tests [CAGN10] (http://code.google.com/p/cohesion-

tests/) project provides a collection of Java test classes for use in evaluating

object-oriented cohesion metrics. The classes vary in the amounts of connectivity

within the classes’ members, and in the types of connectivity. These classes are

also useful in evaluating the effectiveness of automated Extract Class refactoring

tools. The code for the classes referenced in this thesis is included below.

A.1 AnonymousPersistence

package nz . ac .vuw. ecs . k c a s s e l l . t e s t c l a s s e s . anonymous ;

import j ava . io . F i le InputStream ;

import j ava . io . FileOutputStream ;

import j ava . io . IOException ;

import j ava . io . ObjectInputStream ;

import j ava . io . ObjectOutputStream ;

import j ava . s q l . Connection ;

import j ava . s q l . DriverManager ;

import j ava . s q l . PreparedStatement ;

import j ava . s q l . R e s u l t S e t ;

import j ava . s q l . SQLException ;

import j ava . s q l . Statement ;

/∗ ∗
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∗ Thi s c l a s s has no f i e l d s . I t has some methods t h a t s t o r e

and r e t r i e v e o b j e c t s

∗ f rom f i l e s and some t h a t s t o r e and r e t r i e v e from

d a t a b a s e s .

∗ @author K e i t h C a s s e l l

∗ /

public c l a s s AnonymousPersistence {

public void s a v e S e r i a l i z a b l e T o F i l e ( Object obj , S t r i n g

f i l e ) {

FileOutputStream foStream = null ;

ObjectOutputStream ooStream = null ;

t r y {

foStream = new FileOutputStream ( f i l e ) ;

ooStream = new ObjectOutputStream ( foStream ) ;

ooStream . wri teObjec t ( ob j ) ;

ooStream . c l o s e ( ) ;

} catch ( IOException e ) {

h a n d l e S e r i a l i z a t i o n E x c e p t i o n ( ”Unable to wri te to ” +

f i l e , e ) ;

}

}

public s t a t i c Object r e a d S e r i a l i z a b l e F r o m F i l e ( S t r i n g f i l e

) {

Object ob j = null ;

F i le InputStream f i s = null ;

ObjectInputStream o i s = null ;

t r y {

f i s = new Fi le InputStream ( f i l e ) ;

o i s = new ObjectInputStream ( f i s ) ;

ob j = ( Object ) o i s . readObject ( ) ;

o i s . c l o s e ( ) ;

} catch ( IOException e ) {

h a n d l e S e r i a l i z a t i o n E x c e p t i o n ( ”Unable to read from ” +

f i l e , e ) ;
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} catch ( ClassNotFoundException e ) {

h a n d l e S e r i a l i z a t i o n E x c e p t i o n ( ”” , e ) ;

}

return obj ;

}

protected s t a t i c void h a n d l e S e r i a l i z a t i o n E x c e p t i o n ( S t r i n g

msg , Exception e ) {

System . e r r . p r i n t l n (msg + ” : ” + e ) ;

e . p r i n t S t a c k T r a c e ( ) ;

}

public Object readFromDB ( ) {

Object ob j = null ;

S t r i n g u r l = ” org . somewhere . Driver ” ;

loadDriver ( u r l ) ;

Connection connect ion = null ;

Statement statement = null ;

R e s u l t S e t r e s u l t S e t = null ;

t r y {

connect ion = DriverManager . getConnection ( u r l ) ;

s tatement = connect ion . crea teS ta tement ( ) ;

r e s u l t S e t = getDatabaseValues ( statement ) ;

/ / TODO r e c o n s t r u c t i o n v i a r e f l e c t i o n

r e s u l t S e t . c l o s e ( ) ;

} catch ( SQLException s q l e ) {

handleSQLException ( s q l e ) ;

} f i n a l l y {

re leaseResources ( connection , statement , r e s u l t S e t ) ;

}

return obj ;

}

public void saveToDB ( Object ob j ) {

S t r i n g u r l = ” org . apache . derby . jdbc . C l ie n tDr i ve r ” ;

loadDriver ( u r l ) ;



APPENDIX A. TEST SUITE SOURCE CODE 180

Connection connect ion = null ;

PreparedStatement statement = null ;

t r y {

connect ion = DriverManager . getConnection ( u r l ) ;

/ / TODO p o p u l a t e t a b l e s us ing v a l u e s o b t a i n e d from

r e f l e c t i o n

S t r i n g s q l S t r i n g = ”INSERT CLASS TABLE VALUES ( ? , ? ) ”

;

s tatement = connect ion . prepareStatement ( s q l S t r i n g ) ;

saveDatabaseValues ( obj , s tatement ) ;

} catch ( SQLException s q l e ) {

handleSQLException ( s q l e ) ;

} f i n a l l y {

re leaseResources ( connection , statement , null ) ;

}

}

public void loadDriver ( S t r i n g dr iver ) {

t r y {

Class . forName ( dr iver ) . newInstance ( ) ;

} catch ( Exception e ) {

System . e r r . p r i n t l n ( ”Unable to load the JDBC dr iver ”

+ dr iver ) ;

}

}

private R e s u l t S e t getDatabaseValues ( Statement statement )

throws SQLException {

R e s u l t S e t r e s u l t S e t ;

S t r i n g s q l S t r i n g = ”SELECT ∗ FROM CLASS TABLE” ;

r e s u l t S e t = statement . executeQuery ( s q l S t r i n g ) ;

return r e s u l t S e t ;

}

private void saveDatabaseValues ( Object obj ,

PreparedStatement statement )
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throws SQLException {

statement . s e t S t r i n g ( 1 , ob j . ge tClass ( ) . getSimpleName ( ) ) ;

s tatement . s e t S t r i n g ( 2 , ob j . ge tClass ( ) . getPackage ( ) .

getName ( ) ) ;

s tatement . executeUpdate ( ) ;

}

public s t a t i c void handleSQLException ( SQLException e ) {

while ( e != null ) {

System . e r r . p r i n t l n ( ”\n−−−−− SQLException : ” + e .

getMessage ( ) ) ;

System . e r r . p r i n t l n ( ” Error Code : ” + e . getErrorCode

( ) ) ;

e . p r i n t S t a c k T r a c e ( System . e r r ) ;

e = e . getNextException ( ) ;

}

}

public void re leaseResources ( Connection conn , Statement

statement ,

R e s u l t S e t r e s u l t ) {

t r y {

i f ( r e s u l t != null ) r e s u l t . c l o s e ( ) ;

i f ( s tatement != null ) s tatement . c l o s e ( ) ;

i f ( conn != null ) conn . c l o s e ( ) ;

} catch ( SQLException s q l e ) {

handleSQLException ( s q l e ) ;

}

}

}
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A.2 PersonCarDisjoint

package nz . ac .vuw. ecs . k c a s s e l l . t e s t c l a s s e s . persons ;

/∗ ∗

∗ Thi s c l a s s has c h a r a c t e r i s t i c s o f b o t h a Person and a

Car . No method a c c e s s e s

∗ b o t h Person and Car f i e l d s . A l l methods a c c e s s f i e l d s

d i r e c t l y .

∗ @author K e i t h C a s s e l l

∗ /

public c l a s s PersonCarDis jo int {

/ / Person f i e l d s

private S t r i n g firstName ;

private S t r i n g lastName ;

private i n t id ;

/ / Car f i e l d s

private S t r i n g make ;

private S t r i n g model ;

/∗ ∗ The v e h i c l e i d number ∗ /

private i n t vin ;

public S t r i n g getFirstName ( ) {

return f irstName ;

}

public void setFirstName ( S t r i n g firstName ) {

t h i s . f irstName = firstName ;

}

public S t r i n g getLastName ( ) {

return lastName ;

}
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public void setLastName ( S t r i n g surname ) {

t h i s . lastName = surname ;

}

public i n t get Id ( ) {

return id ;

}

public void s e t I d ( i n t id ) {

t h i s . id = id ;

}

public S t r i n g getMake ( ) {

return make ;

}

public void setMake ( S t r i n g make ) {

t h i s . make = make ;

}

public S t r i n g getModel ( ) {

return model ;

}

public void setModel ( S t r i n g model ) {

t h i s . model = model ;

}

public i n t getVin ( ) {

return vin ;

}

public void setVin ( i n t vin ) {

t h i s . vin = vin ;

}
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/ / / / / / / / / / /

public S t r i n g getPersonInfo ( ) {

return ”” + id + ” : ” + firstName + ” ” + lastName ;

}

public S t r i n g getPersonName ( ) {

return f irstName + ” ” + lastName ;

}

public S t r i n g getCarInfo ( ) {

return ”” + vin + ” : ” + make + ” ” + model ;

}

public S t r i n g getCarDescr ipt ion ( ) {

return make + ” ” + model ;

}

}
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A.3 PersonCarDirect

package nz . ac .vuw. ecs . k c a s s e l l . t e s t c l a s s e s . persons ;

/∗ ∗

∗ Thi s c l a s s has c h a r a c t e r i s t i c s o f b o t h a Person and a

Car .

∗ T o S t r i n g i s t h e on l y method t h a t a c c e s s e s b o t h Person

and Car f i e l d s .

∗ I t a c c e s s e s them i n d i r e c t l y through o t h e r methods .

∗ A l l o t h e r methods a c c e s s f i e l d s d i r e c t l y .

∗ @author K e i t h C a s s e l l

∗ /

public c l a s s PersonCarDirect {

/ / Person f i e l d s

private S t r i n g firstName ;

private S t r i n g lastName ;

private i n t id ;

/ / Car f i e l d s

private S t r i n g make ;

private S t r i n g model ;

/∗ ∗ The v e h i c l e i d number ∗ /

private i n t vin ;

public S t r i n g getFirstName ( ) {

return f irstName ;

}

public void setFirstName ( S t r i n g firstName ) {

t h i s . f irstName = firstName ;

}

public S t r i n g getLastName ( ) {



APPENDIX A. TEST SUITE SOURCE CODE 186

return lastName ;

}

public void setLastName ( S t r i n g surname ) {

t h i s . lastName = surname ;

}

public i n t get Id ( ) {

return id ;

}

public void s e t I d ( i n t id ) {

t h i s . id = id ;

}

public S t r i n g getMake ( ) {

return make ;

}

public void setMake ( S t r i n g make ) {

t h i s . make = make ;

}

public S t r i n g getModel ( ) {

return model ;

}

public void setModel ( S t r i n g model ) {

t h i s . model = model ;

}

public i n t getVin ( ) {

return vin ;

}

public void setVin ( i n t vin ) {
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t h i s . vin = vin ;

}

/ / / / / / / / / / / /

public S t r i n g getPersonInfo ( ) {

return ”” + id + ” : ” + firstName + ” ” + lastName ;

}

public S t r i n g getPersonName ( ) {

return f irstName + ” ” + lastName ;

}

public S t r i n g getCarInfo ( ) {

return ”” + vin + ” : ” + make + ” ” + model ;

}

public S t r i n g getCarDescr ipt ion ( ) {

return make + ” ” + model ;

}

public S t r i n g t o S t r i n g ( ) {

return getPersonInfo ( ) + ” owns a ” + getCarInfo ( ) ;

}

}
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A.4 PersonCarIndirect

package nz . ac .vuw. ecs . k c a s s e l l . t e s t c l a s s e s . persons ;

/∗ ∗

∗ Thi s c l a s s has c h a r a c t e r i s t i c s o f b o t h a Person and a

Car . T o S t r i n g i s t h e

∗ on ly method t h a t a c c e s s e s b o t h Person and Car methods .

Only t h e a c c e s s o r s

∗ a c c e s s f i e l d s d i r e c t l y . The o t h e r methods a c c e s s them

v i a t h e a c c e s s o r s .

∗

∗ @author K e i t h

∗ /

public c l a s s PersonCarIndirec t {

/ / Person f i e l d s

private S t r i n g firstName ;

private S t r i n g lastName ;

private i n t id ;

/ / Car f i e l d s

private S t r i n g make ;

private S t r i n g model ;

/∗ ∗ The v e h i c l e i d number ∗ /

private i n t vin ;

public S t r i n g getFirstName ( ) {

return f irstName ;

}

public void setFirstName ( S t r i n g firstName ) {

t h i s . f irstName = firstName ;

}
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public S t r i n g getLastName ( ) {

return lastName ;

}

public void setLastName ( S t r i n g surname ) {

t h i s . lastName = surname ;

}

public i n t get Id ( ) {

return id ;

}

public void s e t I d ( i n t id ) {

t h i s . id = id ;

}

public S t r i n g getMake ( ) {

return make ;

}

public void setMake ( S t r i n g make ) {

t h i s . make = make ;

}

public S t r i n g getModel ( ) {

return model ;

}

public void setModel ( S t r i n g model ) {

t h i s . model = model ;

}

public i n t getVin ( ) {

return vin ;

}
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public void setVin ( i n t vin ) {

t h i s . vin = vin ;

}

public S t r i n g getPersonInfo ( ) {

return ”” + get Id ( ) + ” : ” + getPersonName ( ) ;

}

public S t r i n g getPersonName ( ) {

return getFirstName ( ) + ” ” + getLastName ( ) ;

}

public S t r i n g getCarInfo ( ) {

return ”” + getVin ( ) + ” : ” + getCarDescr ipt ion ( ) ;

}

public S t r i n g getCarDescr ipt ion ( ) {

return getMake ( ) + ” ” + getModel ( ) ;

}

public S t r i n g t o S t r i n g ( ) {

return getPersonInfo ( ) + ” owns a ” + getCarInfo ( ) ;

}

}
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A.5 PersonCarSpecial

package nz . ac .vuw. ecs . k c a s s e l l . t e s t c l a s s e s . persons ;

import j ava . u t i l . logging . Logger ;

/∗ ∗

∗ Thi s c l a s s has c h a r a c t e r i s t i c s o f b o t h a Person and a

Car .

∗ ToStr ing , hashCode , e q u a l s , and a c o n s t r u c t o r a c c e s s

∗ b o t h Person and Car f i e l d s .

∗ Most methods a c c e s s f i e l d s d i r e c t l y .

∗ @author K e i t h C a s s e l l

∗ /

public c l a s s PersonCarSpecial {

/ / Person f i e l d s

private S t r i n g firstName ;

private S t r i n g lastName ;

private i n t id ;

/ / Car f i e l d s

private S t r i n g make ;

private S t r i n g model ;

/∗ ∗ The v e h i c l e i d number ∗ /

private i n t vin ;

/ / / / / / / / / / /

private f i n a l Logger logger =

Logger . getLogger ( ge tClass ( ) . getSimpleName ( ) ) ;

public S t r i n g getFirstName ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ” getFirstName ” ) ;

return f irstName ;

}
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public void setFirstName ( S t r i n g firstName ) {

logger . enter ing ( ” PersonCarSpecial ” , ” setFirstName ” ) ;

t h i s . f irstName = firstName ;

}

public S t r i n g getLastName ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ”getLastName” ) ;

return lastName ;

}

public void setLastName ( S t r i n g surname ) {

logger . enter ing ( ” PersonCarSpecial ” , ”setLastName” ) ;

t h i s . lastName = surname ;

}

public i n t get Id ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ” get Id ” ) ;

return id ;

}

public void s e t I d ( i n t id ) {

logger . enter ing ( ” PersonCarSpecial ” , ” s e t I d ” ) ;

t h i s . id = id ;

}

public S t r i n g getMake ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ”getMake” ) ;

return make ;

}

public void setMake ( S t r i n g make ) {

logger . enter ing ( ” PersonCarSpecial ” , ”setMake” ) ;

t h i s . make = make ;

}
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public S t r i n g getModel ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ”getModel” ) ;

return model ;

}

public void setModel ( S t r i n g model ) {

logger . enter ing ( ” PersonCarSpecial ” , ” setModel ” ) ;

t h i s . model = model ;

}

public i n t getVin ( ) {

logger . enter ing ( ” PersonCarSpecial ” , ” getVin ” ) ;

return vin ;

}

public void setVin ( i n t vin ) {

logger . enter ing ( ” PersonCarSpecial ” , ” setVin ” ) ;

t h i s . vin = vin ;

}

public S t r i n g getPersonInfo ( ) {

return ”” + id + ” : ” + firstName + ” ” + lastName ;

}

public S t r i n g getPersonName ( ) {

return f irstName + ” ” + lastName ;

}

public S t r i n g getCarInfo ( ) {

return ”” + vin + ” : ” + make + ” ” + model ;

}

public S t r i n g getCarDescr ipt ion ( ) {

return make + ” ” + model ;

}
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public S t r i n g t o S t r i n g ( ) {

return getPersonInfo ( ) + ” owns a ” + getCarInfo ( ) ;

}

@Override

public i n t hashCode ( ) {

f i n a l i n t prime = 3 1 ;

i n t r e s u l t = 1 ;

r e s u l t = prime ∗ r e s u l t

+ ( ( firstName == null ) ? 0 : firstName . hashCode ( ) ) ;

r e s u l t = prime ∗ r e s u l t + id ;

r e s u l t = prime ∗ r e s u l t

+ ( ( lastName == null ) ? 0 : lastName . hashCode ( ) ) ;

r e s u l t = prime ∗ r e s u l t + ( ( make == null ) ? 0 : make .

hashCode ( ) ) ;

r e s u l t = prime ∗ r e s u l t + ( ( model == null ) ? 0 : model .

hashCode ( ) ) ;

r e s u l t = prime ∗ r e s u l t + vin ;

return r e s u l t ;

}

public PersonCarSpecial ( S t r i n g firstName , S t r i n g lastName

, i n t id ,

S t r i n g make , S t r i n g model , i n t vin ) {

super ( ) ;

t h i s . f irstName = firstName ;

t h i s . lastName = lastName ;

t h i s . id = id ;

t h i s . make = make ;

t h i s . model = model ;

t h i s . vin = vin ;

}

@Override

public boolean equals ( Object ob j ) {

i f ( t h i s == obj )
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return true ;

i f ( ob j == null )

return f a l s e ;

i f ( ge tClass ( ) != ob j . ge tClass ( ) )

return f a l s e ;

PersonCarSpecial other = ( PersonCarSpecial ) ob j ;

i f ( f irstName == null ) {

i f ( other . firstName != null )

return f a l s e ;

} e lse i f ( ! f irstName . equals ( other . firstName ) )

return f a l s e ;

i f ( id != other . id )

return f a l s e ;

i f ( lastName == null ) {

i f ( other . lastName != null )

return f a l s e ;

} e lse i f ( ! lastName . equals ( other . lastName ) )

return f a l s e ;

i f ( make == null ) {

i f ( other . make != null )

return f a l s e ;

} e lse i f ( ! make . equals ( other . make ) )

return f a l s e ;

i f ( model == null ) {

i f ( other . model != null )

return f a l s e ;

} e lse i f ( ! model . equals ( other . model ) )

return f a l s e ;

i f ( vin != other . vin )

return f a l s e ;

return true ;

}

}
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Open Source Repositories

This appendix contains information about the open source software discussed

in this thesis, including both the refactoring environment and the open source

software that was refactored within that environment. The subsections typically

include information about version numbers, web sites, and available documenta-

tion.

B.1 Refactoring environment

The Eclipse IDE [SDF+03] (http://www.eclipse.org/) provides the frame-

work within which ExtC runs. ExtC and the associated plug-ins and libraries

mentioned below were tested on Eclipse version 3.6.2, but should run on Eclipse

3.5 and higher.

The IntelliJ IDEA version 8.1 development environment [Jem08] (http://

www.jetbrains.com/idea/) provides the automated Extract Class refactoring

that was used in the experiments.

B.1.1 Plug-ins

The ExtC [CAGA11] (http://code.google.com/p/ext-c/) plug-in contains

functionality for visualizing Java classes, clustering the class members of Java

classes, visualizing clustering, and other functionality described in this thesis.

The latest version is available from http://code.google.com/p/ext-c/

downloads/list (currently, ClassRefactoringPlug-In 1.0.0.201105311759.jar)

and the installation instructions can be found at http://code.google.com/p/
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http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://code.google.com/p/ext-c/
http://code.google.com/p/ext-c/downloads/list
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http://code.google.com/p/ext-c/wiki/ExtractClassPlug-InInstallation
http://code.google.com/p/ext-c/wiki/ExtractClassPlug-InInstallation
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ext-c/wiki/ExtractClassPlug-InInstallation. ExtC uses the follow-

ing plug-ins:

Metrics2 (http://metrics2.sourceforge.net/) calculates metrics for

Java code and can store the measurements to a database. As of December,

2011, not all of the functionality required by ExtC had been put into

a major release. The latest (alpha version) functionality that ExtC uses

is available from http://code.google.com/p/ext-c/downloads/

list (currently, net.sourceforge.metrics 2.0.0.201105311759.jar).

Apache Derby [Sch08] (http://db.apache.org/derby/) provides a

relational database useful for storing metric values and plug-ins to access

that database. ExtC was developed using the org.apache.derby.core 10.5.3,

org.apache.derby.plug-in.doc, and org.apache.derby.ui plug-ins.

TopicXP [SDGP10] (http://www.cs.wm.edu/semeru/TopicXP/) pro-

vides capabilities for analyzing the semantics of Java code. ExtC uses it for

producing the “documents” representing the attributes and methods of a

class.

B.1.2 Libraries

ExtC uses the following open-source libraries for core functionality:

Archaeopteryx/forester (http://www.phylosoft.org/archaeopteryx/)

provides dendrogram viewing and manipulation functionality to the

agglomeration view.

JUNG graph framework [OFWB03] (http://jung.sourceforge.net/)

provides graph processing algorithms, graph visualization, and graph layout

to multiple views.

S-Space [JS10] (http://code.google.com/p/airhead-research/)

provides the vector space models used for semantic comparisons in

agglomerative clustering.

There are many more open source libraries that are used for auxiliary functionality,

both by ExtC and by the included libraries themselves. These are not listed.

http://code.google.com/p/ext-c/wiki/ExtractClassPlug-InInstallation
http://code.google.com/p/ext-c/wiki/ExtractClassPlug-InInstallation
http://metrics2.sourceforge.net/
http://code.google.com/p/ext-c/downloads/list
http://code.google.com/p/ext-c/downloads/list
http://db.apache.org/derby/
http://www.cs.wm.edu/semeru/TopicXP/
http://www.phylosoft.org/archaeopteryx/
http://jung.sourceforge.net/
http://code.google.com/p/airhead-research/


APPENDIX B. OPEN SOURCE REPOSITORIES 198

B.2 Open source test classes

Much of the clustering and refactoring research in this thesis used open source

Java programs as inputs. These open source Java projects came from a variety of

domains and are described below.

B.2.1 Qualitas Corpus

The Qualitas Corpus [TAD+10] (http://qualitascorpus.com/), version

20101126 [Gro10], contains most of the tested open source projects. The subsections

below note when a version was used that is not available from the Qualitas Corpus

and specify where the tested versions can be found.

B.2.2 FreeCol

FreeCol (http://www.freecol.org) is a multi-player game. http://www.

freecol.org/documentation/subversion.html discusses how to access

FreeCol source code using Subversion. The code we refactored based on

the results of betweenness clustering and dual clustering was from version

0.94, revision 7473. Freecol-0.9.4 is available from QualitasCorpus-20101126

and consists of approximately 450 top level public classes. The files we used

came from http://freecol.svn.sourceforge.net/viewvc/freecol/

freecol/trunk/src and are shown in Table B.1.

Table B.1: FreeCol test files

File Directory

FreeColClient.java net/sf/freecol/client

FreeColObject.java net/sf/freecol/common/model

FreeColServer.java net/sf/freecol/server

ImageLibrary.java net/sf/freecol/client/gui

Specification.java net/sf/freecol/common/model

http://qualitascorpus.com/
http://www.freecol.org
http://www.freecol.org/documentation/subversion.html
http://www.freecol.org/documentation/subversion.html
http://freecol.svn.sourceforge.net/viewvc/freecol/freecol/trunk/src
http://freecol.svn.sourceforge.net/viewvc/freecol/freecol/trunk/src
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B.2.3 Heritrix

Heritrix (http://crawler.archive.org/) is a web crawler. We used heritrix-

1.8.0 from the QualitasCorpus-20101126, which consists of approximately 380 top

level public classes. The files we used are shown in Table B.2.

Table B.2: Heritrix test files

File Directory

CandidateURI.java Heritrix/org/archive/crawler/datamodel

CrawlController.java Heritrix/org/archive/crawler/framework

Heritrix.java Heritrix/org/archive/crawler

SettingsHandler.java Heritrix/org/archive/crawler/settings

WorkQueue.java Heritrix/org/archive/crawler/frontier

http://crawler.archive.org/
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B.2.4 Jena

Jena (http://jena.sourceforge.net/) is a framework for building semantic

web applications. We used jena-2.5.5 from the QualitasCorpus-20101126, which

consists of approximately 1100 top level public classes. The files we used are

shown in Table B.3.

Table B.3: Jena test files

File Directory

BRuleEngine.java Jena/com/hp/hpl/jena/reasoner/rulesys/ im-

pl/oldCode

CommandLine.java Jena/jena/cmdline

LPBRuleEngine.java Jena/com/hp/hpl/jena/reasoner/ rulesys/impl

LPInterpreter.java Jena/com/hp/hpl/jena/reasoner/ rulesys/impl

N3JenaWriterCommon.java Jena/com/hp/hpl/jena/n3

Node.java Jena/com/hp/hpl/jena/graph

ParserBase.java Jena/com/hp/hpl/jena/n3/turtle

Rule.java Jena/com/hp/hpl/jena/reasoner/rulesys

B.2.5 JHotDraw

JHotDraw (http://www.jhotdraw.org/) is a Java GUI framework that is well-

known for its use of design patterns. Many people consider it to be a well-

designed system, so it is often used as a gold standard when evaluating the

effectiveness of certain refactoring techniques [BDLMO10b, DLOV08, SC07, CS06,

SSB06]. JHotDraw 5.3.0 is available from the QualitasCorpus-20101126.

B.2.6 Weka

Weka [HFH+09] (http://www.cs.waikato.ac.nz/ml/weka/) is a collec-

tion of machine learning algorithms. http://weka.wikispaces.com/

Subversion discusses how to access Weka source code using Subversion. The

code we refactored based on the results of betweenness clustering and dual

clustering was from version 3.6.3, revision 6972 and consists of approximately

http://jena.sourceforge.net/
http://www.jhotdraw.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://weka.wikispaces.com/Subversion
http://weka.wikispaces.com/Subversion
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1100 top level public classes. The files we used came from https://svn.scms.

waikato.ac.nz/svn/weka/trunk/weka/src/main/java/ and are shown

in Table B.4.

Table B.4: Weka test files

File Directory

BVDecompose.java weka/classifiers

BVDecomposeSegCVSub.java weka/classifiers

DatabaseUtils.java weka/experiment

Experiment.java weka/experiment

NearestNeighbourSearch.java weka/core/neighboursearch

Node.java weka/gui/treevisualizer

RegOptimizer.java weka/classifiers/functions/supportVector

ResultMatrix.java weka/experiment

Rule.java weka/classifiers/trees/m5

Script.java weka/gui/scripting

TestInstances.java weka/core

XMLDocument.java weka/core/xml

https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka/src/main/java/
https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka/src/main/java/


Appendix C

Experimental Data

C.1 Preferences

These are the preferences (see Section 2.4.2) in effect when the metrics were

collected:

• Constructors, inherited members, inner class members, object methods were

filtered out.

• Static members, loggers and loggers were included.

• Only required methods were condensed.

C.2 Agglomerative clustering

We created clusters of class members for each of thirty open source classes in six

different ways – using single, complete, and average link agglomerative clustering

with a Jaccard distance measure and either the Sim01 or Nhood property sets.

This section contains data about the clusters that existed at each of four distances

(0.5, 0.75, 0.9, and 0.999) for the six combinations of linkage and property set.

Section C.2.1 summarizes data about the number of clusters for each class, at

each of the four cutoff distances, for all six combinations of linkage and property

set. Section C.2.2 contains detailed data about the sizes of the clusters for each

class, at each of the four cutoff distances, for all six combinations of linkage and

property set.

202
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C.2.1 Cluster counts

Figures C.1 and C.2 use colored vertical bars to show the number of clusters that

exist at various distances when using Sim01 and Nhood, respectively. The vertical

bars are truncated at 60 to enhance readability. The distance to color coding is:

• 0.5: yellow

• 0.75: green

• 0.9: purple

• 0.999: red

Figure C.1(c) shows single link agglomerative clustering for Sim01. For

example, the first column shows the number of clusters produced for the members

of the FreeColClient class, i.e., there are 44 clusters at a distance of 0.5, 22 at

a distance of 0.75, 17 at 0.9, and 16 at 0.999. Figures C.1(b) and C.1(a) show the

number of clusters for average and complete link agglomerative clustering.
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(a) Complete link clustering

(b) Average link clustering

(c) Single link clustering

Figure C.1: Number of clusters – agglomerative clustering, Sim01
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(a) Complete link clustering

(b) Average link clustering

(c) Single link clustering

Figure C.2: Number of clusters – agglomerative clustering, Nhood
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C.2.2 Cluster sizes

The tables in this section contain the sizes of the clusters produced by agglomer-

ative clustering when applied to thirty open source classes. If a class has more

than one cluster of a given size, then the number of clusters of that size is given in

parentheses.

Sim01 – single link

Table C.1 contains data about the clusters that existed at each of four distances

(0.5, 0.75, 0.9, and 0.999) for single link agglomerative clustering using a Jaccard

distance function and the Sim01 property set.

Table C.1: Sim01 – single link

Class 0.5 0.75 0.9 0.99

BRuleEngine 3, 2(4), 1(17) 13, 6(2), 3 22, 6 22, 6

BVDecompose 3(6), 2(5),

1(10)

6, 3(6), 2(5), 1(4) 34, 2, 1(2) 34, 2, 1(2)

BVDecompose-

SegCVSub

3(7), 2(7),

1(12)

5, 3(7), 2(7), 1(7) 41, 2, 1(4) 43, 2, 1(2)

CandidateURI 3(3), 2(8),

1(43)

28, 10, 7, 3(2),

2(3), 1(11)

50, 3(2), 2(2),

1(8)

50, 3(2), 2(2),

1(8)

Command-

Line

3, 2(3), 1(34) 14, 13, 4, 3, 2(2),

1(5)

37, 3, 2, 1 37, 3, 2, 1

Crawl-

Controller

5, 4, 3(3),

2(13), 1(118)

114, 7, 4(2), 3,

2(7), 1(16)

148, 7, 2,

1(5)

148, 7, 2,

1(5)

DatabaseUtils 6, 4, 3(5), 2(2),

1(53)

40, 8, 3(4), 2,

1(20)

58, 8, 1(16) 58, 8, 1(16)

Experiment 3(7), 2(3),

1(35)

25, 4(2), 3(6), 2,

1(9)

59, 1(3) 60, 1(2)

FreeColClient 3(9), 2(13),

1(22)

11, 8, 6(2), 5(2),

3(5), 2(8), 1(3)

29, 8, 6, 5,

3(4), 2(6),

1(3)

35, 8, 5, 3(4),

2(6), 1(3)

FreeColObject 4, 3, 2(5),

1(46)

14, 13(2), 4(2), 2,

1(13)

32, 15, 4,

1(12)

32, 15, 4,

1(12)

Continued on next page
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Table C.1 – Continued from previous page

Class 0.50 0.75 0.90 0.99

FreeColServer 5, 3(3), 2(12),

1(37)

27, 11, 4, 3(3),

2(10), 1(4)

60, 3, 2(5),

1(2)

62, 3, 2(4),

1(2)

Heritrix 16, 3(5), 2(9),

1(91)

37, 26, 24, 7, 5(2),

4, 3(3), 2(4), 1(15)

132, 2(2),

1(4)

135, 2, 1(3)

ImageLibrary 3(2), 2(4),

1(56)

45, 3, 1(22) 46, 3, 1(21) 47, 3, 1(20)

LPBRule-

Engine

4(2), 3(2),

2(4), 1(12)

13, 8, 4, 3(2), 2, 1 21, 4, 3(2), 2,

1

21, 4, 3(2), 2,

1

LPInterpreter 5, 3(2), 2(3),

1(18)

18, 11, 5, 1 34, 1 34, 1

N3JenaWriter-

Common

3(3), 2(4),

1(52)

33, 8, 4, 3, 2(2),

1(17)

48, 9, 2(2),

1(8)

48, 9, 2(2),

1(8)

Nearest-

Neighbour-

Search

3(3), 2, 1(17) 12, 3, 2, 1(11) 12, 3, 2,

1(11)

12, 3, 2,

1(11)

Node 2(9), 1(34) 6, 5, 4, 3, 2(3),

1(28)

18, 4, 2,

1(28)

18, 4, 2,

1(28)

Node 5, 4, 3(10), 2,

1(8)

17, 6, 4, 3(7), 1 17, 6, 4, 3(7),

1

17, 6, 4, 3(7),

1

ParserBase 4(2), 3, 2(3),

1(39)

21, 4(2), 2(2),

1(23)

27, 4, 2,

1(23)

27, 4, 2,

1(23)

RegOptimizer 8, 3(2), 2(6),

1(15)

18, 8, 5, 2, 1(8) 33, 1(8) 33, 1(8)

ResultMatrix 3(9), 2(12),

1(113)

47, 46, 7, 5, 4, 3,

2(4), 1(44)

127, 2(2),

1(33)

136, 2(2),

1(24)

Rule 4, 3(3), 2(5),

1(21)

21, 6, 4(2), 3, 2,

1(4)

29, 9, 2, 1(4) 29, 9, 2, 1(4)

Rule 5, 3(2), 2(2),

1(32)

29, 7, 4, 3, 1(4) 43, 1(4) 45, 1(2)

Script 3, 2(5), 1(24) 24, 4, 2(3), 1(3) 34, 1(3) 34, 1(3)

Settings-

Handler

4, 3(4), 2(2),

1(30)

12, 8, 6(2), 2(2),

1(14)

18, 9, 6, 2(2),

1(13)

18, 9, 6, 2(2),

1(13)

Continued on next page
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Table C.1 – Continued from previous page

Class 0.50 0.75 0.90 0.99

Specification 3(8), 2(19),

1(70)

46, 13, 7, 5, 4,

3(7), 2(10), 1(16)

120, 1(12) 122, 1(10)

TestInstances 3(19), 2(5),

1(30)

13, 7(2), 6(2),

3(17), 2(2), 1(3)

62, 3(11),

1(2)

95, 1(2)

WorkQueue 4, 3(2), 2(7),

1(35)

35, 4(2), 3(2), 2(2),

1(6)

43, 4(2), 3, 2,

1(3)

43, 4(2), 3, 2,

1(3)

XML-

Document

5, 3(2), 2(6),

1(34)

14, 7(2), 3, 2(2),

1(22)

34, 2, 1(21) 34, 2, 1(21)

Sim01 – average link

Table C.2 contains data about the clusters that existed at each of four distances

(0.5, 0.75, 0.9, and 0.999) for average link agglomerative clustering using a Jaccard

distance function and the Sim01 property set.

Table C.2: Sim01 – average link

Class 0.5 0.75 0.9 0.99

BRuleEngine 2(5), 1(18) 6, 5, 4, 3(2),

2(3), 1

7, 6, 5(2), 3, 2 22, 6

BVDecompose 2(11), 1(16) 4, 3(6), 2(5),

1(6)

5, 3(7), 2(4), 1(4) 34, 2, 1(2)

BVDecompose-

SegCVSub

2(14), 1(19) 4, 3(7), 2(7),

1(8)

5, 4, 3(6), 2(7),

1(6)

43, 2, 1(2)

CandidateURI 3(2), 2(9),

1(44)

13, 4(3), 3(5),

2(6), 1(16)

13, 7, 5(3), 4(2),

3(2), 2(5), 1(9)

50, 3(2), 2(2),

1(8)

Command-

Line

3, 2(3), 1(34) 5(3), 4(4), 3,

2(2), 1(5)

9, 5(2), 4(3),

3(2), 2, 1(4)

37, 3, 2, 1

Crawl-

Controller

5, 4, 3(3),

2(13), 1(118)

7, 6(3), 5, 4(3),

3(9), 2(34),

1(25)

16, 13, 7(7), 6,

5(2), 4(3), 3(3),

2(17), 1(13)

148, 7, 2, 1(5)

DatabaseUtils 3(3), 2(7),

1(59)

7, 4(3), 3(7),

2(10), 1(22)

8(3), 5, 4(4),

3(5), 2(2), 1(18)

58, 8, 1(16)

Continued on next page
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Table C.2 – Continued from previous page

Class 0.50 0.75 0.90 0.99

Experiment 3(4), 2(6),

1(38)

5, 4(2), 3(8),

2(5), 1(15)

11, 6, 4(4), 3(5),

2(3), 1(8)

60, 1(2)

FreeColClient 3(7), 2(15),

1(24)

5, 3(11), 2(16),

1(5)

11, 6(2), 5(3),

3(6), 2(8), 1(3)

35, 8, 5, 3(4),

2(6), 1(3)

FreeColObject 3, 2(6), 1(48) 14, 4(2), 3(3),

2(7), 1(18)

15, 5(2), 4(4),

3(2), 2, 1(14)

17, 15(2), 4,

1(12)

FreeColServer 3(2), 2(15),

1(39)

6, 4(2), 3(7),

2(17), 1(6)

8(2), 6, 4(2),

3(7), 2(11), 1(2)

60, 3, 2(5),

1(2)

Heritrix 16, 3(3),

2(11), 1(93)

17, 7, 6, 4(6),

3(8), 2(20),

1(22)

26, 8, 7(4), 6(2),

5(2), 4(5), 3(4),

2(8), 1(8)

131, 3, 2, 1(4)

ImageLibrary 2(6), 1(58) 6, 5, 3(5),

2(10), 1(24)

10, 5(2), 4, 3(6),

2(3), 1(22)

47, 3, 1(20)

LPBRule-

Engine

4, 3(2), 2(5),

1(14)

7, 6, 4, 3(2),

2(5), 1

10, 7, 4(2), 3(2),

2, 1

21, 4, 3(2), 2, 1

LPInterpreter 3, 2(5), 1(22) 5(2), 4(3), 2(5),

1(3)

9, 6, 5(3), 4, 1 34, 1

N3JenaWriter-

Common

2(7), 1(55) 5, 4, 3(6), 2(9),

1(24)

9, 7, 6, 5, 4(3),

3(2), 2(2), 1(20)

48, 9, 2(2),

1(8)

Nearest-

Neighbour-

Search

3, 2(3), 1(19) 4(2), 3(2), 2,

1(12)

4(3), 3, 2, 1(11) 12, 3, 2, 1(11)

Node 2(9), 1(34) 6, 4, 3(2), 2(4),

1(28)

6, 5, 4, 3, 2(3),

1(28)

18, 4, 2, 1(28)

Node 3(10), 2(4),

1(11)

5, 4, 3(13), 1 11, 6, 4, 3(9), 1 17, 6, 4, 3(7), 1

ParserBase 3, 2(7), 1(39) 5(2), 4(3), 3,

2(3), 1(25)

6, 5, 4(4), 2(3),

1(23)

27, 4, 2, 1(23)

RegOptimizer 5, 2(8), 1(20) 9, 5, 3(2), 2(5),

1(11)

18, 5, 4(2), 2,

1(8)

33, 1(8)

Continued on next page
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Table C.2 – Continued from previous page

Class 0.50 0.75 0.90 0.99

ResultMatrix 3(3), 2(18),

1(119)

8, 5(3), 4(3),

3(23), 2(5),

1(50)

19, 8(2), 7, 6, 5,

4(6), 3(12), 2(5),

1(41)

127, 2(2),

1(33)

Rule 3(2), 2(7),

1(24)

4(3), 3(6), 2(3),

1(8)

7, 5, 4(2), 3(5),

2(2), 1(5)

29, 9, 2, 1(4)

Rule 5, 3, 2(3),

1(33)

11, 4, 3(7),

2(3), 1(5)

15, 4(2), 3(6), 2,

1(4)

43, 1(4)

Script 2(6), 1(25) 6, 4, 3(2), 2(8),

1(5)

11, 5, 4, 3, 2(5),

1(4)

34, 1(3)

Settings-

Handler

3, 2(7), 1(33) 8, 6, 4, 3(3),

2(3), 1(17)

9, 7, 6, 5, 3, 2(3),

1(14)

18, 9, 6, 2(2),

1(13)

Specification 3, 2(26),

1(77)

13, 6, 5, 4(2),

3(12), 2(22),

1(20)

13, 10, 7, 6, 5(2),

4, 3(11), 2(18),

1(13)

120, 1(12)

TestInstances 3(12), 2(12),

1(37)

6, 3(23), 2(8),

1(6)

7(2), 6(2), 5,

4(2), 3(18), 2,

1(2)

92, 3, 1(2)

WorkQueue 3, 2(9), 1(38) 5, 4(2), 3(5),

2(9), 1(13)

11, 9, 5, 4(2),

3(5), 2(2), 1(7)

43, 4(2), 3, 2,

1(3)

XML-

Document

4, 3(2), 2(6),

1(35)

7, 6, 3(3), 2(5),

1(25)

7(2), 5, 4, 3(2),

2(3), 1(22)

34, 2, 1(21)
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Sim01 – complete link

Table C.3 contains data about the clusters that existed at each of four distances (0.5,

0.75, 0.9, and 0.999) for complete link agglomerative clustering using a Jaccard

distance function and the Sim01 property set.

Table C.3: Sim01 – complete link

Class 0.5 0.75 0.9 0.99

BRuleEngine 2(5), 1(18) 6, 5, 4, 3(2),

2(3), 1

6, 5, 4, 3(3),

2(2)

6, 5, 4, 3(3),

2(2)

BVDecompose 2(11), 1(16) 4, 3(6), 2(5),

1(6)

5, 3(6), 2(5),

1(5)

5, 3(7), 2(5),

1(2)

BVDecompose-

SegCVSub

2(14), 1(19) 4, 3(7), 2(7),

1(8)

4, 3(7), 2(7),

1(8)

5, 3(7), 2(9),

1(3)

CandidateURI 2(11), 1(46) 11, 4(2), 3(4),

2(11), 1(15)

13, 4(3), 3(6),

2(8), 1(9)

13, 4(3), 3(6),

2(8), 1(9)

CommandLine 2(4), 1(35) 5(2), 4(4),

3(2), 2(3), 1(5)

5(3), 4(4), 3,

2(3), 1(3)

5(3), 4(4), 3,

2(3), 1(3)

Crawl-

Controller

5, 4, 3(2),

2(14), 1(119)

7, 6(3), 5, 4,

3(10), 2(36),

1(26)

7(3), 6(2), 5(4),

4(7), 3(9),

2(23), 1(8)

7(4), 6(4), 5(4),

4(6), 3(7), 2(19),

1(7)

DatabaseUtils 3(2), 2(8),

1(60)

5, 4(2), 3(9),

2(10), 1(22)

8, 5(2), 4(3),

3(7), 2(6), 1(19)

8, 5(3), 4(3),

3(6), 2(5), 1(19)

Experiment 2(10), 1(42) 5, 4(2), 3(8),

2(5), 1(15)

5(2), 4(2), 3(8),

2(6), 1(8)

5(2), 4(3), 3(7),

2(7), 1(5)

FreeColClient 3(3), 2(19),

1(28)

5, 3(11), 2(16),

1(5)

5(3), 3(9),

2(14), 1(5)

5(3), 3(9), 2(14),

1(5)

FreeColObject 2(7), 1(49) 14, 4, 3(3),

2(9), 1(18)

15, 4, 3(4), 2(8),

1(16)

15, 4, 3(4), 2(8),

1(16)

FreeColServer 2(17), 1(41) 6, 3(8), 2(19),

1(7)

8, 6, 5, 3(7),

2(16), 1(3)

8, 6, 5, 4, 3(7),

2(14), 1(3)

Heritrix 16, 3(3),

2(11), 1(93)

17, 7, 6, 4(3),

3(7), 2(26),

1(25)

17, 8, 7, 5(3),

4(5), 3(9),

2(18), 1(10)

17, 8, 7(2), 6,

5(3), 4(3), 3(8),

2(17), 1(10)

Continued on next page
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Table C.3 – Continued from previous page

Class 0.50 0.75 0.90 0.99

ImageLibrary 2(6), 1(58) 6, 5, 3(5),

2(10), 1(24)

6, 5, 3(6), 2(9),

1(23)

7, 5, 3(6), 2(9),

1(22)

LPBRuleEngine 4, 2(7), 1(16) 7, 6, 4, 3(2),

2(5), 1

8, 7, 4, 3(2),

2(4), 1

8, 7, 4, 3(2),

2(4), 1

LPInterpreter 3, 2(5), 1(22) 5(2), 4(2), 3,

2(6), 1(2)

6, 5(2), 4, 3(2),

2(4), 1

6, 5(2), 4, 3(2),

2(4), 1

N3Jena-

WriterCommon

2(7), 1(55) 4, 3(6), 2(12),

1(23)

4(4), 3(7), 2(6),

1(20)

5, 4(4), 3(6),

2(5), 1(20)

Nearest-

Neighbour-

Search

2(4), 1(20) 4(2), 3(2), 2,

1(12)

4(2), 3(2), 2,

1(12)

4(2), 3(2), 2,

1(12)

Node 2(9), 1(34) 4, 3(2), 2(7),

1(28)

4(2), 3(2), 2(5),

1(28)

4(2), 3(2), 2(5),

1(28)

Node 3, 2(13),

1(20)

6, 4, 3(11),

2(2), 1(2)

8, 4, 3(12), 1 8, 4, 3(12), 1

ParserBase 2(8), 1(40) 5, 4(2), 3(3),

2(4), 1(26)

5(2), 4(3), 3,

2(3), 1(25)

5(2), 4(3), 3,

2(3), 1(25)

RegOptimizer 4, 2(9), 1(19) 6, 4, 3(2), 2(7),

1(11)

8, 5, 4, 3(2),

2(4), 1(10)

8, 5, 4, 3(2),

2(4), 1(10)

ResultMatrix 3(3), 2(18),

1(119)

8, 5(3), 4(2),

3(20), 2(12),

1(49)

11, 8, 5(2), 4(5),

3(17), 2(11),

1(42)

15, 8, 7, 5(2),

4(4), 3(18), 2(7),

1(40)

Rule 3, 2(8), 1(25) 4(2), 3(6),

2(5), 1(8)

7, 5, 3(6), 2(4),

1(6)

7, 5, 3(6), 2(4),

1(6)

Rule 5, 3, 2(3),

1(33)

6, 4, 3(8), 2(4),

1(5)

11, 4(3), 3(6), 2,

1(4)

11, 4(3), 3(6), 2,

1(4)

Script 2(6), 1(25) 4, 3(4), 2(8),

1(5)

8, 4, 3(2), 2(7),

1(5)

8, 4, 3(2), 2(7),

1(5)

Settings-

Handler

3, 2(7), 1(33) 8, 3(6), 2(4),

1(16)

9, 5(2), 3(4),

2(2), 1(15)

9, 5(2), 3(4),

2(2), 1(15)

Continued on next page
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Table C.3 – Continued from previous page

Class 0.50 0.75 0.90 0.99

Specification 2(27), 1(78) 13, 6, 5, 4(3),

3(10), 2(22),

1(22)

13, 6, 5, 4(4),

3(10), 2(23),

1(16)

13, 6, 5, 4(5),

3(10), 2(21),

1(16)

TestInstances 2(24), 1(49) 3(23), 2(10),

1(8)

7, 4(3), 3(20),

2(7), 1(4)

7, 4(3), 3(20),

2(7), 1(4)

WorkQueue 2(10), 1(39) 4(2), 3(6),

2(10), 1(13)

5, 4(2), 3(7),

2(7), 1(11)

6, 5, 4, 3(7),

2(7), 1(9)

XMLDocument 4, 2(8), 1(37) 7, 5, 3(2), 2(7),

1(25)

7(2), 4, 3(2),

2(5), 1(23)

7(2), 4, 3(2),

2(5), 1(23)

Nhood – single link

Table C.4 contains data about the clusters that existed at each of four distances

(0.5, 0.75, 0.9, and 0.999) for single link agglomerative clustering using a Jaccard

distance function and the Nhood property set.

Table C.4: Nhood – single link

Class 0.5 0.75 0.9 0.99

BRuleEngine 3, 2(4), 1(17) 19, 6, 3 22, 6 22, 6

BVDecompose 2(6), 1(26) 6, 3(6), 2(5), 1(4) 34, 2, 1(2) 34, 2, 1(2)

BVDecompose-

SegCVSub

2(9), 1(29) 14, 9, 3(6), 2, 1(4) 43, 2, 1(2) 43, 2, 1(2)

CandidateURI 3(2), 2(11),

1(40)

32, 17, 3(2), 2(2),

1(9)

50, 3(2), 2(2),

1(8)

50, 3(2), 2(2),

1(8)

Command-

Line

3(2), 2(2),

1(33)

10, 9, 5(2), 4(2), 3,

2, 1

37, 3, 2, 1 37, 3, 2, 1

Crawl-

Controller

5, 3(3), 2(15),

1(118)

117, 8, 7, 5, 4,

3(2), 2(3), 1(9)

148, 7, 2,

1(5)

148, 7, 2,

1(5)

DatabaseUtils 5, 3(6), 2(2),

1(55)

35, 8, 7, 4, 3(3), 2,

1(17)

58, 8, 1(16) 58, 8, 1(16)

Experiment 3(3), 2(9),

1(35)

40, 5, 3(3), 2(2),

1(4)

60, 1(2) 60, 1(2)

Continued on next page
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Class 0.50 0.75 0.90 0.99

FreeColClient 5, 3(7), 2(15),

1(19)

27, 8, 6, 5, 3(4),

2(7), 1(3)

35, 8, 5, 3(4),

2(6), 1(3)

35, 8, 5, 3(4),

2(6), 1(3)

FreeColObject 4, 3(2), 2(4),

1(45)

32, 14, 4, 1(13) 32, 15, 4,

1(12)

32, 15, 4,

1(12)

FreeColServer 5, 3(3), 2(15),

1(31)

38, 9, 5, 3(2), 2(7),

1(3)

62, 3, 2(4),

1(2)

62, 3, 2(4),

1(2)

Heritrix 16, 3(7), 2(12),

1(79)

116, 8, 4, 2(4),

1(4)

135, 2, 1(3) 135, 2, 1(3)

ImageLibrary 3(4), 2(6),

1(46)

28, 10, 5, 3(2),

1(21)

46, 3, 1(21) 47, 3, 1(20)

LPBRule-

Engine

4(2), 3(2),

2(3), 1(14)

8(2), 5, 4, 3(2), 2,

1

21, 4, 3(2), 2,

1

21, 4, 3(2), 2,

1

LPInterpreter 5, 3(3), 2(3),

1(15)

28, 6, 1 34, 1 34, 1

N3Jena-

WriterCommon

3(2), 2(6),

1(51)

31, 9, 6, 4, 3, 2(3),

1(10)

48, 9, 2(2),

1(8)

48, 9, 2(2),

1(8)

Nearest-

Neighbour-

Search

3(2), 2(3),

1(16)

12, 3, 2, 1(11) 12, 3, 2,

1(11)

12, 3, 2,

1(11)

Node 4, 3, 2(6),

1(33)

10, 5, 4, 3, 2, 1(28) 18, 4, 2,

1(28)

18, 4, 2,

1(28)

Node 6, 4, 3(8), 2(3),

1(9)

17, 6, 4, 3(7), 1 17, 6, 4, 3(7),

1

17, 6, 4, 3(7),

1

ParserBase 4, 3(3), 2(4),

1(35)

27, 4, 2, 1(23) 27, 4, 2,

1(23)

27, 4, 2,

1(23)

RegOptimizer 8, 3(2), 2(6),

1(15)

18, 8, 5, 2, 1(8) 33, 1(8) 33, 1(8)

ResultMatrix 8, 4, 3(2),

2(15), 1(116)

91, 8, 7(2), 5, 4(2),

2(6), 1(26)

136, 2(2),

1(24)

136, 2(2),

1(24)

Rule 4(2), 3(3),

2(5), 1(17)

29, 9, 2, 1(4) 29, 9, 2, 1(4) 29, 9, 2, 1(4)

Continued on next page
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Class 0.50 0.75 0.90 0.99

Rule 5, 3(2), 2(2),

1(32)

31, 7, 4, 3, 1(2) 45, 1(2) 45, 1(2)

Script 3, 2(7), 1(20) 34, 1(3) 34, 1(3) 34, 1(3)

Settings-

Handler

5, 4, 3, 2(4),

1(30)

18, 8, 6, 2(2),

1(14)

18, 9, 6, 2(2),

1(13)

18, 9, 6, 2(2),

1(13)

Specification 3(9), 2(20),

1(65)

43, 14, 7, 5, 4(2),

3(7), 2(10), 1(14)

122, 1(10) 122, 1(10)

TestInstances 7, 5, 3, 2(6),

1(70)

85, 7, 2, 1(3) 95, 1(2) 95, 1(2)

WorkQueue 4(2), 3(3),

2(6), 1(30)

39, 4(2), 3(2), 2,

1(4)

43, 4(2), 3, 2,

1(3)

43, 4(2), 3, 2,

1(3)

XMLDocument 3(4), 2(5),

1(35)

27, 7, 2, 1(21) 34, 2, 1(21) 34, 2, 1(21)

Nhood – average link

Table C.5 contains data about the clusters that existed at each of four distances

(0.5, 0.75, 0.9, and 0.999) for average link agglomerative clustering using a Jaccard

distance function and the Nhood property set.

Table C.5: Nhood – average link

Class 0.5 0.75 0.9 0.99

BRuleEngine 2(5), 1(18) 6, 4, 3(3), 2(4),

1

9, 6(2), 3, 2(2) 22, 6

BVDecompose 2(6), 1(26) 3(7), 2(6), 1(5) 7, 3(7), 2(4), 1(2) 34, 2, 1(2)

BVDecompose-

SegCVSub

2(9), 1(29) 3(8), 2(9), 1(5) 6(2), 3(6), 2(7),

1(3)

43, 2, 1(2)

CandidateURI 3(2), 2(11),

1(40)

8, 4, 3(7),

2(12), 1(11)

15, 7, 6, 4(2),

3(6), 2(3), 1(8)

50, 3(2), 2(2),

1(8)

Command-

Line

3, 2(3), 1(34) 5(2), 4(4), 3(4),

2(2), 1

6(2), 5(2), 4(3),

3(2), 2, 1

37, 3, 2, 1

Continued on next page
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Class 0.50 0.75 0.90 0.99

Crawl-

Controller

5, 3(2),

2(16), 1(119)

7, 6(2), 5(3),

4(3), 3(11),

2(31), 1(21)

16(2), 10, 8, 7(6),

6, 5(2), 4(2),

3(5), 2(12), 1(7)

148, 7, 2, 1(5)

DatabaseUtils 3, 2(9), 1(61) 7, 4, 3(9),

2(13), 1(18)

9, 8, 7, 6(2), 5(2),

3(4), 2(4), 1(16)

58, 8, 1(16)

Experiment 2(12), 1(38) 5(3), 4, 3(5),

2(9), 1(10)

21, 6(2), 4(3),

3(3), 2(3), 1(2)

60, 1(2)

FreeColClient 3(7), 2(17),

1(20)

5, 4(3), 3(7),

2(16), 1(5)

9, 6, 5(2), 4(3),

3(6), 2(8), 1(4)

35, 8, 5, 3(4),

2(6), 1(3)

FreeColObject 2(7), 1(49) 14, 4(2), 3(4),

2(8), 1(13)

15, 7, 6, 4(5), 3,

1(12)

32, 15, 4, 1(12)

FreeColServer 3, 2(19),

1(34)

5, 3(9), 2(19),

1(5)

11, 8, 7, 4(3),

3(5), 2(10), 1(2)

62, 3, 2(4),

1(2)

Heritrix 16, 3(4),

2(15), 1(82)

16, 5(2), 4(4),

3(12), 2(26),

1(10)

26, 11, 9(2), 7(3),

6(2), 5(3), 4(4),

3(2), 2(6), 1(3)

135, 2, 1(3)

ImageLibrary 3, 2(9), 1(49) 6, 5, 3(8), 2(7),

1(21)

10(2), 5(2), 3(5),

2(2), 1(21)

47, 3, 1(20)

LPBRule-

Engine

4, 3(2), 2(4),

1(16)

6, 5, 4, 3(2),

2(6), 1

8, 6, 5, 4, 3(2),

2(2), 1

21, 4, 3(2), 2, 1

LPInterpreter 3(3), 2(5),

1(16)

5(2), 4(3), 3,

2(4), 1(2)

21, 6, 4, 3, 1 34, 1

N3Jena-

WriterCommon

3, 2(7), 1(52) 6, 4(3), 3(8),

2(7), 1(13)

9, 8, 6(2), 5, 4(3),

3(3), 2(3), 1(8)

48, 9, 2(2),

1(8)

Nearest-

Neighbour-

Search

3, 2(4), 1(17) 4, 3(3), 2(2),

1(11)

8, 4, 3, 2, 1(11) 12, 3, 2, 1(11)

Node 2(8), 1(36) 4(2), 3(2), 2(4),

1(30)

6, 5, 4, 3, 2(3),

1(28)

18, 4, 2, 1(28)

Node 3(8), 2(7),

1(11)

6, 4, 3(8), 2(7),

1

13, 6, 4, 3(7),

2(2), 1

17, 6, 4, 3(7), 1

Continued on next page
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Class 0.50 0.75 0.90 0.99

ParserBase 3(2), 2(7),

1(36)

5(2), 4(3), 3,

2(4), 1(23)

6, 5(3), 4(2),

2(2), 1(23)

27, 4, 2, 1(23)

RegOptimizer 5, 2(8), 1(20) 9, 5, 3(2), 2(6),

1(9)

18, 8, 5, 2, 1(8) 33, 1(8)

ResultMatrix 8, 3(2),

2(17), 1(116)

8(2), 7, 5(4),

4(4), 3(9),

2(26), 1(26)

29, 19, 14, 11, 7,

5(3), 4(6), 3(4),

2(4), 1(25)

136, 2(2),

1(24)

Rule 4, 3, 2(9),

1(19)

6, 4(3), 3(3),

2(6), 1(5)

7, 6, 4(5), 3, 2(2),

1(4)

29, 9, 2, 1(4)

Rule 5, 3, 2(3),

1(33)

11, 4(2), 3(7),

2(2), 1(3)

17, 4(2), 3(6), 2,

1(2)

45, 1(2)

Script 2(8), 1(21) 4, 3(5), 2(7),

1(4)

11, 6, 4(3), 3, 2,

1(3)

34, 1(3)

Settings-

Handler

4(2), 2(5),

1(32)

8, 6, 4, 3(3),

2(4), 1(15)

9, 8, 7, 6, 3, 2(2),

1(13)

18, 9, 6, 2(2),

1(13)

Specification 3, 2(28),

1(73)

14, 6, 5, 4,

3(13), 2(23),

1(18)

15, 9, 7, 5(2),

4(3), 3(11),

2(18), 1(10)

122, 1(10)

TestInstances 5, 3, 2(8),

1(73)

17, 13, 5, 3(6),

2(13), 1(18)

39, 7(2), 6, 5(2),

4, 3(2), 2(4),

1(10)

95, 1(2)

WorkQueue 3(2), 2(9),

1(35)

4(4), 3(8), 2(6),

1(7)

11, 10, 6, 5(2),

4(2), 3(3), 2, 1(3)

43, 4(2), 3, 2,

1(3)

XML-

Document

3(2), 2(7),

1(37)

7, 6, 5, 3(3),

2(4), 1(22)

8, 7(2), 6(2), 2,

1(21)

34, 2, 1(21)
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Nhood – complete link

Table C.6 contains data about the clusters that existed at each of four distances (0.5,

0.75, 0.9, and 0.999) for complete link agglomerative clustering using a Jaccard

distance function and the Nhood property set.

Table C.6: Nhood – complete link

Class 0.5 0.75 0.9 0.99

BRuleEngine 2(5), 1(18) 6, 5, 4, 3, 2(5) 6(2), 5, 3, 2(4) 6(2), 5, 3, 2(4)

BVDecom-

pose

2(6), 1(26) 3, 2(12), 1(11) 7, 4, 3, 2(11),

1(2)

7, 4, 3, 2(11),

1(2)

BVDecompose-

SegCVSub

2(9), 1(29) 2(17), 1(13) 7, 5, 4, 3, 2(13),

1(2)

7, 5, 4, 3, 2(13),

1(2)

CandidateURI 2(13), 1(42) 8, 3(7), 2(14),

1(11)

11, 3(8), 2(12),

1(9)

11, 3(8), 2(12),

1(9)

Command-

Line

2(4), 1(35) 5(2), 4(4),

3(3), 2(3), 1(2)

5(2), 4(5), 3(2),

2(3), 1

5(2), 4(5), 3(2),

2(3), 1

Crawl-

Controller

5, 3(2),

2(16), 1(119)

7, 6(2), 5(2),

4(2), 3(8),

2(38), 1(25)

9, 7, 6(4), 5(3),

4(7), 3(10),

2(21), 1(7)

9, 7(2), 6(4),

5(4), 4(8), 3(7),

2(18), 1(6)

DatabaseUtils 3, 2(9), 1(61) 7, 4, 3(9),

2(13), 1(18)

7, 5, 4(3), 3(8),

2(9), 1(16)

7, 5, 4(4), 3(8),

2(7), 1(16)

Experiment 2(12), 1(38) 5, 4(2), 3(4),

2(13), 1(11)

6(2), 5(2), 4,

3(6), 2(8), 1(2)

9, 8, 6, 5, 4, 3(4),

2(8), 1(2)

FreeColClient 3(3), 2(21),

1(24)

5, 3(9), 2(19),

1(5)

5(2), 4, 3(8),

2(16), 1(5)

5(3), 3(8), 2(16),

1(4)

FreeColObject 2(7), 1(49) 14, 4(2), 3(3),

2(9), 1(14)

15, 4(2), 3(4),

2(8), 1(12)

15, 4(2), 3(4),

2(8), 1(12)

FreeColServer 2(20), 1(35) 3(9), 2(21),

1(6)

6, 5(2), 4, 3(6),

2(17), 1(3)

6, 5(2), 4(2),

3(6), 2(15), 1(3)

Heritrix 16, 3(4),

2(15), 1(82)

16, 5(2), 4(4),

3(10), 2(28),

1(12)

22, 6(2), 5(3),

4(7), 3(7),

2(19), 1(4)

27, 6(4), 5(3),

4(6), 3(7), 2(13),

1(3)

ImageLibrary 2(10), 1(50) 8, 3(8), 2(8),

1(22)

8, 3(9), 2(7),

1(21)

9, 3(9), 2(7),

1(20)

Continued on next page
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Class 0.50 0.75 0.90 0.99

LPBRule-

Engine

4, 2(6), 1(18) 6, 5, 4, 3(2),

2(6), 1

7, 6, 4(2), 3(2),

2(3), 1

7, 6, 4(2), 3(2),

2(3), 1

LPInterpreter 3(3), 2(5),

1(16)

5(2), 4, 3(2),

2(6), 1(3)

7, 6(2), 5, 4,

2(3), 1

13, 6, 5, 4, 2(3),

1

N3Jena-

WriterCommon

3, 2(7), 1(52) 4(3), 3(9),

2(8), 1(14)

7, 6(4), 4(2),

3(4), 2(4), 1(10)

7, 6(4), 4(2),

3(4), 2(4), 1(10)

Nearest-

Neighbour-

Search

2(5), 1(18) 4, 3(2), 2(3),

1(12)

5, 3(2), 2(3),

1(11)

5, 3(2), 2(3),

1(11)

Node 2(8), 1(36) 4, 3(3), 2(5),

1(29)

4(2), 3(2), 2(5),

1(28)

4(2), 3(2), 2(5),

1(28)

Node 3, 2(14),

1(18)

6, 4, 3(8), 2(7),

1

6, 4, 3(8), 2(7),

1

6, 4, 3(8), 2(7),

1

ParserBase 3(2), 2(7),

1(36)

5, 4, 3(3), 2(7),

1(24)

5(2), 4(2), 3,

2(6), 1(23)

5(2), 4(2), 3,

2(6), 1(23)

RegOptimizer 4, 2(9), 1(19) 6, 4, 2(10),

1(11)

9, 5, 4, 3, 2(6),

1(8)

9, 5, 4, 3, 2(6),

1(8)

ResultMatrix 8, 3(2),

2(17), 1(116)

8, 7, 5(3), 4(6),

3(7), 2(30),

1(29)

19, 14, 8, 7,

5(2), 4(7), 3(6),

2(18), 1(24)

19, 17, 10, 7,

5(2), 4(8), 3(5),

2(15), 1(24)

Rule 3(2), 2(9),

1(20)

4(2), 3(6),

2(7), 1(4)

5, 4(2), 3(5),

2(6), 1(4)

5, 4(2), 3(5),

2(6), 1(4)

Rule 5, 3, 2(3),

1(33)

6(2), 3(8),

2(4), 1(3)

11, 6, 4(2), 3(6),

2, 1(2)

11, 6, 4(2), 3(6),

2, 1(2)

Script 2(8), 1(21) 4(2), 3(3),

2(7), 1(6)

5, 4(3), 3(2),

2(5), 1(4)

5, 4(3), 3(2),

2(5), 1(4)

Settings-

Handler

3, 2(7), 1(33) 8, 6, 4, 3(3),

2(4), 1(15)

9, 6(2), 5, 3(2),

2(2), 1(14)

9, 6(2), 5, 3(2),

2(2), 1(14)

Specification 3, 2(28),

1(73)

14, 6, 4, 3(12),

2(26), 1(20)

15, 6, 5, 4(3),

3(12), 2(24),

1(10)

15, 6, 5, 4(4),

3(12), 2(22),

1(10)

Continued on next page
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Class 0.50 0.75 0.90 0.99

TestInstances 5, 3, 2(8),

1(73)

10, 7(2), 6,

3(4), 2(17),

1(21)

17, 8(2), 7, 5,

4(2), 3(5),

2(10), 1(9)

25, 8, 7, 5(2),

4(2), 3(4), 2(10),

1(7)

WorkQueue 3, 2(10),

1(36)

4(2), 3(9),

2(9), 1(6)

6, 5(2), 4(3),

3(6), 2(4), 1(5)

6(2), 5, 4(3),

3(6), 2(4), 1(4)

XML-

Document

3(2), 2(7),

1(37)

7, 3(5), 2(6),

1(23)

7, 6, 5, 3(3),

2(4), 1(22)

7, 6, 5, 3(3),

2(4), 1(22)

C.3 Betweenness clustering

C.3.1 Cluster sizes

Table C.7 shows the sizes of the clusters produced by betweenness clustering when

applied to the thirty large open source classes identified using the query described

in Section 4.1. The numbers in the “Cluster sizes” column list the sizes of each

cluster. If a class has more than one cluster of a given size, then the number of

clusters of that size is given in parentheses. For example, CrawlController has

five clusters – one of 147 members, one of 7 members, and three with a single

member.

C.3.2 Non-cohesion metrics

Table C.8 contains the metric results for number of fields (NF), number of

methods (NM), and weighted methods per class (WMC), where the WMC values

are weighted using computational complexity [McC76]. The “Class” column

contains entries for the original class (before it was refactored), the modified

class (the larger class after refactoring), and the extracted class (the smaller class

after refactoring). The ∆ modified rows contain the improvement in the given

measurement between the original and modified classes, and the ∆ extracted rows

contain the improvement in the given measurement between the original and

extracted classes.
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Table C.7: Betweenness cluster sizes

Class # Clusters Cluster sizes

BRuleEngine 3 19, 6, 3

BVDecompose 3 31, 2, 1

BVDecomposeSegCVSub 3 40, 2, 1

CandidateURI 11 33, 15, 3(2), 2(2), 1(5)

CommandLine 5 23, 14, 3, 2, 1

CrawlController 5 147, 7, 1(3)

DatabaseUtils 18 58, 8, 1(16)

Experiment 3 55, 3, 1

FreeColClient 16 35, 8, 5, 3(4), 2(6), 1(3)

FreeColObject 15 32, 15, 4, 1(12)

FreeColServer 9 55, 7, 3, 2(4), 1(2)

Heritrix 4 119, 9, 2, 1

ImageLibrary 23 42, 5, 3, 1(20)

LPBRuleEngine 7 13, 8, 4, 3(2), 2, 1

LPInterpreter 3 28, 6, 1

N3JenaWriterCommon 11 46, 10, 2, 1(8)

NearestNeighbourSearch 14 6, 3, 3, 2, 1(10)

Node 32 13, 5, 4, 2, 1(28)

Node 12 15, 6, 4, 3(7), 2, 1

ParserBase 27 15, 12, 4, 2, 1(23)

RegOptimizer 8 25, 7, 1(6)

ResultMatrix 28 127, 7, 2(2), 1(24)

Rule 7 29, 9, 2, 1(4)

Rule 4 42, 3, 1(2)

Script 4 27, 6, 1(2)

SettingsHandler 18 18, 9, 6, 2(2), 1(13)

Specification 12 76, 46, 1(10)

TestInstances 3 90, 3, 1

WorkQueue 5 30, 12, 4(2), 3

XMLDocument 24 27, 7, 2, 1(21)
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Table C.8: Betweenness clustering – non-cohesion

metric results

Class NF NM WMC

CandidateURI (H) 16 56 84

modified 17 58 81

extracted 1 16 21

∆ modified -1 -2 3

∆ extracted 15 40 63

CommandLine (J) 8 36 66

modified 8 36 59

extracted 1 15 22

∆ modified 0 0 7

∆ extracted 7 21 44

CrawlController (H) 63 100 247

modified 62 100 230

extracted 2 6 23

∆ modified 1 0 17

∆ extracted 61 94 224

DatabaseUtils (W) 36 47 194

modified 35 47 190

extracted 2 7 11

∆ modified 1 0 4

∆ extracted 34 40 183

FreeColClient (F) 28 48 94

modified 27 48 89

extracted 2 7 12

∆ modified 1 0 5

∆ extracted 26 41 82

FreeColObject (F) 10 53 99

modified 10 53 85

extracted 1 15 29

∆ modified 0 0 14

∆ extracted 9 38 70

Continued on next page
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Table C.8 – Continued from previous page

Class NF NM WMC

FreeColServer (F) 26 52 181

modified 24 52 180

extracted 3 8 9

∆ modified 2 0 1

∆ extracted 23 44 172

Heritrix (H) 47 97 293

modified 47 97 291

extracted 2 11 13

∆ modified 0 0 2

∆ extracted 45 86 280

LPBRuleEngine (J) 10 26 47

modified 10 27 43

extracted 2 9 14

∆ modified 0 -1 4

∆ extracted 8 17 33

N3JenaWriterCommon (J) 23 46 136

modified 22 47 120

extracted 3 11 28

∆ modified 1 -1 16

∆ extracted 20 35 108

ParserBase (J) 19 38 93

modified 17 37 88

extracted 4 10 14

∆ modified 2 1 5

∆ extracted 15 28 79

RegOptimizer (W) 21 22 48

modified 20 22 46

extracted 2 11 13

∆ modified 1 0 2

∆ extracted 19 11 35

Continued on next page
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Table C.8 – Continued from previous page

Class NF NM WMC

ResultMatrix (W) 41 127 305

modified 41 127 305

extracted 2 9 11

∆ modified 0 0 0

∆ extracted 39 118 294

Rule (J) 7 43 109

modified 7 34 82

extracted 0 9 27

∆ modified 0 9 27

∆ extracted 7 34 82

SettingsHandler (H) 22 29 60

modified 14 28 50

extracted 8 1 10

∆ modified 8 1 10

∆ extracted 14 28 50

Specification (F) 47 87 155

modified 41 87 121

extracted 7 44 78

∆ modified 6 0 34

∆ extracted 40 43 77

XMLDocument (W) 24 39 61

modified 24 40 61

extracted 2 8 9

∆ modified 0 -1 0

∆ extracted 22 31 52

C.3.3 Cohesion metrics

Table C.9 shows the values of six structural cohesion metrics – LCOM, LCOM*,

TCC, DCD, LCC, and DCI, together with the C3V semantic cohesion metric. The

“Class” column contains entries for the original class (before it was refactored), the

modified class (the larger class after refactoring), and the extracted class (the smaller

class after refactoring). The ∆ modified rows contain the improvement in the given

measurement between the original and modified classes, and the ∆ extracted rows
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contain the improvement in the given measurement between the original and

extracted classes. Due to rounding, the improvement rows may sometimes appear

to be off by 0.01.

Table C.9: Betweenness clustering – cohesion results

Class LCOM LCOM* TCC DCD LCC DCI C3V

CandidateURI (H) 1153 0.98 0.13 0.15 0.25 0.33 0.06

modified 1054 0.97 0.22 0.24 0.58 0.64 0.06

extracted 91 0.00 0.00 0.01 0.00 0.01 0.32

∆ modified 99 0.02 0.09 0.09 0.33 0.31 0.01

∆ extracted 1062 0.98 -0.13 -0.14 -0.25 -0.32 0.27

CommandLine (J) 507 0.93 0.22 0.22 0.64 0.64 0.17

modified 355 0.90 0.22 0.22 0.64 0.64 0.14

extracted 61 0.00 1.00 1.00 1.00 1.00 0.56

∆ modified 152 0.03 0.00 0.00 0.00 0.00 -0.03

∆ extracted 446 0.93 0.78 0.78 0.36 0.36 0.39

CrawlController (H) 3957 0.97 0.20 0.18 0.73 0.76 0.04

modified 3957 0.97 0.20 0.18 0.73 0.76 0.04

extracted 0 0.00 1.00 1.00 1.00 1.00 0.83

∆ modified 0 0.00 0.00 0.00 0.00 0.00 -0.00

∆ extracted 3957 0.97 0.80 0.82 0.28 0.25 0.79

DatabaseUtils (W) 641 0.98 0.26 0.26 0.55 0.53 0.07

modified 623 0.98 0.26 0.26 0.55 0.53 0.06

extracted 3 0.60 0.60 0.60 1.00 1.00 0.38

∆ modified 18 0.00 0.01 0.01 0.00 0.00 -0.01

∆ extracted 638 0.38 0.35 0.35 0.45 0.47 0.31

FreeColClient (F) 1011 0.98 0.05 0.05 0.11 0.11 0.04

modified 985 0.97 0.06 0.06 0.11 0.11 0.04

extracted 11 0.80 0.60 0.60 1.00 1.00 0.32

∆ modified 26 0.00 0.01 0.01 0.00 0.00 0.00

∆ extracted 1000 0.18 0.55 0.55 0.89 0.89 0.28

Continued on next page
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Table C.9 – Continued from previous page

Class LCOM LCOM* TCC DCD LCC DCI C3V

FreeColObject (F) 1134 0.97 0.11 0.20 0.11 0.20 0.13

modified 1134 0.97 0.11 0.20 0.11 0.20 0.13

extracted 0 0.00 1.00 1.00 1.00 1.00 0.50

∆ modified 0 0.00 0.00 0.00 0.00 0.00 0.00

∆ extracted 1134 0.97 0.89 0.81 0.89 0.81 0.37

FreeColServer (F) 1032 0.97 0.14 0.14 0.49 0.49 0.06

modified 1016 0.97 0.15 0.15 0.49 0.49 0.06

extracted 7 0.72 0.43 0.43 1.00 1.00 0.46

∆ modified 16 0.00 0.00 0.00 0.00 0.00 -0.00

∆ extracted 1025 0.25 0.29 0.29 0.51 0.51 0.41

Heritrix (H) 4044 0.99 0.20 0.29 0.55 0.77 0.06

modified 4006 0.99 0.20 0.28 0.55 0.77 0.06

extracted 0 0.56 1.00 1.00 1.00 1.00 0.41

∆ modified 38 0.00 -0.01 -0.01 0.00 0.00 0.00

∆ extracted 4044 0.43 0.80 0.71 0.45 0.23 0.35

LPBRuleEngine (J) 184 0.92 0.32 0.32 0.45 0.45 0.08

modified 182 0.92 0.21 0.21 0.47 0.47 0.09

extracted 0 0.57 0.89 0.89 1.00 1.00 0.36

∆ modified 2 0.01 -0.11 -0.11 0.02 0.02 0.00

∆ extracted 184 0.35 0.58 0.58 0.55 0.55 0.28

N3JenaWriterC... (J) 905 0.99 0.22 1.00 0.30 1.00 0.06

modified 867 0.98 0.17 0.60 0.19 0.60 0.08

extracted 41 0.93 0.62 1.00 0.62 1.00 0.19

∆ modified 38 0.01 -0.05 -0.40 -0.11 -0.40 0.02

∆ extracted 864 0.06 0.41 0.00 0.32 0.00 0.13

ParserBase (J) 624 1.00 0.06 0.00 0.08 0.00 0.08

modified 546 1.00 0.07 0.00 0.09 0.00 0.08

extracted 22 0.88 0.56 0.40 0.78 0.60 0.20

∆ modified 78 0.00 0.02 0.00 0.01 0.00 0.00

∆ extracted 602 0.13 0.50 0.40 0.70 0.60 0.12

Continued on next page
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Table C.9 – Continued from previous page

Class LCOM LCOM* TCC DCD LCC DCI C3V

RegOptimizer (W) 107 0.91 0.29 0.19 0.78 0.23 0.18

modified 31 0.89 0.40 0.31 0.89 0.31 0.14

extracted 33 0.78 0.60 0.60 0.80 0.80 0.21

∆ modified 76 0.02 0.11 0.12 0.11 0.08 -0.04

∆ extracted 74 0.13 0.31 0.41 0.02 0.57 0.03

ResultMatrix (W) 4750 0.98 0.13 0.15 0.60 0.68 0.10

modified 4750 0.98 0.13 0.15 0.60 0.68 0.10

extracted 0 0.43 0.71 0.71 1.00 1.00 0.59

∆ modified 0 0.00 0.00 0.00 0.00 0.00 -0.00

∆ extracted 4750 0.55 0.58 0.57 0.41 0.32 0.49

Rule (J) 550 0.93 0.17 0.19 0.42 0.44 0.07

modified 271 0.90 0.28 0.28 0.69 0.69 0.08

extracted 0 0.00 0.00 0.50 0.00 0.60 0.17

∆ modified 279 0.03 0.11 0.09 0.27 0.25 0.02

∆ extracted 550 0.93 -0.17 0.31 -0.42 0.16 0.11

SettingsHandler (H) 187 0.99 0.32 0.49 0.36 0.58 0.08

modified 165 0.99 0.35 0.49 0.40 0.58 0.11

extracted 0 0.00 1.00 1.00 1.00 1.00 0.01

∆ modified 22 0.00 0.03 0.00 0.04 0.00 0.03

∆ extracted 187 0.99 0.68 0.51 0.64 0.43 -0.07

Specification (F) 3364 0.99 0.14 0.13 0.98 0.70 0.15

modified 1802 0.98 0.24 0.23 0.98 0.70 0.15

extracted 837 0.94 0.49 0.49 0.95 1.00 0.14

∆ modified 1562 0.01 0.10 0.10 0.00 0.00 0.01

∆ extracted 2527 0.04 0.35 0.36 -0.02 0.30 -0.00

XMLDocument (W) 476 1.01 0.27 0.28 0.48 0.59 0.07

modified 479 1.00 0.16 0.18 0.30 0.40 0.08

extracted 19 0.92 1.00 1.00 1.00 1.00 0.38

∆ modified -3 0.01 -0.11 -0.10 -0.18 -0.19 0.01

∆ extracted 457 0.09 0.73 0.72 0.52 0.41 0.30
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C.4 Dual clustering

C.4.1 Preferences

These are the preferences (see Section 2.4.2) in effect when the metrics were

collected:

• Constructors, inherited members, inner class members, object methods were

filtered out.

• Static members, loggers and loggers were included.

• Only required methods were condensed.

C.4.2 Non-cohesion metrics

Table C.10 contains the metric results for number of fields (NF), number of methods

(NM), and weighted methods per class (WMC), where the WMC values weighted

using computational complexity. The “Class” column contains entries for the

original class (before it was refactored), the modified class (the larger class after

refactoring), and the extracted class (the smaller class after refactoring). The ∆

modified rows contain the improvement in the given measurement between the

original and modified classes, and the ∆ extracted rows contain the improvement

in the given measurement between the original and extracted classes.
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Table C.10: Dual clustering – non-cohesion metric

results

Class NF NM WMC

BRuleEngine (J) 9 21 57

modified 8 21 57

extracted 2 10 10

∆ modified 1 0 0

∆ extracted 7 11 47

CandidateURI (H) 16 56 84

modified 17 58 81

extracted 1 18 23

∆ modified -1 -2 3

∆ extracted 15 38 61

CommandLine (J) 8 36 66

modified 8 36 59

extracted 1 16 23

∆ modified 0 0 7

∆ extracted 7 20 43

CrawlController (H) 63 100 247

modified 62 100 230

extracted 2 7 24

∆ modified 1 0 17

∆ extracted 61 93 223

DatabaseUtils (W) 36 47 194

modified 35 47 190

extracted 2 7 11

∆ modified 1 0 4

∆ extracted 34 40 183

FreeColClient (F) 28 48 94

modified 19 48 89

extracted 10 19 24

∆ modified 9 0 5

∆ extracted 18 29 70

Continued on next page
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Table C.10 – Continued from previous page

Class NF NM WMC

FreeColObject (F) 10 53 99

modified 10 54 95

extracted 3 15 29

∆ modified 0 -1 4

∆ extracted 7 38 70

FreeColServer (F) 26 52 181

modified 21 52 166

extracted 6 12 27

∆ modified 5 0 15

∆ extracted 20 40 154

Heritrix (H) 47 97 293

modified 47 97 291

extracted 2 11 13

∆ modified 0 0 2

∆ extracted 45 86 280

ImageLibrary (F) 10 62 109

modified 11 61 93

extracted 1 20 35

∆ modified -1 1 16

∆ extracted 9 42 74

LPBRuleEngine (J) 10 26 47

modified 8 27 43

extracted 4 13 18

∆ modified 2 -1 4

∆ extracted 6 13 29

N3JenaWriterCommon (J) 23 46 136

modified 19 48 119

extracted 6 16 35

∆ modified 4 -2 17

∆ extracted 17 30 101

Continued on next page
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Table C.10 – Continued from previous page

Class NF NM WMC

Node (J) 11 45 51

modified 10 39 44

extracted 3 21 22

∆ modified 1 6 7

∆ extracted 8 24 29

Node (W) 15 35 63

modified 14 30 39

extracted 3 14 33

∆ modified 1 5 24

∆ extracted 12 21 30

ParserBase (J) 19 38 93

modified 17 34 44

extracted 3 16 61

∆ modified 2 4 49

∆ extracted 16 22 32

RegOptimizer (W) 21 22 48

modified 6 24 36

extracted 17 28 42

∆ modified 15 -2 12

∆ extracted 4 -6 6

ResultMatrix (W) 41 127 305

modified 40 127 303

extracted 2 9 11

∆ modified 1 0 2

∆ extracted 39 118 294

Rule (J) 7 43 109

modified 7 32 76

extracted 0 11 33

∆ modified 0 11 33

∆ extracted 7 32 76

Continued on next page
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Table C.10 – Continued from previous page

Class NF NM WMC

Script (W) 8 33 72

modified 8 35 72

extracted 2 7 9

∆ modified 0 -2 0

∆ extracted 6 26 63

SettingsHandler (H) 22 29 60

modified 22 29 48

extracted 2 16 28

∆ modified 0 0 12

∆ extracted 20 13 32

Specification (F) 47 87 155

modified 45 87 139

extracted 8 40 73

∆ modified 2 0 16

∆ extracted 39 47 82

XMLDocument (W) 24 39 61

modified 24 37 52

extracted 2 11 18

∆ modified 0 2 9

∆ extracted 22 28 43

C.4.3 Cohesion metrics

Table C.11 shows the values of six structural cohesion metrics – LCOM, LCOM*,

TCC, DCD, LCC, and DCI, and the C3V semantic cohesion metric. The “Class”

column contains entries for the original class (before it was refactored), the modified

class (the larger class after refactoring), and the extracted class (the smaller class

after refactoring). The ∆ modified rows contain the improvement in the given

measurement between the original and modified classes, and the ∆ extracted rows

contain the improvement in the given measurement between the original and

extracted classes. Due to rounding, the improvement rows may sometimes appear

to be off by 0.01.
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Table C.11: Dual clustering – cohesion results

Class LCOM LCOM* DCD DCI LCC TCC C3V

BRuleEngine (J) 85 0.88 0.26 0.26 0.59 0.59 0.10

modified 55 0.85 0.35 0.35 1.00 1.00 0.12

extracted 0 0.56 0.50 0.50 0.50 0.50 0.34

∆ modified 30 0.02 0.09 0.09 0.41 0.41 0.01

∆ extracted 85 0.32 0.24 0.24 -0.09 -0.09 0.23

CandidateURI (H) 1,153 0.98 0.13 0.15 0.25 0.33 0.06

modified 998 0.97 0.25 0.27 0.64 0.71 0.07

extracted 118 0.00 0.01 0.02 0.01 0.02 0.31

∆ modified 155 0.02 0.12 0.12 0.40 0.38 0.01

∆ extracted 1,035 0.98 -0.12 -0.13 -0.24 -0.32 0.26

CommandLine (J) 507 0.93 0.22 0.22 0.64 0.64 0.17

modified 327 0.90 0.25 0.25 0.68 0.68 0.14

extracted 75 0.00 0.87 0.87 0.87 0.87 0.53

∆ modified 180 0.03 0.02 0.02 0.05 0.05 -0.02

∆ extracted 432 0.93 0.65 0.65 0.23 0.23 0.36

CrawlController (H) 3,957 0.97 0.20 0.18 0.73 0.76 0.04

modified 3,947 0.97 0.20 0.18 0.73 0.76 0.04

extracted 0 0.20 0.67 0.67 0.67 0.67 0.63

∆ modified 10 0.00 0.00 0.00 0.00 0.00 -0.00

∆ extracted 3,957 0.77 0.47 0.49 -0.06 -0.09 0.59

DatabaseUtils (W) 641 0.98 0.26 0.26 0.55 0.53 0.07

modified 623 0.98 0.26 0.26 0.55 0.53 0.06

extracted 3 0.60 0.60 0.60 1.00 1.00 0.38

∆ modified 18 0.00 0.01 0.01 0.00 0.00 -0.01

∆ extracted 638 0.38 0.35 0.35 0.45 0.47 0.31

FreeColClient (F) 1,011 0.98 0.05 0.05 0.11 0.11 0.04

modified 749 0.95 0.18 0.18 0.23 0.23 0.06

extracted 133 0.94 0.11 0.11 0.22 0.22 0.13

∆ modified 262 0.02 0.13 0.13 0.13 0.13 0.02

∆ extracted 878 0.04 0.06 0.06 0.11 0.11 0.09

Continued on next page
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Table C.11 – Continued from previous page

Class LCOM LCOM* TCC DCD LCC DCI C3V

FreeColObject (F) 1,134 0.97 0.11 0.20 0.11 0.20 0.13

modified 1,368 1.00 0.12 0.20 0.12 0.20 0.14

extracted 0 0.72 1.00 1.00 1.00 1.00 0.39

∆ modified -234 -0.03 0.01 0.01 0.01 0.01 0.01

∆ extracted 1,134 0.25 0.89 0.81 0.89 0.81 0.26

FreeColServer (F) 1,032 0.97 0.14 0.14 0.49 0.49 0.06

modified 914 0.95 0.20 0.20 0.69 0.69 0.06

extracted 49 0.95 0.09 0.09 0.13 0.13 0.16

∆ modified 118 0.02 0.06 0.06 0.20 0.20 0.01

∆ extracted 983 0.02 -0.05 -0.05 -0.36 -0.36 0.11

Heritrix (H) 4,044 0.99 0.20 0.29 0.55 0.77 0.06

modified 4,006 0.99 0.20 0.28 0.55 0.77 0.06

extracted 0 0.56 1.00 1.00 1.00 1.00 0.41

∆ modified 38 0.00 -0.01 -0.01 0.00 0.00 0.00

∆ extracted 4,044 0.43 0.80 0.71 0.45 0.23 0.35

ImageLibrary (F) 1,390 0.98 0.22 0.23 0.24 0.33 0.24

modified 1,063 0.95 0.26 0.28 0.28 0.35 0.23

extracted 171 0.00 0.02 0.05 0.02 0.05 0.28

∆ modified 327 0.03 0.04 0.04 0.04 0.02 -0.01

∆ extracted 1,219 0.98 -0.20 -0.19 -0.22 -0.28 0.04

LPBRuleEngine (J) 184 0.92 0.32 0.32 0.45 0.45 0.08

modified 130 0.89 0.30 0.30 0.65 0.65 0.10

extracted 20 0.82 0.41 0.41 0.46 0.46 0.20

∆ modified 54 0.04 -0.02 -0.02 0.19 0.19 0.02

∆ extracted 164 0.10 0.09 0.09 0.00 0.00 0.12

N3JenaWriterC... (J) 905 0.99 0.22 1.00 0.30 1.00 0.06

modified 816 0.97 0.28 1.00 0.52 1.00 0.09

extracted 103 1.02 0.07 0.33 0.07 0.33 0.08

∆ modified 89 0.02 0.06 0.00 0.22 0.00 0.03

∆ extracted 802 -0.04 -0.15 -0.67 -0.24 -0.67 0.02

Continued on next page



APPENDIX C. EXPERIMENTAL DATA 235

Table C.11 – Continued from previous page

Class LCOM LCOM* TCC DCD LCC DCI C3V

Node (J) 660 1.00 0.08 0.08 0.08 0.08 0.09

modified 303 0.96 0.21 0.21 0.21 0.21 0.11

extracted 78 0.83 0.30 0.31 0.30 0.31 0.20

∆ modified 357 0.04 0.14 0.14 0.14 0.14 0.03

∆ extracted 582 0.18 0.22 0.24 0.22 0.24 0.11

Node (W) 533 0.98 0.12 0.12 0.15 0.15 0.17

modified 340 0.96 0.07 0.06 0.07 0.06 0.16

extracted 72 0.92 0.04 0.04 0.05 0.07 0.25

∆ modified 193 0.02 -0.05 -0.06 -0.08 -0.09 -0.01

∆ extracted 461 0.06 -0.08 -0.07 -0.10 -0.08 0.07

ParserBase (J) 624 1.00 0.06 0.00 0.08 0.00 0.08

modified 402 0.99 0.17 0.33 0.28 0.33 0.11

extracted 79 0.86 0.17 0.29 0.27 0.68 0.12

∆ modified 222 0.01 0.11 0.33 0.20 0.33 0.02

∆ extracted 545 0.15 0.11 0.29 0.19 0.68 0.04

RegOptimizer (W) 107 0.91 0.29 0.19 0.78 0.23 0.18

modified 106 0.92 0.33 0.31 0.38 0.38 0.09

extracted 203 0.88 0.21 0.06 1.00 0.16 0.28

∆ modified 1 -0.02 0.04 0.12 -0.41 0.15 -0.08

∆ extracted -96 0.02 -0.08 -0.13 0.22 -0.07 0.10

ResultMatrix (W) 4,750 0.98 0.13 0.15 0.60 0.68 0.10

modified 4,742 0.98 0.13 0.15 0.60 0.68 0.10

extracted 0 0.43 0.71 0.71 1.00 1.00 0.55

∆ modified 8 0.00 0.00 0.00 0.00 0.00 -0.01

∆ extracted 4,750 0.55 0.58 0.57 0.41 0.32 0.45

Rule (J) 550 0.93 0.17 0.19 0.42 0.44 0.07

modified 245 0.90 0.32 0.32 0.77 0.77 0.09

extracted 0 0.00 0.00 0.33 0.00 0.40 0.18

∆ modified 305 0.03 0.15 0.13 0.36 0.33 0.02

∆ extracted 550 0.93 -0.17 0.14 -0.42 -0.04 0.12

Continued on next page
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Table C.11 – Continued from previous page

Class LCOM LCOM* TCC DCD LCC DCI C3V

Script (W) 186 0.85 0.30 0.35 0.63 0.90 0.13

modified 219 0.86 0.28 0.30 0.66 0.60 0.12

extracted 1 0.60 0.73 0.70 1.00 1.00 0.43

∆ modified -33 -0.00 -0.03 -0.05 0.03 -0.30 -0.01

∆ extracted 185 0.25 0.43 0.35 0.37 0.11 0.30

SettingsHandler (H) 187 0.99 0.32 0.49 0.36 0.58 0.08

modified 61 0.98 0.37 0.49 0.42 0.58 0.08

extracted 33 0.64 0.87 1.00 0.87 1.00 0.40

∆ modified 126 0.01 0.05 0.00 0.06 0.00 0.01

∆ extracted 154 0.35 0.55 0.51 0.50 0.43 0.32

Specification (F) 3,364 0.99 0.14 0.13 0.98 0.70 0.15

modified 2,966 0.98 0.18 0.18 0.95 0.70 0.15

extracted 695 0.95 0.51 0.51 1.00 1.00 0.14

∆ modified 398 0.00 0.05 0.05 -0.02 0.00 0.00

∆ extracted 2,669 0.03 0.37 0.38 0.03 0.30 0.23

XMLDocument (W) 476 1.01 0.27 0.28 0.48 0.59 0.07

modified 383 1.00 0.20 0.22 0.36 0.49 0.08

extracted 43 0.94 0.47 0.42 0.47 0.42 0.24

∆ modified 93 0.01 -0.07 -0.06 -0.12 -0.10 0.01

∆ extracted 433 0.06 0.20 0.14 -0.01 -0.18 0.17



Appendix D

List of Cohesion Metrics

Table D.1 contains a non-exhaustive list of object-oriented cohesion metrics that

have been described in conference proceedings, journals, or web sites. Where

possible, the table provides a metric’s acronym, the long version of its name, and

a reference to a paper in which it is described.

Much of the early work on object-oriented cohesion metrics was derived

from Chidamber and Kemerer’s LCOM. Unfortunately, some of this subsequent

research did not provide new metric names, but instead referred to their metrics as

extensions of LCOM. This has led to much confusion, especially when researchers

compared multiple variations of “LCOM”. These researchers often appended a

number to “LCOM”, .e.g., “LCOM2”, to refer to a particular LCOM variant, and

they did so inconsistently. The column titled “Alias” provides some of the known

aliases for the LCOM variants, together with references to the users of that alias.

Table D.1: Object-oriented cohesion metrics

Acronym Name Alias Ref.

Cohesion of a Module [AKC01]

C Cohesion Among

Methods of class

Co ([CKB00]) [HM95]

C3 Conceptual Cohesion of

Classes

[MP05]

CAM Cohesion Among

Methods of class

CAMC [BD02]

Continued on next page
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Table D.1 – Continued from previous page

Acronym Name Alias Ref.

CBMC Cohesion Based on

Member Connectivity

[CKB00]

CC(X) Class Cohesion [BK06]

ClassCoh Class Cohesion [GS08]

CLCOM5 Conceptual Lack of

Cohesion on Methods

[UFPG10]

COC Cohesion of Class [KD08]

CSM Conceptual Similarity

between Methods

[MP05]

DC Degree of Cohesion [BBF95]

DCD Degree of Cohesion

(direct)

[BB04]

DCDE Degree of Cohesion

(direct extension)

[BBG08]

DCI Degree of Cohesion

(indirect)

[BB04]

DCIE Degree of Cohesion

(indirect extension)

[BBG08]

DMC Dependence

Matrix-based Cohesion

[WZW+05]

DRC Dependence

Relationship based

Cohesion

[ZLLX04]

ICBMC Improved CBMC [ZXZY02]

ICH Information flow-based

cohesion

[LLWW95]

HLD High Level Design [ADB10b]

LCC Loose Class Cohesion [BK95]

LCCDE Lack of Cohesion in

Class (direct extension)

[BBG08]

Continued on next page
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Table D.1 – Continued from previous page

Acronym Name Alias Ref.

LCCIE Lack of Cohesion in

Class (indirect

extension)

[BBG08]

LCIC Lack of Coherence in

Clients

[ML09]

LCOM Lack of Cohesion in

Methods

LCOM1 ([AD10]) LCOM2

([BT07])

[CK91]

LCOM Lack of Cohesion in

Methods

LCOM1 ([BT07]), LCOM2

([BDW97, AD10]),

LCOM-CK ([LLL08])

[CK94]

LCOM Lack of Cohesion in

Methods

LCOM3

([CEJ06, AD10, BT07])

[LH93]

LCOM Lack of Cohesion in

Methods

LCOM2 ([WZW+05]),

LCOM3 ([BDW97]),

LCOM4 ([CEJ06, AD10,

BT07, EGF+04])

[HM95]

LCOM Lack of Cohesion in

Methods

LCOM* ([BDW98, FPn06,

BT07, SB10]), LCOM3

([WZW+05]), LCOM5

([BDW97, AD10, CEJ06,

BBG08, UFPG10]),

LCOM-HS ([LLL08])

[Hen96]

LCSM Lack of Conceptual

Similarity between

Methods

[MP05]

LORM LOgical Relatedness of

Methods

[ED00]

LSCC LLD Similarity-based

Class Cohesion

[ADB10a]

MWE Maximal Weighted

Entropy

[LPF+09]

Continued on next page
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Table D.1 – Continued from previous page

Acronym Name Alias Ref.

NHD Normalized Hamming

Distance

[CSC06]

NewCoh [BDW99]

NRCI Neutral Ratio of

Cohesive Interactions

[BDW97]

OLn [ZXZY02]

ORCI Optimistic Ratio of

Cohesive Interactions

[BDW97]

PRCI Pessimistic Ratio of

Cohesive Interactions

[BDW97]

RCI Ratio of Cohesive

Interactions

[BDW97]

SBFC Similarity-Based

Functional Cohesion

[AD09]

SCC Similarity-based Class

Cohesion

[ADB10b]

SCFD Semantic Closeness

From Disambiguity

[CEJ06]

SCFD2 Semantic Closeness

From Disambiguity

[CEJ06]

SCOM Sensitive Class

Cohesion Metric

[FPn06]

SSM Structural Similarity

between Methods

[DLOV08]

TCC Tight Class Cohesion [BK95]
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