
Research Article
Using CNN Saliency Maps and EEG Modulation Spectra for
Improved and More Interpretable Machine Learning-Based
Alzheimer’s Disease Diagnosis

Marilia Lopes ,1 Raymundo Cassani ,2 and Tiago H. Falk 1

1Institute National de la Recherche Scientifque (INRS-EMT), University of Quebec, Montreal, Canada
2McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada

Correspondence should be addressed to Marilia Lopes; marilia.soares@inrs.ca

Received 9 May 2022; Revised 15 September 2022; Accepted 11 January 2023; Published 8 February 2023

Academic Editor: Guangming Zhang

Copyright © 2023Marilia Lopes et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Biomarkers based on resting-state electroencephalography (EEG) signals have emerged as a promising tool in the study of
Alzheimer’s disease (AD). Recently, a state-of-the-art biomarker was found based on visual inspection of power modulation
spectrograms where three “patches” or regions from the modulation spectrogram were proposed and used for AD diagnostics.
Here, we propose the use of deep neural networks, in particular convolutional neural networks (CNNs) combined with saliency
maps, trained on power modulation spectrogram inputs to fnd optimal patches in a data-driven manner. Experiments are
conducted on EEG data collected from ffty-four participants, including 20 healthy controls, 19 patients with mild AD, and 15
moderate-to-severe AD patients. Five classifcation tasks are explored, including the three-class problem, early-stage detection
(control vs. mild-AD), and severity level detection (mild vs. moderate-to-severe). Experimental results show the proposed
biomarkers outperform the state-of-the-art benchmark across all fve tasks, as well as fnding complementary modulation
spectrogram regions not previously seen via visual inspection. Lastly, experiments are conducted on the proposed biomarkers to
test their sensitivity to age, as this is a known confound in AD characterization. Across all fve tasks, none of the proposed
biomarkers showed a signifcant relationship with age, thus further highlighting their usefulness for automated AD diagnostics.

1. Introduction

Alzheimer’s disease (AD) is a degenerative brain disease and
the most common cause of dementia [1, 2]. AD progression
leads to the loss of cognitive (e.g., memory, reasoning, and
communication) and behavioral functions that will ulti-
mately interfere with the individual’s daily life. Diagnosing
AD can be challenging, as the disease can initiate patho-
physiological processes 20 years before any clinical symp-
toms appear [3, 4]. As such, improving early diagnostics has
become a fundamental element in AD research and therapy
[5], especially since there are currently no cures for AD
[6–8]. While a defnite diagnosis for AD can only be
achieved through a postmortem structural examination of
the brain, clinical diagnosis currently relies on the use
medical history and exams, such as the mini-mental state

examination (MMSE) [9] and the clinical dementia rating
(CDR) [10]. Moreover, a handful of biomarkers have also
been incorporated into the clinical diagnostic process, in-
cluding structural neuroimaging (e.g., magnetic resonance
imaging (MRI)-based measures of hippocampal volumes)
[11, 12], blood and urine samples [13], cerebral spinal fuids
(e.g., tau and beta-amyloid levels) [14], and genetic risk
profling [15]. More recently, there has also been a push to
incorporate biomarkers extracted from electroencephalo-
grams (EEG) into the diagnostic process [16].

Indeed, EEG has proven to be a useful tool in the study of
AD, with several advantages over other neuroimaging
modalities, including noninvasiveness, lower cost, the
possibility to detect early synaptic dysfunction prior to
symptoms arising, and the possibility tomore easily track the
course of the disease [17]. EEGs record from the scalp the
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electrical feld produced by the interaction of neurons. Most
of the published works have relied on the analysis of resting-
state EEG (rsEEG) in either eyes-open or eyes-closed con-
ditions, thus making the data collection procedure more
comfortable for elderly patients [18]. Over the years, several
changes in the EEG have been reported as a function of AD,
namely, slowing of the EEG, reduction in signal complexity,
perturbations in interelectrode synchrony/coherence, and a
neuromodulatory defcit [19], resulting from the reduction
of neurotransmitters due to damage to neuro-pathways by
the disease. More recently, machine learning tools applied to
conventional EEG spectral features have started to show
promising results for AD diagnosis (e.g., see [20–22]); in
some cases, accuracy around 90% has been reported.

In regards to features, typically rsEEG-based AD studies
extract diagnostic features from the fve traditional EEG
frequency subbands, namely, delta (δ � 0.1–4Hz), theta
(θ � 4–8Hz), alpha (α � 8–12Hz), beta (β � 12–30Hz), and
gamma (c> 30Hz). Te work in references [23, 24], in turn,
proposed themeasurement of the spectrotemporal dynamics
of each of these subbands and showed that improved di-
agnostic accuracy could be achieved. Te resultant 2-di-
mensional (frequency vs. frequency) power modulation
spectrogram was shown to not only improve accuracy but to
also be more robust to artifacts commonly observed with
EEGs [25]. Te use of these conventional frequency bands,
however, may not be optimal for AD analysis, as they have
been defned based on visual inspection of EEG signals in
healthy subjects [26]. In fact, the work in references [27, 28]
showed that nontraditional bands were better for AD di-
agnostics. Building on these insights, the work in reference
[29] used visual inspection to fnd optimal power modu-
lation spectrogram regions or “patches” that improved di-
agnostic accuracy relative to conventional measures widely
used in AD characterization.

In this article, we build on the work of [29] and propose
the use of a data-driven method in order to fnd the optimal
modulation spectrogram patches for AD diagnostics,
whereas in [29], visual inspection was used. Visual in-
spection can lead to the loss of discriminatory information
and potential biases, as well as reduce the interpretation of
the results. In particular, we propose the use of saliencymaps
obtained from a convolutional neural network (CNN)
trained to detect AD. Saliency maps provide insights into
which regions of the input image the CNN is focusing on to
make its decisions [30] and could improve the interpret-
ability of the obtained results. While the use of saliency maps
has been explored for AD classifcation based on MRIs
[31, 32], it has yet to be explored for EEG data. Given the
modulation spectrogram 2-dimensional representation and
its improved discrimination relative to the conventional
spectrogram, it can be a prime candidate for a saliency map-
based biomarker. Experiments described herein show the
usefulness of the proposed method not only in detecting AD
but also in predicting AD severity level. Finally, the measure
is shown to not be afected by participant age, a common
confounding factor in AD studies.

Te remainder of this paper is organized as follows:
Section 2 describes the materials and methods used in our

experiments. Section 3 presents the experimental results and
discusses them in light of the existing literature, including
study limitations. Lastly, conclusions are presented in
Section.

2. Materials and Methods

2.1. Participants. We rely on EEG data collected from ffty-
four participants recruited from the Behavioral and Cog-
nitive Neurology Unit of the Department of Neurology and
the Reference Center for Cognitive Disorders at the Hospital
das Clinicas in São Paulo, Brazil. AD diagnosis and iden-
tifcation of severity level (mild-AD or moderate-to-severe
AD) were performed by experienced neurologists according
to NINCDS-ADRDA criteria [33] and classifed based on the
Brazilian version of the MMSE [34]. Ethics approval was
obtained from the Research Ethics Ofce, and all partici-
pants consented to participate in the study. Te data have
been divided into three groups: (i) “N” consists of 20 healthy
elderly controls, (ii) “AD1” corresponds to 19 mild-AD
patients, and (iii) “AD2” to the 15 patients diagnosed with
moderate-to-severe AD. In experiments where all AD pa-
tients are combined (i.e., AD1+AD2), this group will be
termed “AD”. Table 1 shows participant demographic de-
tails, including MMSE scores.

Inclusion criteria for the N group included MMSE
score≥ 25 and CDR score� 0, as well as no indication of
functional cognitive decline. Te AD1 group inclusion
criteria, in turn, included MMSE≤ 24 and 0.5≤CDR≤ 1;
whereas for the AD2 group, they included an MMSE≤ 20
and CDR score� 2. An additional criterion used for the two
AD groups was the presence of functional and cognitive
decline over the previous 12months based on detailed in-
terviews with knowledgeable informants. Exclusion criteria
included diabetes mellitus, kidney disease, thyroid disease,
alcoholism, liver disease, lung disease, or vitamin B12 de-
fciency, as these conditions can also cause cognitive decline.

2.2. EEG Acquisition and Preprocessing. For the acquisition
of EEG signals, twenty channels were used following the
10–20 international mounting system. EEG signals were
recorded with 12 bit resolution and 200Hz sampling fre-
quency using BrainTech 3.0 instrumentation (EMSA
Equipamentos Médicos INC., Brazil). In addition, electrode
impedance was kept below 10 kΩ and attached bi-auricular
(A1 and A2) electrodes were used as reference. A resting-
state eyes-closed (rsEEG) protocol was followed, and data
were recorded for at least eight minutes for each participant.

Based on insights from reference [25], raw EEG was
preprocessed with a zero-phase FIR bandpass flter with a
bandwidth 0.5–45Hz, followed by processing with the
wavelet-enhanced independent components analysis
(wICA) step to remove eye movement and/or muscle arti-
facts [35, 36].

2.3. Power Modulation Spectrogram. Te 2-dimensional
power modulation spectrogram representation has been
proposed to characterize spectrotemporal changes in the
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EEG due to AD (e.g., see [37]). Te signal processing steps
involved in the computation of the representation can be
seen in Figure 1. First, the EEG time series x(t) is processed
by a time-frequencymapping to generate the time-frequency
representation X(t, f). Tis mapping can be a short-time
Fourier transform, for example, or a wavelet transform. In
order tomeasure the temporal dynamics of each spectral bin,
a second transformation is done on the time-frequency
signal, now across the time dimension. Tis is achieved with
a Fourier transform (FT) of the instantaneous power of each
spectral bin, resulting in the power modulation spectrogram
X(f, fmod), i.e.,

X f, fmod(  � Ft |X(t, f)|
2

 , (1)

where Ft ·{ } indicates the Fourier transform over the time
dimension and fmod indicates the modulation frequency
dimension. Te fnal result is a frequency-modulation fre-
quency spectral representation that describes the second-
order periodicities that would not be present in conventional
spectral or time-frequency representations [38, 39].

In its original version, frequency bins in this 2-dimen-
sional representation were grouped across the conventional
and modulation frequency axes into the fve traditional
subbands, namely, delta, theta, alpha, beta, and gamma, and
each frequency-modulation frequency bin was used as a
feature for AD detection (e.g., see [23, 37]). More recently,
the work in reference [29] showed that the use of the tra-
ditional bands was not optimal for the task at hand, and
through visual inspection, three new regions were defned
and proposed, termed “patches,” as shown in Figure 2. Te
modulation energy computed from these three patches, as
well as their ratios, was proposed as new features for AD
diagnosis and severity level prediction. Experimental results
showed their superiority to the traditional band-grouping
strategy, but suggested that some of the patches could be a
result of normal aging. In this work, we build on these
patches and propose a data-driven manner to explore if
optimal patches can be found that are indicative of AD and
not normal aging. Experiments rely on a 45× 45 power
modulation spectrogram, where each bin corresponds to
1Hz resolution.

2.4. Convolutional Neural Networks. Deep learning has
emerged as a very powerful pattern analysis tool over the last
decade. Increases in computational power have allowed for
artifcial deep neural networks (DNNs) withmultiple hidden
layers and billions of parameters to be trained within rea-
sonable time frames.Tis increase in computational capacity
has resulted in the emergence of a number of new deep
neural network architectures, such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and

recursive neural networks (RvNNs), to name a few [40].
Here, we rely on CNNs and saliency maps to extract new
biomarkers of AD from EEG modulation spectrograms;
hence, a brief description of CNNs is given for the sake of
completeness; more details can be found in [41–44].

While feed-forward DNNs multiply the inputs by op-
timized weights obtained during the training, CNNs include
layers that perform convolutions, i.e., the dot product of the
convolution kernel with the layer’s input matrix. Te con-
volution kernel slides along the input matrix for the layer,
thus generating a new feature map that contributes to the
input of the subsequent layer.Tis is followed by other layers
such as pooling layers, fully-connected layers, and nor-
malization layers [45]. CNNs have resulted in state-of-the-
art image recognition performance [46], as each convolution
layer extracts specifc features from the image, such as
vertical and horizontal lines, color and shape, contrast,
exposure variations, or image borders, to name a few. Using
sequential convolution layers, each new feature map builds
on the properties captured by the previous map. Depending
on the number of layers used and the type of data used
during training, CNNsmay even learn features that take care
of preprocessing, detection, and recognition, thus enabling
end-to-end systems. When used for biomarker develop-
ment, their use may also result in regions that could be more
robust to EEG artifacts.

While many deep learning models are regarded as “black
boxes,” providing limited insights on what parts of the input
image are being used for discrimination, so-called saliency
maps have been proposed to overcome this limitation. Tis
method measures the spatial support of a particular class in
each image via a heatmap. Saliency maps have been used for
region-of-interest extraction [47], medical imaging [48, 49],
robot vision [50], and audio-visual integration [51, 52], in
addition to AD diagnosis based on MRI [32]. Saliency maps
are obtained by computing the gradient of the output cat-
egory in relation to the input image. In this way, the impact
of how the value of the output category changes in relation to
a small change in the pixels of the input image is observed.
Te highlighted regions in the resulting map indicate that
they are important areas for the classifcation provided,
where a small change in that pixel would change the clas-
sifcation relative to other pixels. In essence, saliency maps
are constructed by back-projecting the information corre-
sponding to the identifed class, thus allowing us to visualize
image regions that mostly afect prediction. Here, the keras-
vis [53] toolkit was used to extract saliency maps.

It is hypothesized that using saliency maps with EEG
power modulation spectrograms will allow for new bio-
markers of AD to be developed in a data-driven manner and
for comparisons with visually inspected regions to be made.
Unlike simple images, however, EEGs are extracted across

Table 1: Participant demographic details.

Group identifers Subjects (female) Age (years) Education (years) MMSE
N 20 (9) 68.0 ± 8.6 10.1 ± 5.5 28.5 ± 1.7
AD1 19 (11) 74.1 ± 5.5 5.6 ± 2.8 19.4 ± 5.3
AD2 15 (9) 75.0 ± 11.8 4.1 ± 3.8 12.8 ± 5.0
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multiple channels, each generating its own image-like
modulation spectrogram. As information from multiple
channels is taken into account during classifcation, 20
diferent saliency maps, one for each EEG channel can be
generated. While each of these maps could be used sepa-
rately, here, for simplicity, we take their overall average and
use the aggregated map for analysis; use of individual
channel maps is left for a future study. In our experiments, a
CNN with two convolution layers was used, having as input
a tensor of 45× 45× 20 dimensionality. Te kernel size is
equal to 3× 3 and a dropout rate of 85% was used. ReLU
activation functions were used for the convolution layers. In
the fully-connected layers, in turn, LeakyReLU was used as
an activation function. A total of three fully-connected layers
were used, including the last classifcation layer. Hyper-

parameter tuning was performed, and Table 2 presents the
tested parameters and fnal values used.

2.5. ProposedMethod. Figure 3 depicts the block diagram of
the proposed method. First, EEG signals are segmented and
transformed to the power modulation spectrogram domain
which is then z-normalized. Segments of 8-second duration
with 1-second overlap are taken; a minimum of 460 seg-
ments are available per subject. CNNs are then trained on
fve diferent classifcation tasks, namely, Task 1 (T1): N vs.
AD1 vs. AD2 (multi-class discrimination); Task 2 (T2): N vs.
AD (AD diagnosis); Task 3 (T3): N vs. AD1 (early AD
detection); Task 4 (T4): AD1 vs. AD2 (AD progression); and
Task 5 (T5): N vs. AD2 (late-stage AD detection). Saliency
maps are then extracted for each of the fve tasks to indicate
regions of importance for each task. To allow for compar-
isons with the three visually obtained regions [29], a clus-
tering algorithm is applied on the saliency map “islands” to
obtain new optimal patches. Tese patches are then used for
classifcation. In the subsections to follow, more details
about the clustering method and fnal classifcation steps are
given. Algorithm 1 shows an overview of the processing
steps involved in the feature extraction and train/testing
stages of the proposed method.

2.6. Saliency Map Clustering. After the CNNs are trained,
saliency maps are extracted from the last dense layer. Sa-
liency maps from each training input are obtained and
averaged over all training samples to obtain one fnal map.
Here, we are interested in using the maps to fnd optimal
regions in the modulation spectrogram for new biomarker
development. To this end, we use thresholding and clus-
tering to fnd the optimal number of patches, in a data-
driven manner, for the particular task at hand. To fnd the
optimal clusters per task for this fnal map, we propose to
frst take the diference between the average modulation
spectrograms of the two groups in a given classifcation task
and use the saliency map as a mask to be applied to this
diferential spectrogram. When clustering, two parameters
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Figure 1: Signal processing steps for the computation of the EEG power modulation spectrogram. (Image adapted from [29]).
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are explored via grid search, namely, the saliency value
threshold and the number of clusters. Treshold values from
80–96% were explored, with a hop of 2% and 3–5 clusters
were tested. We selected three as the minimum to coincide
with the patches proposed in [54] and fve to strike a balance
with feature dimensionality. Clustering was performed via
the k-means algorithm in MATLAB.

Four distinct masking approaches are tested to explore
their impact on overall accuracy. Tey vary based on which
task the saliency map was obtained from, e.g., more generic,
as in Task 2, to more specifc, as in Task 3. Tese four
diferent experiments are detailed as follows:

(i) Experiment 1: Tis experiment takes the generic N
vs. AD task and uses the salience map obtained from
the three-class task N vs. AD1 vs. AD2 as a mask.

(ii) Experiment 2: Tis second experiment is a bit more
tuned to the task at hand as it considers individual
subclasses directly, while still using the most generic
saliency map. In particular, the diference signal is
taken for each binary task, namely, N vs. AD1, N vs.
AD2, and AD1 vs. AD2. Te same saliency map as
Experiment 1 is used.

(iii) Experiment 3: Tis is the most specialized of the
experiments as the saliency maps corresponding to

Table 2: CNN hyper-parameter tuning details.

Hyper-parameters Range explored Chosen
Kernel_size (3.3), (5.5), (7.7), (9.9) (3,3)
Regularizers.l2 (1e− 2), (1e− 4) (1e− 2)
Dropout (65%, 75%, 85%, 90%) 85%
Optimizer Adam, Nadam, Adagrad, Adamax Nadam
Learning rate (0.01, 0.001, 0.0001) 0.0001
Batch_size 4, 8, 32, 64 4
Epochs 20, 30, 40, 50 50
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Step 1: Feature extraction
(1) Compute modulation spectrum from preprocessed EEG⟶Obtain X (f, f_mod) (equation (1))
(2) Train CNN on fve diferent classifcation tasks using training and validation partitions of available datasets
(a) N vs. AD1 vs. AD2 (multiclass discrimination)⟶CNNa
(b) N vs. AD (AD diagnosis)⟶CNNb
(c) N vs. AD1 (early AD detection)⟶CNNc
(d) AD1 vs. AD2 (AD progression)⟶CNNd
(e) N vs. AD2 (late-stage AD detection)⟶CNNe
(3) Find saliency map of each CNNi (i� a, . . ., e) using validation partition data
(4) Cluster saliency islands using the k-means algorithm into fnal “patches”

Step 2: Train/testing with feature selection
(1) Compute modulation energy from patches from all electrodes for each CNNi
(2) Apply feature selection based on ANOVA for each CNNi
(3) Run leave-one-subject-out cross-validation using unseen test set data with a SVM classifer for each CNNi
(4) Calculate classifer fgures of merit for CNNi

ALGORITHM 1: Summary of methodology steps.
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each diferential modulation spectrograms are used
to fnd the optimal clusters. For example, saliency
maps found for the N vs. AD1, N vs. AD2, and AD1
vs. AD2 tasks are used with diferential spectro-
grams obtained from N vs. AD1, N vs. AD2, and
AD1 vs. AD2 classes, respectively.

(iv) Experiment 4: Tis experiment builds on Experi-
ment 1 and takes the N vs. AD task and uses the
salience map obtained from the same N vs. AD
mask, which can be seen as the most generic.

2.7.BiomarkerSelectionandADDiagnosis. Once the optimal
number of clusters is found, these regions will become
candidate patches for each of the fve tasks. As in [29], the
modulation spectrum power Ri in patch/cluster i is com-
puted as follows:

Ri � B
RGi

� X f, fmod( 



2
dfdfmod, (2)

where RGi corresponds to the new patch found by cluster i.
As in [54], the power ratios between diferent patches are
also treated as features and these are computed across all 20
channels.

As can be seen, the number of candidate features/bio-
markers can quickly grow with an increasing number of
channels and regions, causing potential curse-of-dimen-
sionality issues with the downstream classifcation tasks. As
such, feature selection is needed to reduce the fnal number
of features to a reasonable number. Previous EEG-based
works have relied on 24 input features (e.g., see [23, 25]), and
we follow this procedure to allow for fair comparisons with
prior works. We use 25% of the training set (described in the
next subsection) to fnd the best 24 features using an
ANOVA F-value metric computed between each feature and
class label.

Previous works have relied on a support vector machine
(SVM) classifer to map patch features to a fnal diagnostic
decision. For consistency, we also use an SVM for fnal AD
classifcation, thus allowing for a more fair comparison with
previous work. Tis also assures that the performance gains
achieved are a result of the improved biomarkers and not of
an improved classifer (e.g., a CNN itself ). SVMs use kernels
to map data from two classes into a higher dimension in
which a hyperplane can be used to separate the two diferent
classes by a certain margin [55]. Diferent kernels provide
diferent properties and allow for more complex class
partitions to be found. Here, a radial basis function (RBF)
kernel with gamma c � 1/24, where 24 is the number of
features, and C� 1 are used as hyper-parameters and tuning
is not performed to gauge the benefts of the features
themselves, and not on the classifer. Prior to classifcation,
the top-24 new biomarkers are normalized between [−1, 1].
Final testing follows a leave-one-subject-out (LOSO) plus
bootstrapping procedure using the disjoint test set described
below. With the LOSO-plus-bootstrapping setup, for each
subject, the classifer is trained with data from N− 1 subjects
that are randomly sampled and repeated ten times.

2.8. Testing Setup. Te available dataset has to be split to
allow for CNN training for biomarker selection as well as for
SVM training for fnal classifcation. As such, the available
data needs to be partitioned in such a way that data leakage
does not occur into the fnal test set. To this end, the data
partitioning scheme illustrated in Figure 4 is performed to
avoid any data leakage into the disjoint training, validation,
and test sets. First, the 460 segments are partitioned into fve
parts, each with 92 segments. Since the segments are ob-
tained with a 7-second overlap, the last 7 segments of each
part are discarded, to avoid information leakage between
folds (see Figure 4(a)). Each of the fve parts is comprised of
85 segments, for each of the 54 subjects (Figure 4(b)). Fi-
nally, a time-dimension shufe was made to avoid any
ordering efects on the data. From the shufed data, 1/5 of
the data was set aside for validation, 1/5 for testing, and 3/5
for training (Figure 4(c)).

2.9. Figures-of-Merit and Benchmark Method. We use ac-
curacy and F1-score as fgures-of-merit to gauge the per-
formance of the proposed method and compare against the
visual-inspection-based biomarkers from [29]. Accuracy
represents the ratio of correct predictions to total predic-
tions, i.e.,

Accuracy �
TP + TN

TP + TN + FP + FN
, (3)

where TP stands for true positive (target label is correctly
predicted), TN for true negative (nontarget label predicted
correctly as nontarget), FP for false positive (nontarget label
predicted as target), and FN for false negative (target label
erroneously predicted as nontarget).

In turn, F1-score is given by the weighted average be-
tween recall and precision, namely,

F1 �
2∗ precision∗ recall
precision + recall

. (4)

F1-scores are useful for unbalanced datasets, such as the
one used here. For completeness, precision identifes how
accurately the model predicted the positive classes, i.e.,

Precision �
TP

TP + FP
, (5)

where recall measures the ratio of the number of true
positive events to the sum of true positive and false negative
events, i.e.,

Recall �
TP

TP + FN
. (6)

As for the benchmark, we use the state-of-the-art system
described in [29] for comparisons.

2.10. Age-Related Confounds. Age is a known confounding
factor and risk factor for AD [56, 57]. Since the healthy and
patient populations in our dataset are not age-matched, we
need to be careful not to propose features that are correlates
of normal neural deterioration due to aging (e.g., see
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[58, 59]), but instead, related to neurodegeneration due to
the disease. First, we explore how well the top-24 features
can be used to predict age via a linear regression. To test if the
top-selected features carry age-related information, we
compare them against a random age prediction regressor.
With this random linear regressor, we shufe the age of
participants in a random manner. For this task, we combine
all the three dataset partitions and split them into train/test
using 75% and 25% of the data, respectively. Tis partition is
run 100 times, and the average root mean square error
(between true and predicted age) and standard deviations
are reported. To assure that the diferences with the random
regressor are not signifcant, a t-test is performed with a 99%
confdence level (p> 0.01); the Python statistical package
sciPy.stats was used for this test.

3. Results and Discussion

3.1. CNN Accuracy. First, we explore how well the CNN is
behaving on the validation set in order to gauge the efec-
tiveness of the obtained saliency maps for downstream AD
detection on the unseen test set. Table 3 reports the results
obtained for each of the fve classifcation tasks. We use only
accuracy (Acc) and the F1-score for this analysis. Overall, the
N vs. AD2 (T5) task resulted in the highest accuracy and F1
score.Tis is expected, as the neural changes with moderate-
to-severe AD are likely to be the greatest compared to
healthy EEG, thus making it easier for the CNN to distin-
guish them. Te accuracies obtained are in line with those
reported previously for manually-selected clean EEG seg-
ments (e.g., see [23]), hence providing confdence on the
potential of the CNN to fnd discriminatory features for AD
classifcation, thus validating the use of the salience maps for
feature extraction and potentially artifact rejection.

3.2. Saliency Maps. With the CNN approach validated, we
proceed to investigate the saliency maps generated from the

EEG channels. While each individual channel map could be
used for channel-specifc feature generation, here, for
simplicity, we explore the use of only one general mask for
all channels. As such, the average map is used. Figure 5
depicts the average map found for each of the fve tasks. At a
frst glance, similar regions to the patches reported in ref-
erence [29] (shown in Figure 2) are seen, but with additional
regions also showing importance. Next, we explore the best
threshold and number of clusters for each of the four ex-
periments tested.

3.3. Saliency Map Clustering for Patch Detection. Table 4
shows the best thresholds (T) and number of clusters
(C) found for each of the four experiments; henceforth, these
combinations are used. Te optimal patch regions found
based on these parameters can be seen in Figures 6 and 7 for
Experiment 1 and Experiment 4, respectively. Te plots of
the other two experiments are omitted for brevity, but
similar regions were found. In each subfgure of these plots,
the x-axis corresponds to modulation frequency, the y-axis
to conventional frequency, the left-most plot shows the
patches found with the optimal threshold, and the right-
most plot shows the optimal clusters found. In each image,
the found clusters/regions for each task are labelled as “Ri.”
It is important to emphasize that each task achieved diferent
regions of importance, hence, e.g., R1 from Task 1 may difer
from R1 from Task 2. As such, when listing the rank of top
features in tables to follow, we use a subscript from 1–5 to
remind the reader that the region listed is related to its
corresponding counterpart seen in Figures 6 and 7.

As can be seen, the patches found using Experiment 1
settings resemble closer those found via visual inspection in
reference [29], especially P2 and P3 seen in Figure 2. Other
than theN vs. AD1 task, the obtained regions look fairly alike
for all tasks. One region not used before but that was shown
to be important in this data-driven analysis method cor-
responds to patches in lower frequencies, below 5Hz (delta
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and low theta), corroborating some earlier fndings from
reference [23]. Experiment 4 settings, in turn, showed
similar regions to those obtained from visual inspection but
also included across all tasks important information
extracted from higher frequencies (around the beta and
gamma frequency ranges), a fnding not seen previously in
modulation spectral studies.

3.4. Feature Importance. Te optimal patches for each
classifcation task have now been found and they serve as
masks for biomarker extraction from each EEG channel. To
reduce the number of features being used by the SVM
classifer, feature ranking is performed and only the top-24
features are kept. Table 5 lists the top features for each of the
fve tasks for the Experiment 1 setting. Te notation RXoRY
is used to indicate the feature corresponding to the ratio of
the modulation power in patch RX to the modulation power
in patch RY. Subscripts 1–5 indicate that the regions are
those corresponding to Tasks 1–5. It can also be seen that for

the majority of the tasks, frontal region electrodes stood out.
Interestingly, as reported in reference [25], frontal regions
are usually discarded with EEG analysis relying on visual
inspection of EEGs, as these areas are often contaminated by
eye movement artifacts. Our fndings suggest that such
important regions may be again incorporated into EEG
analysis by utilizing automated artifact removal algorithms,
such as wICA, and features that could be inherently more
robust to artifacts. For the AD1 vs. AD2 task, most features
belong to the frontal and central electrodes, a region known
to be afected by the progression of AD [60], likely due to the
expansion of the atrophy into the superior parietal and
frontal cortex [61]. For the N vs. AD and N vs. AD1 tasks, in
turn, features extracted from the temporal brain region
stood out, corroborating studies showing atrophy in cortical
regions in the temporal regions [62]. In particular, in the N
vs. AD1 task, temporal and frontal brain regions stood out;
such fronto-temporal regions have been used for early AD
diagnosis in the past [63].

Table 3: CNN accuracy on the validation set for the fve tasks.

Tasks Acc (%) F1 (%)
T1 90.5 90.5
T2 87.3 84.6
T3 91.4 91.0
T4 92.5 91.4
T5 93.0 91.6
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Figure 5: Average saliency map for each of the fve tasks.
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Table 4: Best combination of threshold (T) and number of clusters (C) for each of the four experiments.

Tasks
Exp. 1 Exp. 2 Exp. 3 Exp. 4

T (%) C T (%) C T (%) C T (%) C
T1 92 3 92 3 92 3 92 3
T2 96 4 96 4 96 5 96 5
T3 86 3 84 4 92 4 96 3
T4 94 5 86 5 82 4 86 4
T5 96 3 92 4 94 3 90 4
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Figure 6: Continued.
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Figure 6: Optimal regions and clusters found for each of the fve tasks using experiment 1 settings. In each subplot, the y-axis corresponds to
conventional frequency (unit: Hz) and the x-axis to modulation frequency (unit: Hz). (a)N vs. AD1 vs. AD2, (b)N vs. AD, (c)N vs. AD1, (d)
AD1 vs. AD2, and (e) N vs. AD2.
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Figure 7: Continued.
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As for the Experiment 4 setting, Table 6 shows the top-24
features selected. Unlike the Experiment 1 settings, high-
frequency range features (both in conventional and mod-
ulation frequency domains) appear in the top-5 features for
three of the fve tasks, namely,N vs. AD,N vs. AD1, and AD1
vs. AD2. Tis suggests that such frequency ranges could be
useful for early diagnosis and AD progression assessment,
hence, providing new insights not previously achieved via
visual inspection. Some research has shown the importance
of gamma band activity in AD [64], though this region is
often corrupted by muscle artifacts. Te fndings obtained
here suggest that the temporal dynamics of the beta and
gamma bands may provide some discriminatory informa-
tion and that a more generic maskmay capture the dynamics
of a band that is typically discarded due to artifacts, hence
further emphasizing the robustness of the new biomarkers.
In addition, some of the regions found belong to the beta-m-

alpha and gamma-m-alpha frequencies. Tese frequencies
have been shown in [65] to correlate with cerebral hemo-
dynamics information conveyed by functional near-infrared
spectroscopy in regions related to impaired blood fow in
AD [66, 67], thus providing some additional interpretability
to the selected biomarkers.

With these settings, it can be seen that most of the
features were derived from electrodes over the temporal,
parietal, and occipital regions, thus in agreement with [62].
An occipital brain region was most important for two of the
fve tasks (N vs. AD andN vs. AD1) and was the secondmost
important region in the AD1 vs. AD2 task, hence corrob-
orating classical fndings from reference [68]. Unlike these
classical studies, however, where occipital changes were
found mostly in lower frequency ranges, here we observe
them to be extracted from higher ranges around beta
conventional frequency and gamma modulation
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Figure 7: Optimal regions and clusters found for each of the fve tasks on the experiment 4 settings. In each subplot, the y-axis corresponds
to conventional frequency (unit: Hz) and the x-axis to modulation frequency (unit: Hz). (a)N vs. AD1 vs. AD2, (b)N vs. AD¸ (c)N vs. AD1,
(d) AD1 vs. AD2¸ and (e) N vs. AD2.

12 Computational Intelligence and Neuroscience



frequencies, hence a fnding also not previously found via
visual inspection. For space limitations, we omit the features
selected via the other two experiments, but they were similar
to those found in Experiment 1 and 4.

3.5. Overall Classifcation Accuracy. Lastly, using the top-24
features, Table 7 shows the fnal accuracy and F1 scores
obtained for each of the four experiments and fve classi-
fcation tasks. Te results achieved with the benchmark, i.e.,
the visually obtained power modulation spectrogram patch
features from reference [29], are also added for comparisons.
As can be seen, the proposed features outperformed the
state-of-the-art benchmark on all fve tasks by a substantial
margin, with the exception of the N vs. AD1 task where only
a subtle improvement was obtained with the experiment 4
settings. Overall, these results suggest that making the mask
generic (i.e., settings in experiments 1 and 4) can lead to
improved accuracy on unseen data.Tis was the case for four
out of the fve tasks, with the exception being the N vs. AD2
task, where experiment 2 settings resulted in the best results.
Ultimately, having very specialized maps (e.g., as in ex-
periment 3 settings) did not lead to accuracy levels that could
not be achieved with other less specialized settings.

3.6. Age-Related Confounds. Ultimately, it is important to
gauge if the proposed features are indeed measuring neural
changes due to AD and not solely due to normal aging. Such

evaluation is particularly important in settings where age
matching is not possible between groups, as is the case
herein. Previous studies have shown a direct link between
normal aging and changes in EEG powers and frequencies
(e.g., see [58, 59]), thus we explore a linear mapping between
the proposed feature and age and test if the obtained results
correspond to those obtained from a random mapping
function. Table 8 shows the root mean square errors (be-
tween estimated and true age) obtained for the Experiment 1
and Experiment 4 settings. None of the tests showed sig-
nifcant diferences from chance at a 99% confdence level,
thus suggesting that the proposed features are not capturing
normal aging-related changes in the EEG and are indeed
capturing neurodegenerative insights. Similar fndings were
found for the other two experiment settings and are omitted
here for the sake of brevity.

3.7. StudyLimitations andFutureWork. Te results reported
in this study were performed on a limited sample size of 54
participants. While the results are promising, they need to be
validated on a larger dataset. Open-source EEG datasets for
AD are not widely available; thus, future work should focus
on creating open-source datasets. Te recent international
push to enable EEG as a clinical biomarker [16] may enable
more widespread collection that will help push the research
forward. Furthermore, as is widely known, the machine

Table 5: Top 24 features selected using the experiment 1 settings.

Rankings N vs. AD1 vs. AD2 N vs. AD N vs. AD1 AD1 vs. AD2 N vs. AD2
1 R3-C41 R2-F72 R2-F73 R2-Oz4 R3-C45
2 R3-P31 R3-F72 R1oR2-F73 R2-Fz4 R3-P35
3 R3-Fz1 R2-C42 R1oR3-Oz3 R2-F44 R3-C35
4 R3-Oz1 R1-C42 R1oR3-Pz3 R2-P34 R3-F35
5 R3-F31 R3-C42 R1oR3-O23 R3oR2-C34 R3-P45
6 R3-C31 R1-F72 R2-C43 R2-F34 R3-T45
7 R3-F41 R2-T42 R1oR3-O13 R4oR2-C34 R2-C45
8 R3-P41 R4-C42 R2-T33 R2-C34 R3-F45
9 R3-Cz1 R2-F32 R1oR2-T43 R2-O24 R2-F35
10 R3-T41 R2-T32 R1oR2-C43 R2-Pz4 R3-Oz5
11 R3-O11 R3-T42 R1oR2-C33 R5oR2-C34 R3-Fz5
12 R3-O21 R3-F32 R1oR2-F33 R2-O14 R2-P35
13 R3-Pz1 R2-T62 R2-T63 R3oR1-C34 R2-T45
14 R2-C41 R1-T42 R3-F73 R2-Cz4 R1-F35
15 R1-F71 R2oR3-F82 R1oR2-T33 R1oR2-C34 R3-T55
16 R2-F31 R3-T32 R2-T43 R1oR2-F74 R3-O15
17 R2-fz1 R4-F72 R1oR3-Fp13 R5oR3-C34 R1-C45
18 R1-C41 R2-C32 R1oR2-T63 R2-P44 R2-Fz5
19 R1-F31 R4-T42 R1oR3-P43 R3oR2-F74 R3-T65
20 R2-P31 R2oR3-F72 R3oR2-T33 R4oR1-C34 R2-C35
21 R1-T41 R1-F32 R3oR2-F73 R5oR4-C34 R3-Cz5
22 R2-T41 R3-T62 R1oR2-Fp13 R2-C44 R1-T45
23 R3-T51 R2-P32 R1oR2-T53 R1-Oz4 R2-F45
24 R2-F41 R2oR3-T42 R1oR2-F83 R5oR3-T54 R2-P45
Number of features per brain region—experiment 1 settings
Frontal 8 9 8 5 7
Central 5 5 3 11 6
Temporal 4 9 8 1 5
Parietal 4 1 2 3 4
Occipital 3 0 3 4 2
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learning algorithms are sensitive to hyper-parameter tuning.
Since the data available for this study was limited, not much
efort was spent on parameter optimization; hence, the
accuracy results reported may not be the highest achievable
with the proposed feature set. Once more data become

available, future work could explore the overall impact of
hyperparameter tuning on classifcation accuracy. More-
over, in this study, saliency maps per channel were obtained,
but an average map was used for simplifed feature im-
portance selection. Once more data becomes available, per-

Table 6: Top 24 features selected using experiment 4 settings.

Rankings N vs. AD1 vs. AD2 N vs. AD N vs. AD1 AD1 vs. AD2 N vs. AD2
1 R2-Oz1 R4oR3-O12 R1-Fp23 R1-Fz4 R4-C35
2 R2-Fz1 R4-F72 R1-Pz3 R1-Oz4 R4-P35
3 R2-P31 R4oR3-Pz2 R1-Fz3 R1-F44 R4-T55
4 R2-P41 R4oR2-C42 R2oR3-Oz3 R1oR4-Fz4 R4-P45
5 R2-C41 R4oR3-Oz2 R1-O23 R1-P34 R4-O15
6 R2-F41 R4oR2-T62 R1oR3-Pz3 R1-F34 R4-C45
7 R2-F31 R4-C42 R2oR3-O13 R1-O24 R4oR3-C35
8 R2-O21 R4oR2-T52 R1-Cz3 R3-Oz4 R4-F35
9 R2-Pz1 R4oR2-T32 R2oR3-O23 R3-Fz4 R4-Oz5
10 R2oR3-Fz1 R4-T42 R2oR3-P43 R1-Pz4 R4oR3-F35
11 R2oR3-F31 R2oR1-O12 R1-Oz3 R1oR4-Oz4 R4-T45
12 R2-C31 R4oR2-O12 R2oR3-Pz3 R1-Cz4 R4-T65
13 R2-O11 R4oR2-P42 R1oR3-Oz3 R1-C34 R4-F75
14 R2-Cz1 R4oR2-T42 R2-O23 R1-O14 R4-O25
15 R2oR3-C31 R4oR3-F42 R1oR3-O23 R1oR4-F34 R4-Pz5
16 R2oR3-Oz1 R2oR1-O22 R1oR3-Fp13 R1oR4-F44 R4-F45
17 R2oR3-C41 R5oR2-C42 R1oR3-Fp23 R1oR4-C34 R4oR3-T45
18 R2oR3-F41 R4oR3-O22 R2-T53 R1-P44 R4oR3-C45
19 R2oR3-P31 R4oR3-Fp12 R1oR3-Fz3 R1oR4-P34 R4oR3-O15
20 R2-T41 R4oR5-O12 R2-O13 R3oR4-Fz4 R4oR3-P35
21 R1oR3-F31 R4-T62 R2-P43 R1oR4-O14 R4-T35
22 R2oR3-cz1 R4oR2-P32 R1oR3-T33 R3oR2-C34 R4-Fz5
23 R2oR3-O11 R4oR3-P42 R1oR2-T63 R1-C44 R4oR3-F45
24 R1-C41 R4-P32 R2-Oz3 R1oR4-Pz4 R4-Cz5
Number of features per brain region—experiment 4 settings
Frontal 7 3 5 8 6
Central 7 3 1 5 5
Temporal 1 6 3 0 5
Parietal 4 5 5 5 4
Occipital 5 7 10 6 4

Table 7: Performance comparison achieved with best threshold-cluster settings and top-24 features. Bold values indicate the highest
accuracy achieved for a given classifcation task.

Tasks
Benchmark [29] Proposed (exp. 1) Proposed (exp. 2) Proposed (exp. 3) Proposed (exp. 4)

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)
T1 50 ± 3 50 ± 3 54 ± 2 55 ± 2 54 ± 2 55 ± 2 54 ± 2 55 ± 2 47 ± 2 49 ± 2
T2 70 ± 1 65 ± 1 60 ± 2 49 ± 3 60 ± 2 49 ± 3 71 ± 2 61 ± 2 71 ± 2 61 ± 2
T3 64 ± 3 63 ± 3 48 ± 2 48 ± 2 46 ± 2 46 ± 2 46 ± 4 46 ± 4 65 ± 2 64 ± 2
T4 73 ± 2 71 ± 2 83 ± 2 83 ± 2 82 ± 0 82 ± 0 83 ± 1 83 ± 1 79 ± 1 79 ± 1
T5 73 ± 2 72 ± 2 86 ± 3 86 ± 3 89 ± 3 89 ± 3 85 ± 3 84 ± 3 82 ± 2 81 ± 2
Bold values indicate the highest accuracy achieved for a given classifcation task.

Table 8: Age prediction accuracy comparison against a random regression model for experiment 1 and experiment 4 settings.

Tasks
Exp. 1 Exp. 4

Nonrandom Random Nonrandom Random
T1 10.33 ± 2.02 9.94 ± 1.55 9.82 ± 1.65 9.71 ± 1.75
T2 9.83 ± 1.85 9.74 ± 1.45 9.40 ± 1.69 9.48 ± 1.65
T3 8.05 ± 1.20 8.55 ± 1.55 7.81 ± 1.18 8.19 ± 1.36
T4 9.74 ± 2.77 9.30 ± 2.42 9.70 ± 2.64 9.26 ± 2.63
T5 12.19 ± 2.63 11.97 ± 2.14 11.28 ± 1.82 11.63 ± 2.46
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channel optimized feature patches may be used, resulting in
improved accuracy. It is known that degeneration due to AD
can spread to diferent brain regions as the disease prog-
resses, hence it is expected that diferent regional saliency
maps will be useful for the diferent tasks explored herein.
Tis channel-aware optimization may also lead to an overall
system that can rely on a subset of the EEG channels, hence,
enabling the creation of a portable, low-density, and low-
cost solution, as in [69], that could help tackle AD
worldwide.

Moreover, here we explored AD1 vs. AD2 discrimina-
tion, hence, obtaining insights on how disease severity can
change the EEG patterns used in biomarker development.
Ultimately, future work should explore neural changes seen
in longitudinal studies where data from one patient’s pro-
gression is monitored, thus truly leading to disease pro-
gression insights. For example, it is known that roughly a
quarter of patients with mild cognitive impairment (MCI)
will progress to AD within a 4-year window. Understanding
the neural signature changes between MCI patients that do
progress to AD and those that do not could provide useful
clues not only for disease progression but also for the risk
associated with developing AD at very early stages. Lastly,
recent studies have shown that EEG combined with MRI
could lead to useful insights for disease severity level pre-
diction [70]. On that study, the authors showed the com-
plementarity of the visually obtained patch features with
anatomical features extracted from MRIs to predict the
MMSE scores of the patients. Future work should explore
the benefts of combining the proposed features with MRI
ones to quantify the gains that can be achieved.

4. Conclusions

In this article, we have proposed the use of a convolutional
neural network (CNN) combined with saliency maps,
trained on an image-like power modulation spectrogram
of eyes-closed resting-state EEGs, to fnd new biomarkers
of Alzheimer’s disease. Te goal was to explore if a data-
driven biomarker selection method could provide insights
complementary to those obtained via visual inspection. In
particular, we explored biomarkers for fve classifcation
tasks: healthy (N) vs. mild-AD (AD1) vs. moderate-to-
severe AD (AD2), (2)N vs. AD (combined AD1 and AD2),
(3) N vs. AD1, (4) AD1 vs. AD2, and (5) N vs. AD2. Te
biomarkers found were extracted for each of the available
EEG channels and reduced to the top 24 features via
feature selection before being input to a support vector
machine for fnal classifcation. Te most important brain
regions found coincided with those widely reported in the
AD literature, and most importantly, the power modu-
lation spectrogram patches complemented those found
previously via visual inspection. Overall, the proposed
method outperformed the benchmark on all fve classi-
fcation tasks and by a large margin. To assure the newly-
proposed features were not measuring EEG changes due
to normal aging, results were compared to a random age
prediction classifer and no signifcant diferences were
found.
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[68] M. Penttilä, J. V. Partanen, H. Soininen, and P. Riekkinen,
“Quantitative analysis of occipital EEG in diferent stages of
Alzheimer’s disease,” Electroencephalography and Clinical
Neurophysiology, vol. 60, no. 1, pp. 1–6, 1985.

[69] R. Cassani, T. H. Falk, F. J. Fraga, M. Cecchi, D. K. Moore, and
R. Anghinah, “Towards automated electroencephalography-
based Alzheimer’s disease diagnosis using portable low-
density devices,” Biomedical Signal Processing and Control,
vol. 33, pp. 261–271, 2017.

[70] B. De Jesus Junior, R. Cassani, W. J. McGeown, M. Cecchi,
K. Fadem, and T. H. Falk, “Multimodal prediction of alz-
heimer’s disease severity level based on resting-state EEG and
structural MRI,” Frontiers in Human Neuroscience, vol. 495,
2020.

[71] M. K. Soares Lopes, “On the use of saliency maps for im-
proved modulation spectral patch features for alzheimer’s
disease diagnosis,” Ph.D. dissertation, Maı̂trise en
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