
Using co-evolutionary programming to simulate strategic
behaviour in markets.

Introduction
Evolutionary programming (EP)1 techniques have been recognised by a number of
economists2 as being of potential use to the discipline. These researchers have tended to
apply EP methods to relatively complex problems that require advanced tools even for
analytical solution3. In this paper, I describe the results of applying a simple genetic algorithm
to a number of much more standard models (Bertrand and Cournot competition, a vertical
chain of monopolies, and a simple model of an electricity pool).

There are two reasons for applying EP to well known economic models. Firstly, most
modellers would want a technique that is to be useful in more complex settings to provide
valid results in standard micro-economic games. The work presented here shows that EP
generates interesting results in these simple settings, which is  encouraging for further work
on more complex problems.

The second reason for addressing well understood games is that EP has a potential vocation
for applied simulation work, in which the underlying economic models are often quite simple,
but the simulations complicated and richly detailed in important ways4. This potential was
recognised by the precursors of EP in economics5, but more recently it has been overlooked
in favour of a more theoretical view of EP’s rôle6. The advantage of EP in applied simulation is
that it can inject plausible behavioural elements into models which either have no behavioural
elements at all (equilibrium judgements are made “off-model”), or implausible ones (where the
computational sophistication attributed to agents, or the data available to them is incredible).

Description of the model
GAs are a special sort of optimisation algorithm. All optimisation algorithms can be thought of
as ways of exploring the space of possible solutions to a problem, and selecting one (or
several) possible solutions as being optimal7. The GA uses a close analogy with Darwinian
evolutionary search to select possible solutions: a number of solutions are evaluated for
“fitness”, and the fitter solutions reproduce, recombine, and possibly mutate. The average
fitness of solutions tends to increase, and the algorithm stops searching either after a

                                                     
1 EP comprises a number of techniques, the major ones being Genetic Algorithms (GAs)
(Holland (1975)) and Genetic Programming (Koza (1992)).
2 An overview is presented in Lane (1994)
3 A good example is Marrimon et al (1990), who examine whether a simple classifier system
can reproduce the results of a stochastic dynamic programming model. One very successful
application of GA simulation is in the study of repeated prisonner’s dilemnas. See Marks
(1992).
4 A good example of this sort of analysis is described in Harbord and von der Fehr (1996),
where the issue is to examine “the potential for the emergence of effective competition in the
interconnected, inter-state [Australian electricity] market, under various alternative scenarios
for the horizontal market structure of generation”. A simpler piece of analysis but in a similar
vein is described in Lucas and Taylor (1993).
5 Nelson and Winter (1982) argue that the way we get computers to solve complex problems
is interesting because they can teach us about the way humans solve these problems. See
also Anderson (1994).
6 Holland and Miller (1991), for example, write that “The artificially adaptive agent models
[these are broadly speaking what I am calling EP models] complement current theoretical
directions; they are not intended as a substitute. Many of the most interesting questions
concern points of overlap between artificially adaptive agent models and classical theory.” I
entirely agree with this, but would only add that there are also many interesting questions at
the overlap of EP and applied work.
7 A thorough description of GAs is given in Holland (1975). A brief overviews can be found in
Koza (1992) and Marks (1992).



specified number of generations, or once some other externally defined criterion is satisfied.
Thus, GA’s are a method of optimisation which use an evolutionary process to generate
increasingly good solutions to the problem posed. The driving idea behind their use is that
natural evolution has solved some extraordinarily complex design optimisation problems;
simulating this process may allow us also to solve complex optimisations.

A Simple Example: The price choice of a monopolist.
To get an idea of how this method can be translated into an economic context, here is a very
simple application: using the GA to determine a monopolist’s optimal pricing strategy. Take
the simple analytic model defined below:

The monopolist faces:
• a linear demand curve:
Q = k - m P
where Q is quantity demanded, k and m constants, and P is price charged.
• constant average cost, C.

His profit function is therefore:
piM = Q (P - C)
where P is his choice variable.
Profit is maximised at dpiM/dP = 0.

For k = 32 and m = 0.5, this entails P = 36.5.

How does the GA represent and solve this model8? The 6 steps involved are:

1. Construct a market simulation. In this case, the market simulation takes as input
the choice variable (the monopolist’s price) and yields as output his profit.

2. Develop a representation of strategies that can code for all possible strategies (in
this case prices). A binary representation9 is used here. We limit the monopolist’s
search domain to prices between 0 and 31, which allows us to represent all
possible strategies as a five digit binary number. So, for example, a price of 31 is
represented by 11111, and a price of 1 by 00001. A strategy thus coded can be
compared to a gene, since it provides the instructions that react with the
environment (the market simulation) to determine fitness (profit). In more
complicated situations, for example, where both a price and a quantity have to be
selected, the strategy is made up of a number of genes, and is analogous to a
chromosome.

3. Create a large number of possible strategies (the “population”). In this example,
100 genes were created randomly by setting each digit in the gene to either 1 or
zero using a random number generator.

4. Perform a large number of tournaments10 in which a strategy is picked from the
population at random and evaluated in the market simulation. In this example,
there were 100 tournaments.

5. Pick a number of the “fittest” strategies11 (i.e. prices yielding most profit) to breed
and allow the least fit to disappear from the population. The breeding method used

                                                     
8 The description provided here is not intended to be entirely general: GA implementations can
vary greatly in how the detail is worked out. A thorough discussion of various types of
implementation is provided in Goldberg (1988).
9 Although binary coding is often used in GAs, there are no hard and fast rules for what the
best coding is. Interesting discussions of alternative codings are given in Davis (1991).
10 The term “tournament” is more applicable to the competitive simulations described below,
but is kept for consistency. Moreover, in the simple case of the monopolist’s price, it would be
possible to evaluate every possible strategy in the population, rather than picking them at
random. However, this quickly becomes infeasible in competitive games where the
permutations of strategies becomes large.
11 The algorithm is often sensitive to the number of strategies picked for breeding, and this
parameter can be interpreted as the “single-mindedness” of the search. This is discussed in
more detail below.



here resembles genetic recombination: two parent strategies are chosen, a
crossover position is chosen at random, and two separate offspring are created,
one each for the two ways of sharing the parents’ genetic information. For
example, if prices 1 (00001) and 31 (11111)  were chosen as parents, with a
crossover position of 3, the two offspring prices would be  3 (00011) and  29
(11101). It is also possible in this step to include a mutation operation which
randomly switches the value of a digit with some probability.

6. With the new population created by step 5, check whether the termination criteria
are met, and if not start the tournaments again (Step 4). In the economic games
described below, the termination criterion was whether evolutionary stability
seemed to have been reached.

The search method described in these steps probably does not at first sight seem to have any
obvious economic interpretation12 (what, for example, is the analogue of strategy
recombination within the firm’s decision making process?), and the reader could justly wonder
at this stage why the GA should be of any more interest than another optimisation algorithm.
This is an important question, discussed at greater length below. Suffice it to say here that a
number of possible analogical interpretations can be offered, from the naïve (the strategies
are actually tried in the market by firms) to the more sophisticated (strategy testing in the GA
is analogous to the corporate world’s beloved scenario analysis, in which case the GA
replicates the firms’ acquisition of knowledge about its environment). Each interpretation can
yield interesting insights. But exploration of these questions must come after the description of
results.

Graph 1 below is a representation of the state of the population of strategies after 5, 10 and 15
generations13. The population is comprised of 100 possible prices between 0 and 31, so the
entire population at any point in time can be described as a frequency distribution of prices, as
shown in the graph. The lozenges show the price frequency distribution of the population after
5 generations, the squares after 10 generations and the triangles after 30 generations.

                                                     
12 Indeed, it is not even obvious that the steps constitute a good optimisation procedure.
Holland (1975) shows that the GA is a good all-purpose optimiser. The proof is quite difficult
(the population dynamics of the system are clearly complicated), but relies on the two facts
that parent fitness is a good predictor of offspring fitness, and that the GA tends to increase
the proportion of fit “sub-genes” (schema). An intuitive overview of the proof is given in Koza
(1992)
13 Many engineering applications of GAs are essentially concerned only with the fittest
elements of the population. However, the equilibrium and behavioural interpretations placed
on the GA (see below) require an analysis of the population as a whole. Schematically, we
view the population as the reservoir of ideas from which the firm (eventually) comes to
randomly pick its actual market strategy.



Graph 1

Price Frequency Distribution for the Simple Monopolist
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There are several things to note about the graph. Firstly, the GA this was run on allowed only
integer solutions, so that the 30th generation result with 100% of prices at 37 is optimal. This
leads to the second observation: the monopoly problem with integer constraints is
substantially more complex than the analytic one described above, and yet the GA has found
an optimal solution very quickly. In fact, even by the 5th generation, we see a remarkable
amount of “organisation” in the population of strategies14. The 10th generation distribution is
entirely composed of prices between 35 and 38, and by the thirtieth generation, every non-
optimal price has been driven out of the firm’s set of possible strategies.

A naïve interpretation of this result would be that even a monopolist devoid of capacities for
rational optimisation, but blindly following evolutionary rules to select strategies, would very
soon be behaviourally indistinguishable from the rationally calculating monopolist usually
encountered in economic theory. A slightly more sophisticated interpretation (see below) is
that the firm uses its own internal model of its market to explore strategy space and to hone its
behaviour, which it puts into practice once equilibrium is reached. On this interpretation, a
monopolist using a method analogous to the GA internally is entirely indistinguishable from the
optimising monopolist of ordinary theory.

Description of the runs
The GA method described above was applied, with only small modification, to the more
interesting set of models in which agents interact strategically. The models simulated were
Bertrand competition (stiff price competition with no capacity constraints), Cournot competition
(competition in quantities), a simple chain of monopolies model (a monopolist manufacturer
sells to a monopolist retailer who sells on to consumers, in which the first two simultaneously
choose prices), and two versions of an electricity pool model (represented by a sealed bid
auction)15.

The application to the monopoly described above involved only a single agent, and no
strategic interactions in the market. All the runs described below involve market simulations in
which the performance of one strategy depends on the other strategies present. In terms of
the six steps involved in the simulation, not very much changes. A tournament is now set up
by selecting (at random) a single strategy from each player, which determines a “possible
market”.

                                                     
14 Remember that the starting population is randomly generated, and therefore approximately
uniform.
15 The analytic treatment of the first three is standard. A clear exposition is found in Tirole
(1989). The last is a simple version of the model developed by Harbord and von der Fehr
(1993).



However, there is a considerable increase in the complexity of the mechanisms at work. Each
player has a separate population of strategies. These populations now co-evolve, since the
optimal state of each population depends on the states of all other populations. An agent’s
strategies that tend to be good in one generation will affect the mix of strategies in the other
agents’ populations (by affecting their fitness, and therefore their chance of reproduction) in
the next generations (which will affect the original agent’s fit strategies in generations after
that, et cetera …).

Bertrand Competition

7KH�%HUWUDQG�0RGHO

The textbook case of Bertrand competition occurs when two producers of identical goods face
no capacity constraints, equal (constant) average costs, downward sloping demand, and
compete on price by simultaneously offering the price at which they are prepared to supply.
The market simulation can be represented as follows:

• market price is the lower of the two producers’ prices;
• the low-price producer’s revenue is the market price times the quantity demanded

at that price;
• the high-price producer’s revenues and costs are zero;
• in the case of a tie on price, each producer satisfies half the market.

7KH�$QDO\WLF�6ROXWLRQ

The Nash equilibrium of this game is fairly intuitive16: each producer wants to price just below
the other producer, as long as the price exceeds cost. The two firms are choosing prices
without knowing what the other has offered (simultaneity), so each has to predict what the
other will do. Each firm works out that the other will not price above cost, since that would lead
to the easy riposte of pricing a minute amount above cost, capturing the whole market, and
making a minute profit. Moreover, each firm predicts that the other will not price below cost,
since that would entail a loss for one of the two firms (and would therefore be irrational). So
the only coherent prediction seems to be that each firm prices at cost, and makes zero profits.

7KH�*$�6LPXODWLRQ

Bertrand competition was modelled with the GA in the following way:
1. The market simulation was based on a demand curve given by Q = 32 - 0.5 P

where Q is quantity demanded, and P is market price. The market price was
determined in a tournament as being the lower of the two prices selected.

2. Strategies (prices) were coded as strings of five binary digits.
3. Two populations of strategies were created, one for each firm, containing 100

genes each, and initially set to random values.
4. Tournaments were created by randomly choosing one strategy from each

population, which were evaluated in the market simulation. Each generation was
comprised of 200 tournaments.

5. Birth, death and mutation was carried out for each population separately, as
described above.

6. The simulation was stopped when an equilibrium seemed to be reached.

Graph 2 below shows the evolution of market price over the 300 generations the GA ran for.
By the end of the run (in fact, by the 150th generation), the market price in tournaments had
fallen to 1. This is almost equivalent to the analytical result, in which price falls to 0. The
discrepancy arises from the fact that the GA as set up only allows integer prices to be offered.
Thus, each population has a tendency to undercut the other population as long as price
exceeds 0, which is at a price of 1.

Graph 2

                                                     
16 This is described more formally in Tirole (1989), pp210-211.



Evolution of Price over Run
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Table 1 below shows the frequency with which prices are encountered in each population by
the end of the run. Almost all surviving price are at p=1, and the one that is not, p=0, we can
safely assume has arisen out of mutation and will not survive (since if both set price at 1, they
share the market and make a small profit (of 15.5), whereas at p=0, no profit is made at all).

Table 1

Price Frequency in
Population 1, %

Frequency in
Population 2, %

0 1 0
1 99 100

Graph 3 below shows the average fitness (profitability) of each firm’s population of strategies.
In the early part of the run, average fitness is high. However, co-evolutionary competition soon
drives profits down for both in a seemingly hap-hazard way. This is followed by periods of
relative stability, punctuated by rapid change (for example after generations 129 and 257).

Graph 3
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Cournot Competition

7KH�&RXUQRW�0RGHO

Cournot competition arises in the following sort of setting17:

                                                     
17 This is taken from Kreps (1990) p443.



“Two producers work in isolation preparing the quantity they bring to market. These
quantities are decided upon with a foreknowledge of this market structure and with
knowledge of the characteristics of demand, but neither side gets to see how much
the other is producing. Each producer brings the quantity it produced to a central
market place, where it is handed over to a “state sales commission” that sets price so
that the total amount brought to market is just demanded at the set price.”

In other words producers compete over the quantity produced. When this occurs in a market
with ordinary cost and demand functions, it is easy to show that when one agent increases
quantity, the other should reduce18.

7KH�$QDO\WLF�6ROXWLRQ

The market simulation used can be analytically described as follows:

• Demand is defined as:
P[q1,q2]:= 62 - 2(q1 + q2), where P is price, q1 is the first producer’s output and q2
the second’s.
• profits are therefore
pi1 = q1 (P[q1,q2] - 8), where pi1 is the first producer’s profit, and 8 is the average
cost of production. The second producer’s profit function is pi2 = q2 (P[q1,q2] - 8).
• Nash equilibrium requires that dpi1/dq1 = 0 and dpi2/dq2 = 0, which occurs when

q1 = q2 = 9.

7KH�*$�6LPXODWLRQ

The GA was set up as in the Bertrand game, except that strategy genes are now interpreted
as being quantities, and the payoffs in the market simulation are as described above.

Graphs 4 and 5 show the frequency distribution of prices in the two populations at the end of
the run (289 generations). The analytic solution, q1 = q2 = 9, accounts for 92.5% of all the
strategies. Thus, although the system is clearly attracted to the Nash equilibrium, a small
number of other strategies also survive (unlike the Bertrand outcome). In fact, there is very
little change in the distributions from the the 80th to the 289th generation, with the Nash
equilibrium accounting for 87.5% of strategies in the former.

Graph 4
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18 Quantity is said to be a strategic substitute. See Tirole (1989) pp 218-220.



Graph 5

Frequency Distribution of Quantities
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This persistence of non-Nash strategies is reflected in the market outcome prices, shown in
graph 7. Unlike the development of prices in the Bertrand simulation, which soon becomes
very stable (perturbed only marginally by random mutations), the Cournot price path shows
considerable variation about the Nash equilibrium price. The variations occur because there is
always some chance that an unusually large number of non-Nash strategies will be pitted in
the market tournaments, yielding higher or lower qunatities offered to market.

Graph 7

Average Market Price in Cournot Game
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The Chain of Monopolies

7KH�&KDLQ�RI�0RQRSROLHV�PRGHO

In the chain of monopolies model19, we assume a monopolist producer is selling to a
monopolist retailer, who sells on to a consumer represented by a demand curve known to
both players. Each chooses price simultaneously. This model is mainly interesting because it
provides the simplest demonstration of the slightly paradoxical fact that a chain of monopolists
supply a smaller price at a higher quantity than an integrated monopolist would.

7KH�$QDO\WLF�6ROXWLRQ

The market simulated can be described analytically as:
• Demand is given by
Q[p1,p2]:= 32 - 0.5(p1 + p2), where Q is demand, p1 is the producer’s price and p2
the retailer’s price.

                                                     
19 The vertical chain of monopolists is described in Tirole (1989), p174.



• The manufacturer is assumed to have average costs of 1 and the retailer of 8, so
the profits of each are given by:

pi1 = Q[p1,p2] (p1 - 1)
pi2 = Q[p1,p2] (p2 - 8)
• The solution requires that dpi1/dp1 = 0 and dpi2/dp2 = 0, which occurs at p1 = 19

1/3 and p2 = 26 2/3.

7KH�*$�VLPXODWLRQ

The GA simulation was set up as in the Bertrand competition case, with the only difference
being the payoffs in the market simulation are now determined by the profit functions given
above.

Graph 8 shows the price frequency distribution of strategies after 292 generations. The GA
solution is very close to the analytic solution: 97% of prices at 19, and 91% at 27 (the GA was
constrained to integer solutions). A very similar picture is already apparent after 125
distributions. Thus, the system seems to behave similarly to the Cournot case in this game,
with the Nash equilibrium a strong attractor, but persistence of a few non-Nash strategies. The
exogenous market simulation parameters were identical in this run to the simple monopolist
described above. We can thus easily see the GA reproducing the standard “double wedge”
result.

Graph 8

Price Frequency Distribution for Serial Monopolists
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A Simple Electricity Pool
The model used here is a simple version of that developed by Harbord and von der Fehr
(1993) to represent the structure of the UK electricity market. In the UK, power producers bid
their generating plant into a pool, where a market price is determined as being that price
required to pay the bid of the last producer required to satisfy demand. All producers who have
bid lower than this receive the market price for their output.

7KH�3RRO�0RGHO

At a first level of simplification, this market is modelled by assuming that neither of two
producers has sufficient capacity to satisfy market demand, but that both together have more
than enough20. Therefore, if the two bid different prices for their output, the higher priced
producer manages to sell less than his full capacity, whilst the lower priced producer sells his
full capacity at the high price. We assume that in the case of a tie, the market is shared
equally, and that there is a maximum price beyond which demand is zero.

In this market simulation, the pay-offs can be characterised as follows:
• Pi1(p1,p2) , the profit of generator 1, is a conditional function of p1 and p2, the bid

prices of the two generators:

                                                     
20 This is only one of the several cases considered by Harbord and von der Fehr (1993).



10 p2 if p2>p1
8 p1 if p1>p2
9p1 if p1 = p2
10 p1 if p2 > 45 > p1
0 if p1 > 45
• Pi2(p1,p2) = Pi1(p2,p1)

This pay-off function simply says that if generator 1 is the low bidder, then he sells 10 units at
the bid of the high bidder, but that if he is the high bidder, he sells only 8 units at the price that
he bids (average cost is assumed to be zero). In other words, each producer knows that he
will be a monopolist over the residual quantity. The last three conditions should be evident.

7KH�$QDO\WLF�VROXWLRQ

In the analytic solution to this game, there are two pure and one mixed strategy Nash
equilibria. The pure strategy equilibria are fairly intuitive: there is a price so low that if player 1
knows player 2 will play it, then player 1 prefers to bid high; therefore, if player 2 bids this
price, he knows that player 1 will bid the maximum. With the payoffs given above, this occurs
at p2 < 36, since player 1 prefers to sell only 8 units for 45 (making a profit of 360) than 10
units at less than 36 (making a profit smaller than 360). Thus, one player bidding the
maximum while the other bids sufficiently low are the two pure strategy Nash equilibria.

The mixed strategy equilibrium has no very intuitive description. The equilibrium mixing
probablities (allowing discrete integer price bids between 0 and 45) are shown in Graph 8.
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The GA was set up as for the Bertrand simulation, with the replacement of the payoff function
for that described above.

Graph 9 shows the distribution of prices in the two populations after 85 generations. This
coresponds exactly to one of the pure strategy Nash equilibria, with producer 1’s strategy
population consisting entirely of the maximum price bid (45), and producer 2 bidding
indifferently anywhere below 36 (the grouping at prices of 14 and 6 is accidental, although
groupings at arbitrary values below 36 occurs whenever this model is simulated).



Graph 9

Price Frequency Distribution in the Pool Game
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Which producer ends up with the higher profits (lower bids) is entirely a matter of chance. To
see in more detail how this occurs, Graph 10 shows the evolution of profit streams for the two
producers over the length of the run. The high/low profit outcome appears soon after the tenth
generation, and stabilises soon after the fiftieth.

Graph 10
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To see how the populations develop to produce the outcome, we need to look at the evolution
of the frequency distributions over the course of the run. This is shown in Graphs 11 and 12,
which map the frequency of price occurences in the populations every five generations, from
the start to generation 75. The zero’th generation is an entirely homogenous shade, showing
the near uniform distribution of prices. We see that already by the 10th generation, producer
1’s strategies are bunching around high values, whilst producer two’s are still relatively
undifferentiated. From the evolution of profit figure (Graph 10), we see that neither producer is
obviously more profitable than the other at this point. In fact, producer 1 sees the greatest
increase in profits by tending towards the high pricing strategy. This is because, with neither
strategy populations very differentiated, there is a good chance that market price will turn out
low, so that influencing the probability of a high price is a good strategy for one player, even if
some of the benefit accrues to the other.
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The GA was run with a number of different parameter settings (mutation rates, size of
reproduction pool), to examine whether any combination of settings would yield the mixed
strategy equilibria as stable fixed points. Although some parameter settings destroyed the
pure strategy equilibrium described above (see discussion for more detail), none produced an
outcome that was recognisably the mixed strategy equilibrium21. This suggests that the the
mixed strategy equilibrium is simply too knife-edged to be the outcome of a heuristic
process22.

The original Harbord / von der Fehr model was used to show that as long as the situation of
residual monopoly pertained, the electricity pool rules would not lead to competitive outcomes.
This immediately poses the question of what productive capacity levels producers in such a
market would choose: do they tend to invest only so much as to endow each with residual
monopoly, or is sufficient capacity built to ensure a competitive market?

The GA was run to answer this question. The simulation described above was modified to
state that if both producers could satisfy the entire market, then the lowest bid would be
chosen. Capacity choice was added as a strategic variable, with capacity commitments
incurring a constant average cost. Average variable cost was maintained at zero.

Graph 13 shows the average profits earned by the two producers over the course of the run.
We find the high profit/low profit equilibrium again (from the 60th generation). However, what is

                                                     
21 These runs produced almost cycling distributions of prices, and it is difficult to test whether
the mixed strategy distribution is any sort of attractor of these distributions.
22 This conclusion sits slightly uneasily with Maynard Smith’s (1974) pioneering work in
evolutionary game theory. In his original article, he argues that in animal displays of strength,
persistence time will be determined by a randomising strategy. The GA simulations suggest
that it is on the whole difficult for an evolutionary process to result in a mixed strategy.



striking is that the producers occasionally switch positions (around the 140th and 320th

generations).

Graph 13
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These rapid switches can be examined in more detail in Graph 14, which describe the state of
the strategy populations over the course of the run. The top left box has producer 1’s price,
the top right box his quantity, and the second row contains the same information for producer
2. We see that producer 1 initially settles into a strategy of offering a high quantity at a low
price. The quantity is high enough to drive producer 2 out of the market altogether (thus
avoiding incurring the sunk capital cost) - in Graph 13, we see this by producer 2’s zero
average profit between generations 60 and 120, and in graph 14, we see this by the very high
frequency of zero quantities in this portion of the run. However, producer 1 soon starts to
reduce quantity and increase price, which opens a niche for producer 2 to increase quantity (in
the second quarter or so of each row in Graph 14, we see producer 1’s high price strategies
increasing in frequency, and his low quantity strategies falling, whilst the high quantity
strategies of producer 2 become more frequent. This is the first switch seen in Graph 13,
around the 120th generation. However, in the South West quadrant of Graph 14, we also see
that producer 2 is not (on average) pricing sufficiently low to avoid being undercut by producer
1, which is precisely what eventually happens: producer 1 increases quantity and reduces
price. This is the second switch we see around generation 320 in Graph 13. At this point,
producer 1 is pricing sufficiently low to avoid another switch of fortunes.

The final equilibrium of the system is a residual monopolist pure strategy Nash equilibrium,
just as in the case in which capacity choice is exogenous. The firms thus evolve towards
opting for capacity levels that avoid Bertrand outcomes23.

                                                     
23 The same result is found analytically, in a slightly different game, in Kreps and Scheinkman
(1983).
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Discussion of the results
In all the simulations described above, the GA comes recognisably close to selecting a Nash
equilibrium. However, in all but the Bertrand simulation, the strategy mixes do  not precisely
corespond to the Nash outcome. Marks (1992) suggests that the GA converges to
evolutionarily stable strategies (ESS), which are states in which a population is resistant to
small invasions of mutant strategies24.

The concept of Nash equilibrium25, however, has a strong hold on economic modelling, so
why should we be interested in a method that generates ESSs? The attraction of Nash
equilibrium derives from the rational compulsion it embodies: it seems that no rational agent, if
shown a Nash equilibrium, could possibly deviate from it. However, as the settings become
more complex, it is similarly difficult to imagine how boundedly rational agents might perform
the necessary analysis and computation to determine what the Nash equilibrium of their game
is.

The ESS, on the other hand, compels by its simplicity and inexorability. Axelrod (1984),
justifying his use of the notion of Collective Stability26, writes:

“The motivation of applying collective stability to the analysis of people’s bahaviour is
to discover which kinds of strategies can be maintained by a group in the face of any
possible alternative strategy. If a successful alternative strategy exists, it may be
found by the “mutant” individual, through conscious deliberation, or through trial and
error, or through just plain luck. If everyone is using a given strategy and some other
strategy can do better in the environment of the current population, then someone is
sure to find this better strategy sooner or later…” (p57, emphasis added).

This captures well the attraction of ESSs over Nash equilibria. Whereas the Nash optimiser of
most economic models requires fantastic computing and analytic skills, the ESS requires only
“trial and error, or just plain luck”.

                                                     
24 The concept was developed by Maynard Smith (1974). The extension by Riley (1978) to
finite population sizes is particularly relevant to the case of the GA’s equilibria. Selten’s
concept of tremblimg hand perfect equilibrium (Selten(1983)) is closely related. Marks (1992)
contains a useful discussion of the relationship between GA equilibria and other equilibrium
concepts.
25 And the refinement, sub-game perfect equilibrium (Selten (1983)).
26 Collective Stability (CS) is very similar to Evolutionary Stability (ES). ES entails CS, but not
vice versa.



However, in the games examined above, it is not really reasonable to assume that the
equilibrium outcomes have arisen from firms actually trying out, in the market, all the
strategies that precede equilibrium. This would require a lack of rational deliberation almost as
incredible as the rational sophistication required by Nash equilibrium. It is therefore important
to consider the types of interpretation that can be applied to the evolving strategies. What
exactly is it that evolves27?

To answer this fully would require a detailed model of decision-making within the firm. But
even without a fully spelt out model, one candidate for the rôle is that the GA represents the
evolution of strategic scenarios within the firm. Scenario analysis is pervasive in the corporate
world. Some scenarios are explicitly worked out on firms’ own quantitative models of their
industry, whilst others are more qualitatively dealt with. Under this interpretation, the GA
simulations above actually model the decision process within one firm as a series of “if…
then…” calculations, with firms weeding out unviable scenarios28.

As noted in the description of the Pool game, the appearance of Nash equilibria is sensitive to
the number of strategies breeding, survivng and dying in each generation. Below
approximately 12% of the population, the strategy variable distributions seem to cycle in
suggestive, but definitely out-of-equilibrium ways. Above about 20% of the population, the GA
often locks-in to non-Nash equilibria, and population diversity falls very rapidly29. Arthur (1993)
describes a learning algorithm in which lock-in is the result of difficulty of discrimination
between good outcomes. He argues that “What is crucial to the emergence of optimal action
is […] that learning has time to explore and discover the action with the largest expected
value.”30

The “time to explore” explanation of lock-in can be combined with the scenario interpretation
of the GA to shed light on the interpretation to give of the GA’s sensitivity to the size of the
breeding pool. High values for the breeding pool (above about 20%) can be thought of as
corporate “single-mindedness”, whilst low values (below about 12%) would represent
“indecisiveness.” It is somewhere between single-mindedness and indecisiveness that the firm
can hope to remain sufficiently open-minded to attain optimal outcomes31.

Using the GA in applied simulation
Markets occasionally have to be modelled in greater detail than offered by the stylised
abstractions we have looked at so far. This can happen in prescriptive applications, where a
firm or regulator is being counselled. For example, Harbord and von der Fehr (1996) consider
whether a number of market structures in the Australian electricity industry are likely to lead to
abusive dominant positions. The level of detail required here goes beyond the stylised
representation of their analytical model, because the regulator is concerned with the actual
extent of any likely effect, and not just its direction. Moreover, the choice variables include no

                                                     
27 “What Evolves?” is a question rightly highlighted by Anderson (1994) as central to the
development of a fully evolutionary theory of the firm.
28 Penrose (1989) offers a strikingly similar model of how mathematicians arrive at
mathematical truth. He writes (p546):”There must be a powerful impressive selection process
that allows the conscious mind to be disturbed only by ideas that ‘have a chance’ […] It seems
to me there are two factors involved, namely a ‘putting-up’ and a ‘shooting-down’ process […]
Without an effective putting up process, one would have no new ideas at all […] But one also
needs an effective procedure for forming judgements, so that only those ideas with a
reasonable chance of success will survive.” Similarly, the firm would only actually try out
strategies in the market if they, too, “have a chance,” and internally, the firm needs a putting-
up process which we model by mutation and re-combination.
29 20% of the population breeding in each generation means, with each couple have two
offspring strategies, that 40% of the population is replaced in generation. It is easy to see how
just a few generations of such extensive replacement will reduce strategy diversity and lead to
lock-in.
30 Arthur (1993) uses data from experimental psychology to show that humans in laboratory
settings typically do not allow this to happen.
31 This interpretation sits nicely with management theorists’ current emphasis of the firm as a
“learning machine.”



longer just price and quantity, but timing, discreet and multiple capacity tranches, entry,
transmission capacity et cetera.

The method employed by Harbord and von der Fehr32 is to use a simulation model to calculate
pay-offs under different combinations of choice variables, and examine results off-model to
find the patterns predicted by the analytic model. The combinatorial explosion that soon
occurs when trying to richly simulate markets imposes this restricted scenario analysis: only
so many combinations of price, entry and investment options can be run. The solution taken
by London Economics and Harbord Associates (1995) is to fix exogenously entry decisions
and transmission investments, and then search for Nash equilibria in prices under each
scenario. Price choices are themselves constrained to being 1, 2 or 3 times marginal cost.

The approach can be quite successful. In this case, for example, it was shown that one player
maintained a dominant position across most scenarios. However, the approach also has its
drawbacks. Decisions to enter a market will depend on the type of competition expected in
that market, so fixing entry exogenously weakens conclusions. Markets with large sunk costs
will often exhibit significant path dependency, but the scenario analyis cannot demonstrate the
extent or importance of such effects. Finally, constructing pay-off matrices for all these
scenarios is inefficient: the attempt is to “cover” solution space as widely as possible, where
an efficient simulation will concentrate effort on promising areas of the solution space.

The EP approach promises to resolve such difficulties. Firstly, the solution method is not
constrained by the complexity of the objective function. There is no technical difficulty for EP
involved in endogenising variables like investment timing or entry, whereas analytic models
soon find the problems intractable, and traditional scenario analysis is ill-suited to searches in
highly dimesioned spaces. Secondly, an EP simulation will explore path dependent outcomes
and other such “near equilibrium” outcomes. It does this because, as noted above, the
mutation and recombination operators can be thought of as “trembles”, and significant path
dependency occurs when the impact of trembles is large. Finally, the EP approach is
computationally more efficient than the “pay-off calculator” approach of scenario analysis:
solution space exploration is concentrated on “promising” areas, and is not pre-imposed by
the modeller.

Conclusion
This paper has shown how EP can be used to search for equilibria in simple, standard games
from industrial organisation theory. The technique has performed well in this setting. It has
also been suggested that one promising area for EP in economics is to supplant the usual
scenario analysis used by market analysts, and that EP would help to make applied
conclusions seem less arbitrary33.

However, as a move is made to representing more complex choice problems, the simple GA
structure described above will soon become insufficient. For example, it is not capable of
representing conditional choice (which is why all the games explored were one shot,
simultaneous move games). Several techniques exist which can overcome this limitation. One
is Holland’s Classifier Systems, another Koza’s genetic programming34. This latter seems
particularly promising. The genetic programming method explores the space of possible
programs addressing a problem, and finds analogues of the recombination and mutation
operators of the GA. Firms (and their regulators) already use computer programs as aids to

                                                     
32 The details of the actual runs are available in London Economics and Harbord Associates
(1995).
33 Lane (1993) argues that “The more richly detailed a model is, the more intriguing it is to its
designers - but the less likely it is to capture anyone else’s imagination or interest.” This is all
the more the case when important variables are chosen by the modeller rather than the
model.
34 See Holland (1986), Holland and Miller (1991), Koza (1992). Lane (1993) argues that the
type of GA used here can actually be thought of as the simplest possible Classifier System.



decision, so evolving computer programs to represent firm’s behaviour and decision making
processes has a very clear analogue35.

                                                     
35 Genetic Programming can be thought of as a way of endogenising Nelson and Winters’
(1982) “routines”. See Anderson (1994).
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