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	is paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features
that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an
extensible suite of model-veri�cation and performance tests that drive the development. Coarray parallel programming facilitates
a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core
accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the
program and study the resulting performance. Our initial studies were done using the Intel Fortran compiler on a 32-core shared
memory server. Scaling behavior was very poor, and pro�le analysis using TAU showed that the bottleneck in the performance was
due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve
nearly linear speedup by replacing the sequential summationwith a parallel, binary tree algorithm.We also tested theCray compiler,
which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows
linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the
new collective procedures proposed for Fortran 2015.

1. Introduction

Background. Legacy so
ware is old so
ware that serves a use-
ful purpose. In high-performance computing (HPC), a code
becomes “old” when it no longer e�ectively exploits current
hardware. With the proliferation of multicore processors and
many-core accelerators, onemight reasonably label any serial
code as “legacy so
ware.” 	e so
ware that has proved its
utility over many years, however, typically has earned the
trust of its user community.

Any successful strategy for modernizing legacy codes
must honor that trust. 	is paper presents two strategies
for parallelizing a legacy Fortran code while bolstering trust

in the result: (1) a test-driven approach that veri�es the
numerical results and the performance relative to the original
code and (2) an evolutionary approach that leavesmuch of the
original code intact while o�ering a clear path to execution
on multicore and many-core architectures in shared and
distributed memory.

	e literature on modernizing legacy Fortran codes
focuses on programmability issues such as increasing type
safety and modularization while reducing data dependancies
via encapsulation and information hiding. Achee and Carver
[1] examined object extraction, which involves identifying
candidate objects by analyzing the data �ow in Fortran 77
code. 	ey de�ne a cohesion metric that they use to group
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global variables and parameters. 	ey then extracted meth-
ods from the source code. In a 1500-line code, for example,
they extract 26 candidate objects.

Norton and Decyk [2], on the other hand, focused
on wrapping legacy Fortran with more modern inter-
faces. 	ey then wrap the modernized interfaces inside an
object/abstraction layer. 	ey outline a step-by-step process
that ensures standards compliance, eliminates undesirable
features, creates interfaces, adds new capabilities, and then
groups related abstractions into classes and components.
Examples of undesirable features include common blocks,
which potentially facilitate global data-sharing and aliasing
of variable names and types. In Fortran, giving procedures
explicit interfaces facilitates compiler checks on argument
type, kind, and rank. New capabilities they introduced
included dynamic memory allocation.

Greenough and Worth [3] surveyed tools that enhance
so
ware quality by helping to detect errors and to highlight
poor practices. 	e appendices of their report provide exten-
sive summaries of the tools available from eight vendors with
a very wide range of capabilities. A sample of these capabili-
ties includes memory leak detection, automatic vectorization
and parallelization, dependency analysis, call-graph genera-
tion, and static (compile-time) as well as dynamic (run-time)
correctness checking.

Each of the aforementioned studies explored how to
update codes to the Fortran 90/95 standards. None of the
studies explored subsequent standards and most did not
emphasize performance improvement as a main goal. One
recent study, however, applied automated code transforma-
tions in preparation for possible shared-memory, loop-level
parallelization with OpenMP [4]. We are aware of no pub-
lished studies on employing the Fortran 2008 coarray parallel
programming to refactor a serial Fortran 77 application. Such
a refactoring for parallelization purposes is the central aim of
the current paper.

Case Study: PRM. Most commercial so
ware models for
turbulent �ow in engineering devices solve the Reynolds-
averaged Navier-Stokes (RANS) partial di�erential equa-
tions. Deriving these equations involves decomposing the
�uid velocity �eld, u, into a mean part, u, and a �uctuating
part, u�:

u ≡ u + u
�. (1)

Substituting (1) into amomentumbalance and then averaging
over an ensemble of turbulent �ows yield the following RANS
equation:

��� ������ = ��� +
�
��� [−	
�� + �(

������ +
���
��� ) − ��

�
����] ,

(2)

where � is the �uid’s dynamic viscosity; � is the �uid’s density;� is the time coordinate; �� and �� are the �th and �th cartesian
components of u; and �� and �� are the �th and �th cartesian
components of the spatial coordinate x.
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Figure 1: Distribution of particles in bands in one octant.

	eterm−������� in (2) is called theReynolds stress tensor.
Its presence poses the chief di�culty at the heart of Reynolds-
averaged turbulence modeling; closing the RANS equations
requires postulating relations between the Reynolds stress
and other terms appearing in the RANS equations, typically
the velocity gradient ���/��� and scalars representing the
turbulence scale. Doing so in the most common ways works
well for predicting turbulent �ows in which the statistics of u�

stay in near-equilibrium with the �ow deformations applied
via gradients inu. Traditional RANSmodelswork lesswell for
�ows undergoing deformations so rapid that the �uctuating
�eld responds solely to the deformation without time for the
nonlinear interactions with itself that are the hallmark of
�uid turbulence. 	e Particle Representation Model (PRM)
[5, 6] addresses this shortcoming. Given su�cient computing
resources, a so
ware implementation of the PRM can exactly
predict the response of the �uctuating velocity �eld to rapid
deformations.

A proprietary in-house so
ware implementation of the
PRM was developed initially at Stanford University, and
development continued at theUniversity of Cyprus.	ePRM
uses a set of hypothetical particles over a unit hemisphere
surface. 	e particles are distributed on each octant of the
hemisphere in bands, as shown in Figure 1 for ten bands. 	e
total number of particles is given by

�particles = 4⏟⏟⏟⏟⏟⏟⏟
Number of octants in hemisphere

× �bands × (�bands + 1)2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Number of particles in one octant

= 2 × �bands × (�bands + 1) .

(3)

So, the computational time scales quadratically with the
number of bands used.

Each particle has a set of assigned properties that describe
the characteristics of an idealized �ow. Assigned particle
properties include vector quantities such as velocity and
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(a) Time = 0 seconds (b) Time = 2 seconds

(c) Time = 4 seconds (d) Time = 6 seconds

Figure 2: Results of a PRM computation. 	e particles are colored based on their initial location. 	e applied �ow condition, shear �ow
along the �-direction, causes the uniformly distributed particles to aggregate along that axis.

orientation as well as scalar quantities such as pressure.	us,
each particle can be thought of as representing the dynamics
of a hypothetical one-dimensional (1D), one-component (1C)
�ow. Tracking a su�ciently large number of particles and
then averaging the properties of all the particles (as shown
in Figure 2), that is, all the possible �ows considered, yield a
representation of the 3D behavior in an actual �owing �uid.

Historically, a key disadvantage of the PRM has been
costly execution times because a very large number of
particles are needed to accurately capture the physics of
the �ow. Parallelization can reduce this cost signi�cantly.
Previous attempts to develop a parallel implementation of the
PRM using MPI were abandoned because the development,
validation, and veri�cation times did not justify the gains.
Coarrays allowed us to parallelize the so
ware with minimal
invasiveness and the OO test suite facilitated a continuous
build-and-test cycle that reduced the development time.

2. Methodology

2.1. Modernization Strategy. Test-Driven Development
(TDD) grew out of the Extreme Programming movement
of the 1990s, although the basic concepts date as far back as
the NASA space program in the 1960s. TDD iterates quickly
toward so
ware solutions by �rst writing tests that specify
what the working so
ware must do and then writing only
a su�cient amount of application code in order to pass
the test. In the current context, TDD serves the purpose of
ensuring that our refactoring exercise preserves the expected
results for representative production runs.

Table 1 lists 17 steps employed in refactoring and par-
allelizing the serial implementation of the PRM. 	ey have
been broken down into groups that addressed various facets
of the refactoring process.	e open-source CTest framework
that is part of CMake was used for building the tests. Our �rst
step, therefore, was to construct a CMake infrastructure that
we used for automated building and testing and to set up a
code repository for version control and coordination.

	e next six steps address Fortran 77 features that have
been declared obsolete in more recent standards or have
been deprecated in the Fortran literature. We did not replace
continue statements with end do statements as these did not
a�ect the functionality of the code.

	e next two steps were crucial in setting up the build
testing infrastructure. We automated the initialization by
replacing the keyboard inputs with default values. 	e next
step was to construct extensible tests based on these default
values, which are described in Section 3.

	e next three steps expose optimization opportunities to
the compiler. One exploits Fortran’s array syntax. Two exploit
Fortran’s facility for explicitly declaring a procedure to be
“pure,” that is, free of side e�ects, including input/output,
modifying arguments, halting execution, or modifying non-
local state. Other steps address type safety and memory
management.

Array syntax gives the compiler a high-level view of
operations on arrays in ways the compiler can exploit with
various optimizations, including vectorization. 	e ability
to communicate functional purity to compilers also enables
numerous compiler optimizations, including parallelism.
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Table 1: Modernization steps: horizontal lines indicate partial ordering.

Step Details

1 Set up automated builds via CMake1 and version control via Git2.

2 Convert �xed- to free-source format via “convert.f90” by Metcalf3.

3 Replace goto with do while for main loop termination.

4 Enforce type/kind/rank consistency of arguments and return values by wrapping all procedures in amodule.

5 Eliminate implicit typing.

6 Replace data statements with parameter statements.

7 Replace write-access to common blocks with module variables.

8 Replace keyboard input with default initializations.

9 Set up automated, extensible tests for accuracy and performance via OOP and CTest1.

10 Make all procedures outside of the main program pure.

11 Eliminate actual/dummy array shape inconsistencies by passing array subsections to assumed-shape arrays.

12 Replace static memory allocation with dynamic allocation.

13 Replace loops with array assignments.

14 Expose greater parallelism by unrolling the nested loops in the particle set-up.

15 Balance the work distribution by spreading particles across images during set-up.

16 Exploit a Fortran 2015 collective procedure to gather statistics.

17 Study and tune performance with TAU4.
1http://www.cmake.org/.
2http://git-scm.com/.
3
p://
p.numerical.rl.ac.uk/pub/MandR/convert.f90.
4http://tau.uoregon.edu/.

	e �nal steps directly address parallelism and optimiza-
tion. One unrolls a loop to provide for more �ne-grained
data distribution. 	e other exploits the co sum intrinsic
collective procedure that is expected to be part of Fortran 2015
and is already supported by the Cray Fortran compiler. (With
the Intel compiler, we write our own co sum procedure.)	e
�nal step involves performance analysis using the Tuning and
Analysis Utilities [7].

3. Extensible OO Test Suite

At every step, we ran a suite of accuracy tests to verify that the
results of a representative simulation did not deviate from the
serial code’s results by more than 50 parts per million (ppm).
We also ran a performance test to ensure that the single-image
runtime of the parallel code did not exceed the serial code’s
runtime by more than 20%. (We allowed for some increase
with the expectation that signi�cant speedup would result
from running multiple images.)

Our accuracy tests examine tensor statistics that are
calculated using the PRM. In order to establish a uniform
protocol for running tests, we de�ned an abstract base tensor
class as shown in Listing 1.

	e base class provided the bindings for comparing
tensor statistics, displaying test results to the user, and
exception handling. Speci�c tests take the form of three child
classes, reynolds stress, dimensionality, and circulicity, that
extend the tensor class and thereby inherit a responsibility
to implement the tensor’s deferred bindings compute results
and expected results. 	e class diagram is shown in Figure 3.
	e tests then take the form

if (.not. stess tensor%verify result (when)) &

error stop ‘Test failed.’

where stress tensor is an instance of one of the three child
classes shown in Figure 3 that extend tensor; “when” is an
integer time stamp; error stop halts all images and prints
the shown string to standard error; and verify result is
the pure function shown in Listing 1 that invokes the two
aforementioned deferred bindings to compare the computed
results to the expected results.

4. Coarray Parallelization

Modern HPC so
ware must be executed on multicore pro-
cessors or many-core accelerators in shared or distributed
memory. Fortran provides for such �exibility by de�ning a
partitioned global address space (PGAS) without referencing
how to map coarray code onto a particular architecture.
Coarray Fortran is based on the Single Program Multiple
Data (SPMD) model, and each replication of the program is
called an image [8]. Fortran 2008 compilersmap these images
to an underlying transport network of the compiler’s choice.
For example, the Intel compiler uses MPI for the transport
network whereas the Cray compiler uses a dedicated trans-
port layer.

A coarray declaration of the form

real, allocatable :: a (:, :, :) [:]

facilitates indexing into the variable “a” along three regular
dimensions and one codimension so

a (1, 1, 1) = a (1, 1, 1) [2]
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verify_result(logical)

computed_results(tensor)
expected_results(tensor)

reynolds_stress: real[6]

computed_results(reynolds_stress)

expected_results(reynolds_stress)

dimensionality: real[6]

computed_results(dimensionality)

expected_results(dimensionality)

circulicity: real[6]

computed_results(circulicity)

expected_results(circulicity)

reynolds_stress dimensionality circulicity

tests_passed(logical[∗])

Figure 3: Class diagram of the testing framework. 	e deferred bindings are shown in italics, and the abstract class is shown in bold italics.

module abstract tensor class
type, abstract :: tensor
contains

procedure(return computed results), deferred :: &
computed results

procedure(return expected results), deferred :: &
expected results

procedure :: verify result
end type
abstract interface
pure function return computed results(this) &

result(computed values)
import :: tensor
class(tensor), intent(in) :: this
real, allocatable :: computed values(:)

end function
! return expected results interface omitted

end abstract interface
contains
pure function verify result(this) &
result(all tests passed)
class(tensor), intent(in) :: this
logical :: all tests passed
all tests passed = all(tests passed( &
this%computed results(), this%expected results()))

end function
end module

Listing 1: Base tensor class.

copies the �rst element of image 2 to the �rst element of
whatever image executes this line. 	e ability to omit the
coindex on the le
-hand side (LHS) played a pivotal role
in refactoring the serial code with minimal work; although
we added codimensions to existing variables’ declarations,
subsequent accesses to those variables remained unmodi�ed
except where communication across images is desired.When

l = 0 ! Global particle number
do k = 1, nb ! Loop over the bands

dom = 1, k ! Loop over the particles in band
! First octant
l = l + 1
! Do some computations
! Second octant
l = l + 1
! Do some computations
! �ird octant
l = l + 1
! Do some computations
! Fourth octant
l = l + 1
! Do some computations

end do
end do

Listing 2: Legacy particle loop.

necessary, adding coindices facilitated the construction of
collective procedures to compute statistics.

In the legacy version, the computations of the particle
properties were done using two nested loops, as shown
in Listing 2.

Distributing the particles across the images and executing
the computations inside these loops can speed up the execu-
tion time. 	is can be achieved in two ways.

Method 1 works with the particles directly, splitting them
as evenly as possible across all the images, allowing image
boundaries to occur in themiddle of a band.	is distribution
is shown in Figure 4(a). To achieve this distribution, the two
nested do loops are replaced by one loop over the particles,
and the indices for the two original loops are computed from
the global particle number, as shown in Listing 3. However
in this case, the code becomes complex and sensitive to
precision.
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(a) Partitioning of the particles to achieve even distribution of
particles
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(b) Partitioning of the bands to achieve nearly even distribution
of particles

Figure 4: Two di�erent partitioning schemes were tried for load balancing.

! Loop over the particles
do l = my �rst particle, my last particle, 4

k = nint(sqrt(real(l) ∗ 0.5))
m = (l − (1 + 2 ∗ k ∗ (k − 1) − 4))/4

! First octant
! Do some computations
! Second octant
! Do some computations
! �ird octant
! Do some computations
! Fourth octant
! Do some computations

end do

Listing 3: Parallel loop by splitting particles.

Method 2 works with the bands, splitting them across the
images to make the particle distribution as even as possible.
	is partitioning is shown in Figure 4(b).Method 2, as shown
in Listing 4, requires fewer changes to the original code
shown in Listing 2 but is suboptimal in load balancing.

5. Results

5.1. Source Code Impact. We applied our strategy to two serial
so
ware implementations of the PRM. For one version, the
resulting code was 10% longer than the original: 639 lines
versus 580 lines with no test suite. In the second version,
the code expanded 40% from 903 lines to 1260 lines, not
including new input/output (I/O) code and the test code
described in Section 3. 	e test and I/O code occupied
additional 569 lines.

5.2. Ease of Use: Coarrays versus MPI. 	e ability to drop the
coindex from the notation, as explained in Section 4, was a big

! Loop over the bands
do k = my �rst band, my last band

! Global number
! of last particle in (k − 1) band
l = k ∗∗ 2 + (k − 1) ∗∗ 2 − 1
! Loop over the particles in band
dom = 1, k

! First octant
l = l + 1
! Do some computations
! Second octant
l = l + 1
! Do some computations
! �ird octant
l = l + 1
! Do some computations
! Fourth octant
l = l + 1
! Do some computations

end do
end do

Listing 4: Parallel loop by splitting bands.

help in parallelizing the program without making signi�cant
changes to the source code. A lot of the bookkeeping is
handled behind the scenes by the compiler making it possible
to make the parallelization more abstract but also easier to
follow. For example, Listing 5 shows the MPI calls necessary
to gather the local arrays into a global array on all the
processors.

	e equivalent calls using the coarray syntax is the listing
shown in Listing 6.

Reducing the complexity of the code also reduces the
chances of bugs in the code. In the legacy code, the arrays
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integer :: my rank, num procs
integer, allocatable, dimension(:) :: &

my �rst, my last, counts, displs
callmpi comm size(MPI COMM WORLD, num procs, ierr)
callmpi comm rank(MPI COMM WORLD, my rank, ierr)
allocate(my �rst(num procs), my last(num procs), &

counts(num procs), displs(num procs))
my �rst(my rank + 1) = lbound(sn, 2)
my last(my rank + 1) = ubound(sn, 2)
callmpi allgather(MPI IN PLACE, 1, MPI INTEGER, &
my �rst, 1, MPI INTEGER, MPI COMM WORLD, ierr)

callmpi allgather(MPI IN PLACE, 1, MPI INTEGER, &
my last, 1, MPI INTEGER, MPI COMM WORLD, ierr)

do i = 1, num procs
displs(i) = my �rst(i) − 1
counts(i) = my last(i) −my �rst(i) + 1

end do
callmpi allgatherv(sn, 5 ∗ counts(my rank + 1), &
MPI DOUBLE PRECISION, sn global, 5 ∗ counts, &
5 ∗ displs, MPI DOUBLE PRECISION, MPI COMM WORLD, ierr)

callmpi allgatherv(cr, 5 ∗ counts(my rank + 1), &
MPI DOUBLE PRECISION, cr global, 5 ∗ counts, &
5 ∗ displs, MPI DOUBLE PRECISION, MPI COMM WORLD, ierr)

Listing 5: Using MPI ALLGATHER to collect local arrays into a global array.

integer :: my �rst[∗], my last[∗]
my �rst = lbound(sn, 2)
my last = ubound(sn, 2)
do l = 1, num images()

cr global(:, my �rst[l]:my last[l]) = cr(:,:)[l]
sn global(:, my �rst[l]:my last[l]) = sn(:,:)[l]

end do

Listing 6: Coarray method of gathering arrays.

�� and �� carried the information about the state of the
particles. By using the coarray syntax and dropping the
coindex, we were able to reuse all the original algorithms
that implemented the core logic of the PRM. 	is made it
signi�cantly easier to ensure that the refactoring did not
alter the results of the model. 	e main changes were to add
codimensions to the �� and �� declarations and update them
when needed, as shown in Listing 6.

5.3. Scalability. We intend for PRM to serve as an alternative
to turbulence models used in routine engineering design
of �uid devices. 	ere is no signi�cant di�erence in the
PRM results when more than 1024 bands (approximately 2.1
million particles) are used to represent the �ow state so this
was chosen as the upper limit of the size of our data set.
Most engineers and designers run simulations on desktop
computers. As such, the upper bound on what is commonly

available is roughly 32 to 48 cores on two or four central
processing units (CPUs) plus additional cores on one ormore
accelerators. We also looked at the scaling performance of
parallel implementation of the PRMusingCray hardware and
Fortran compiler which has excellent support for distributed-
memory execution of coarray programs.

Figure 5 shows the speedup obtained for 200 and 400
bands with the Intel Fortran compiler using the two particle-
distribution schemes described in the Coarray Parallelization
section. 	e runs were done using up to 32 cores on the “fat”
nodes of ACISS (http://aciss-computing.uoregon.edu/). Each
node has four Intel X7560 2.27GHz 8-core CPUs and 384GB
of DDR3 memory. We see that the speedup was very poor
when the number of processors was increased.

WeusedTAU [7] to pro�le the parallel runs to understand
the bottlenecks during execution. Figure 6 shows the TAU
plot for the runtime share for the dominant procedures using
di�erent number of images. Figure 7 shows the runtimes for
the di�erent functions on the di�erent images. 	e heights
of the columns show the runtime for di�erent functions on
the individual cores. 	ere is no signi�cant di�erence in the
heights of the columns proving that the load balancing is very
good across the images. We achieved this by mainly using
the one-sided communication protocols of CAF as shown in
Listing 6 and restricting the sync statements to the collective
procedures as shown in Listings 7 and 8. Looking at the
runtimes in Figure 6, we identi�ed the chief bottlenecks to
be the two collective co sum procedures which sum values
across a coarray by sequentially polling each image for its
portion of the coarray. 	e time required for this procedure



8 Scienti�c Programming

Sp
ee

d
u

p
 (

re
la

ti
ve

 t
o

 s
in

gl
e 

im
ag

e)

Number of coarray images

32

16

8

4

2

1

1 2 4 8 16 32

Split bands 200

Split bands 400

Split particles 200

Split particles 400

Figure 5: Speedup obtained with sequential co sum implementa-
tion using multiple images on a single server.

subroutine vector co sum serial(vector)
real(rkind), intent(inout) :: vector(:)[∗]
integer image
sync all
if (this image() == 1) then

do image = 2, num images()
vector(:)[1] = vector(:)[1] + vector(:)[image]

end do
end if
sync all
if (this image()/ = 1) vector(:) = vector(:)[1]
sync all

end subroutine

Listing 7: Unoptimized collective sum routine.

is �(�images). 	e unoptimized co sum routine for adding
a vector across all images is shown in Listing 7. 	ere is an
equivalent subroutine for summing a matrix also.

Designing an optimal co sum algorithm is a platform-
dependent exercise best le
 to compilers. 	e Fortran stan-
dards committee is working on a co sum intrinsic procedure
that will likely become part of Fortran 2015. But to improve
the parallel performance of the program, we rewrote the
collective co sum procedures using a binomial tree algorithm
that is �(log�images) in time. 	e optimized version of the
co sum version is shown in Listing 8.

	e speedup obtained with the optimized co sum routine
is shown in Figure 8. We see that the scaling performance of
the program becomes nearly linear with the implementation
of the optimized co sum routine. We also see that the scaling

subroutine vector co sum parallel(vector)
real(rkind), intent(inout) :: vector(:)[∗]
real(rkind), allocatable :: temp(:)
integer image, step
allocate (temp, mold = vector)
step = 2
do while (step/2 <= num images())
sync all
if (this image() + step/2 <= num images()) then
temp = vector + vector[this image() + step/2]

else
temp = vector

end if
sync all
vector = temp
step = step ∗ 2

end do
sync all
if (this image()/ = 1) vector = vector[1]
sync all

end subroutine

Listing 8: Optimized collective sum routine.

e�ciency increases when the problem size is increased. 	is
indicates that the poor scaling at smaller problem sizes is due
to communication and synchronization [9].

	e TAU pro�le analysis of the runs using di�erent
number of images is shown in Figure 9.While there is a small
increase in the co sumcomputation timewhen increasing the
number of images, it is signi�cantly lower than increase in
time for the unoptimized version.

To fully understand the impact of the co sum routines, we
also benchmarked the program using the Cray compiler and
hardware. Cray has native support for the co sum directive in
the compiler. Cray also uses its own communication library
onCray hardware instead of building on top ofMPI as is done
by the Intel compiler. As we can see in Figure 10, the parallel
code showed very good strong scaling on the Cray hardware
up to 128 images for the problem sizes that we tested.

We also looked at the TAU pro�les of the parallel code on
the Cray hardware, shown in Figure 11. 	e pro�le analysis
shows that the time is spent mainly in the time advancement
loop when the native co sum implementation is used.

We hope that, with the development and implementation
of intrinsic co sum routines as part of the 2015 Fortran
standard, the Intel compiler will also improve its strong
scaling performance with larger number of images. Table 2
shows the raw runtimes for the di�erent runs using 128 bands
whose TAU pro�les have been shown in Figures 6, 9, and 11.
	e runtimes for one to four images are very close but they
quickly diverge as we increase the number of images due to
the impact of the collective procedures.

Table 3 shows the weak scaling performance of the
program using the optimized co sum procedures using the
Intel compiler. 	e number of particles as shown in Figure 1
scales as the square of the number of bands. 	erefore, when
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Metric: time

Value: exclusive

Units: seconds

.TAU application => matrix_co_sum_serial

matrix_co_sum_serial

.TAU application

.TAU application => vector_co_sum_serial

vector_co_sum_serial

0.001

0.001

0.539 (37219.358%)

0.539 (37219.358%)

1.453 (100267.616%)

1.453 (100267.616%)

3.578 (246922.783%)

3.578 (246922.783%)

11.753 (811110.361%)

11.753 (811110.361%)

47.596 (3284726.756%)

47.596 (3284726.756%)

36.375

18.779 (51.626%)

9.794 (26.926%)
5.371 (14.766%)

2.472 (6.797%)
1.695 (4.661%)

0.004

0.004

0.959 (21948.832%)

0.959 (21948.832%)

1.016 (23261.172%)

1.016 (23261.172%)

1.674 (38315.516%)

1.674 (38315.516%)

4.399 (100706.323%)

4.399 (100706.323%)
27.483 (629190.839%)

27.483 (629190.839%)

intel_iprm_serial1.ppk - Mean

intel_iprm_serial2.ppk - Mean

intel_iprm_serial4.ppk - Mean

intel_iprm_serial8.ppk - Mean

intel_iprm_serial16.ppk - Mean

intel_iprm_serial32.ppk - Mean

Figure 6: TAUpro�ling analysis of function runtimeswhen using the unoptimized co sum routines with 1, 2, 4, 8, 16, and 32 images.	e .TAU
application is the main program wrapped by TAU for pro�ling, and .TAU application => refers to functions wrapped by TAU. 	is notation
is also seen in Figures 7 and 9.

Figure 7: TAU analysis of load balancing and bottlenecks for the parallel code using 32 images.
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Figure 8: Speedup obtained with parallel co sum implementation using multiple images on a single server.

Metric: time

Value: exclusive

Units: seconds

intel_iprm_parallel1.ppk - Mean
intel_iprm_parallel2.ppk - Mean

intel_iprm_parallel4.ppk - Mean

intel_iprm_parallel8.ppk - Mean
intel_iprm_parallel16.ppk - Mean

intel_iprm_parallel32.ppk - Mean

.TAU application

.TAU application => vector_co_sum_parallel

vector_co_sum_parallel

.TAU application => matrix_co_sum_parallel

.TAU application => accumulate_2nd_moments

matrix_co_sum_parallel

38.789

18.606 (47.966%)
9.528 (24.562%)

5.096 (13.138%)
2.403 (6.195%)
1.736 (4.474%)

0.006

0.006

0.716 (11844.856%)

0.716 (11844.856%)

0.795 (13162.583%)

0.795 (13162.583%)

0.927 (15345.441%)

0.927 (15345.441%)

5.367 (88841.014%)

5.367 (88841.014%)

0.002

0.002

0.207 (8810.425%)

0.207 (8810.425%)

0.339 (14384.098%)

0.339 (14384.098%)

0.62 (26333.376%)

0.62 (26333.376%)

1.029 (43708.323%)

1.029 (43708.323%)

3.043 (129218.163%)

3.043 (129218.163%)

2.065

1.051 (50.894%)
0.471 (22.799%)
0.283 (13.687%)
0.158 (7.646%)
0.125 (6.006%)

0.672 (11126.941%)

0.672 (11126.941%)

Figure 9: TAU pro�ling analysis of function runtimes when using the optimized co sum routines with 1, 2, 4, 8, 16, and 32 images.
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64
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Figure 10: Speedup obtained with parallel co sum implementation using multiple images on a distributed-memory Cray cluster.

Metric: time

Value: exclusive

Units: seconds

cray_1.ppk - Mean

cray_2.ppk - Mean

cray_4.ppk - Mean

cray_8.ppk - Mean

cray_16.ppk - Mean

cray_32.ppk - Mean

main_

adv$setup_and_advance_module_

accumulate_2nd_moments$output_and_statistics_module_

896.719

449.256 (50.1%)
224.595 (25.046%)

112.369 (12.531%)
56.027 (6.248%)
27.957 (3.118%)

48.134

24.403 (50.697%)
12.215 (25.378%)
6.263 (13.012%)
3.293 (6.841%)
1.978 (4.11%)

31.599

23.662 (74.882%)
14.82 (46.902%)
17.001 (53.804%)
16.748 (53.002%)
13.47 (42.629%)

Figure 11: TAU pro�ling analysis of function runtimes when using the Cray native co sum routines with 1, 2, 4, 8, 16, and 32 images.

doubling the number of bands, the number of processors
must be quadrupled to have the same execution time. 	e
scaling e�ciency for the larger problem drops because of
memory requirements; the objects �t in the heap and must
be swapped out as needed, increasing the execution time.

6. Conclusions and Future Work

We demonstrated a strategy for parallelizing legacy Fortran
77 codes using Fortran 2008 coarrays.	e strategy starts with
constructing extensible tests using Fortran’s OOP features.
	e tests check for regressions in accuracy and performance.
In the PRM case study, our strategy expanded two Fortran

77 codes by 10% and 40%, exclusive of the test and I/O
infrastructure. 	e most signi�cant code revision involved
unrolling two nested loops that distribute particles across
images.	e resulting parallel code achieves even load balanc-
ing but poor scaling. TAU identi�ed the chief bottleneck as a
sequential summation scheme.

Based on these preliminary results, we rewrote our
co sum procedure, and the speedup showed marked
improvement. We also benchmarked the native co sum
implementation available in the Cray compiler. Our results
show that the natively supported collective procedures show
the best scaling performance even when using distributed
memory. We hope that future native support for collective
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Table 2: Runtime in seconds for parallel using 128 bands, and di�erent collective sum routines.

Number of Images

1 2 4 8 16 32

Intel Serial co sum 35.55 19.80 11.69 9.73 18.71 66.82

Intel Parallel co sum 37.30 19.33 10.00 6.17 4.62 5.41

Cray Native co sum 46.71 23.68 11.88 6.06 3.06 1.73

Table 3: Weak scaling performance of coarray version.

Number of images Number of bands Number of particles Particles per image Time in seconds Runtime per particle E�ciency

1 128 33024 33024 44.279 1.34 × 10−3 1.000

4 256 131584 32896 44.953 1.37 × 10−3 0.978

16 512 525312 32832 49.400 1.50 × 10−3 0.893

2 256 131584 65792 101.03 1.54 × 10−3 1.000

8 512 525312 65664 102.11 1.56 × 10−3 0.987

32 1024 2099200 65600 129.75 1.98 × 10−3 0.777

procedures in Fortran 2015 by all the compilers will bring
such performance to all platforms.
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