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ABSTRACT

Many modern computations (such as video and audio encoders,

Monte Carlo simulations, and machine learning algorithms) are de-

signed to trade off accuracy in return for increased performance.

To date, such computations typically use ad-hoc, domain-specific

techniques developed specifically for the computation at hand.

We present a new general technique, code perforation, for auto-

matically augmenting existing computations with the capability of

trading off accuracy in return for performance. In contrast to ex-

isting approaches, which typically require the manual development

of new algorithms, our implemented SpeedPress compiler can au-

tomatically apply code perforation to existing computations with

no developer intervention whatsoever. The result is a transformed

computation that can respond almost immediately to a range of in-

creased performance demands while keeping any resulting output

distortion within acceptable user-defined bounds.

We have used SpeedPress to automatically apply code perfora-

tion to applications from the PARSEC benchmark suite. The results

show that the transformed applications can run as much as two to

three times faster than the original applications while distorting the

output by less than 10%. Because the transformed applications can

operate successfully at many points in the performance/accuracy

tradeoff space, they can (dynamically and on demand) navigate the

tradeoff space to either maximize performance subject to a given

accuracy constraint, or maximize accuracy subject to a given per-

formance constraint. We also demonstrate the SpeedGuard runtime

system which uses code perforation to enable applications to au-

tomatically adapt to challenging execution environments such as

multicore machines that suffer core failures or machines that dy-

namically adjust the clock speed to reduce power consumption or

to protect the machine from overheating.

1. INTRODUCTION
The need to meet hard performance goals has motivated research

into systems that trade accuracy for performance or other benefits

(such as robustness, energy savings, etc.,). The standard approach

to building such applications is manual, ad hoc, and application

specific; typically requiring both domain and implementation ex-

pertise. For example, MP3 audio encoding uses a lossy compres-

sion algorithm designed to reduce the size of data needed to repre-

sent an audio recording. The compression works by reducing the

accuracy in parts of the sound file that are beyond the range that

most people can distinguish. This optimization uses a heuristic that

cannot be directly applied to other types of compression (e.g. im-

age and video) and does nothing to inform performance/accuracy

tradeoffs in other domains like financial analysis. Moreover, the

use of standard techniques to optimize a given MP3 encoder imple-

mentation requires (in addition to the requisite domain expertise)

significant technical skills and familiarity with the code base.

1.1 Code Perforation
We present a novel technique, code perforation, that automati-

cally enhances applications to support the management of perfor-

mance/accuracy tradeoffs. Given a user-specified distortion bound,

our implemented SpeedPress compiler automatically identifies parts

of the computation that can be discarded (skipped) without violat-

ing this bound. For example, if a user is willing to tolerate a .5 dB

degradation in signal-to-noise ratio (SNR) for a video, code perfo-

ration can automatically identify parts of the video encoder compu-

tation that it can skip while decreasing SNR by no more than .5 dB.

The result is a computation that performs less work (and therefore

consumes fewer computational resources) while still producing ac-

ceptable output.

In addition to enabling accuracy/performance tradeoffs, code per-

foration can enhance robustness and enable energy savings. Our

implemented SpeedGuard system adjusts the amount of code per-

foration in response to changes in the environment (such as core

failures or clock frequency scaling) to enable the application to con-

tinue to meet its performance goals (in exchange for some distor-

tion in the output) despite the degradation of the underlying com-

puting platform.

1.2 Implementation
SpeedPress performs code perforation by discarding loop iter-

ations, a process referred to as loop perforation. The perforating

compiler accepts standard C and C++ code and a user-provided

method for calculating the output distortion. The compiler then

uses profiling to explore the performance/accuracy tradeoff space

generated by discarding loop iterations from the original program.

Performance improvements are calculated as the speedup (the ex-

ecution time of the original application divided by the execution

time of the perforated application); accuracy changes are calculated

using the distortion model presented in [22]. The results of this ex-

ploration make it possible to use code perforation to automatically

maximize performance subject to a given distortion constraint or to

automatically minimize distortion subject to a given performance

constraint.

The SpeedGuard runtime system automatically monitors and main-

tains the performance of applications compiled with SpeedPress.



SpeedGuard uses the Application Heartbeats framework [16] to dy-

namically monitor the performance of the application as it attempts

to satisfy its real-time performance goals. If SpeedGuard detects

a drop in performance below the desired threshold, it dynamically

increases the amount of perforation to increase performance while

minimizing accuracy loss. If performance later recovers, the run-

time dynamically adapts to reduce the amount of perforation, po-

tentially switching the application all the way back the original ver-

sion (which executes with no perforation). SpeedGuard does not

rely on detecting specific faults. It instead detects changes in appli-

cation performance and adjusts the amount of perforation required

to accommodate the performance changes. It can therefore adapt

automatically to any type of failure that can result in performance

loss, making SpeedGuard applicable to a variety of situations such

as core failures, frequency scaling, or simply increased load. We

envision that this method will be of particular use in real time sys-

tems where producing a timely result (even with reduced accuracy)

is preferable to violating the application’s timing constraints.

We have evaluated our implemented system on a range of appli-

cations from the PARSEC benchmark suite [8]. Our experimental

results show that code perforation delivers significant performance

increases for six of the seven selected applications. Specifically, our

performance measurements show that code perforation is able to

deliver perforated applications that run between two to three times

faster than the original application while producing outputs that dif-

fer by less than 10% from the output of the original application.

Furthermore, our results show that SpeedGuard can dynamically

adapt the amount of code perforation to successfully meet timing

constraints in the presence of failures that degrade the underlying

computing platform. Specifically, our experimental results show

that code perforation makes it possible to meet performance goals

in the face of core failures during the execution of a multithreaded

application running on an multicore machine. Our results also show

that code perforation makes it possible to recover from dynamic

clock frequency changes. Code perforation can therefore enable

applications to respond productively to overheating (e.g. due to fan

failure) or changing energy constraints (e.g. low battery).

1.3 Scope
There are many applications, for example compilers and some

database systems, that have hard logical correctness requirements.

We acknowledge that code perforation is not appropriate for these

applications because it may cause the application to unacceptably

produce incorrect results.

There are also, however, a wide range of applications that can

tolerate bounded output distortion. Examples of such applications

include applications that process sensory data such as video, au-

dio, and images — for these kinds of applications, the code per-

foration distortion can either be imperceptible or preferable to the

sensory effects (such as jitter or interruptions in smooth content

flow) that failure to meet performance goals would induce in the

absence of code perforation. Other examples include applications

that perform Monte Carlo simulations, information retrieval and

machine learning applications, and the wide variety of scientific

and economics computations for which the important considera-

tion is producing an output within an acceptable precision range.

Code perforation can often acceptably improve the performance of

all of these kinds of applications while preserving acceptable out-

put precision. The prominence of these kinds of applications in the

PARSEC benchmark suite (which was chosen to be representative

of modern performance-intensive workloads) bears witness to their

importance in modern computing environments.

1.4 Contributions
This paper makes the following contributions:

• Basic Concept: It introduces the concept of code perfora-

tion, a general technique that can be automatically applied to

enhance applications to support accuracy/performance trade-

offs by selectively discarding computations. An exploration

of the resulting accuracy/performance tradeoff space makes

it possible to either maximize performance subject to a given

accuracy bound or maximize accuracy subject to a given per-

formance bound.

• Fault Tolerance: It shows how to tolerate faults in the un-

derlying computing environment by:

– Runtime performance degradation detection: using

the Heartbeat API to detect general program perfor-

mance degradation.

– Runtime performance adjustments: using code per-

foration to maintain application performance goals by

trading off accuracy for increased performance in re-

sponse to events such as core failures, dynamic changes

in environment settings, and increased load.

• Implementation: It presents the implementation of code per-

foration using:

– SpeedPress: A LLVM-based compiler which exploits

code perforation to trade accuracy for performance.

– SpeedGuard: A runtime system which dynamically

enables code perforation to provide fault tolerance.

• Evaluation: It presents experimental results from applying

code perforation to several benchmark applications from the

PARSEC suite. It also presents the experimental evaluation

of code perforation as a fault tolerance mechanism.

The remainder of this paper is organized as follows. Section 2

presents a simple example which illustrates the key concepts of

code perforation. Section 3 discusses the implementation of Speed-

Press, a perforating compiler for C and C++ programs. Section 4

presents the SpeedGuard runtime. Section 5 discusses our evalu-

ation methodology. Section 6 presents the results of applying the

perforating compiler to several PARSEC benchmarks. Section 7

presents the results of the fault tolerance experiments. Section 8

discusses related work. Finally, the paper concludes in Section 9.

2. EXAMPLE
We next present an example that illustrates the use of code per-

foration to increase the performance of the open-source x264 im-

plementation [32] of the H.264 video encoding standard. Video

encoders take a stream of input frames and compress them for ef-

ficient storage or transmission. The quality of a video encoder is

typically measured using the peak signal-to-noise ratio (PSNR) and

bitrate (or size) of the encoded video.

One of the keys to achieving good video compression is ex-

ploiting similarities between consecutive frames. The process of

finding these similarities is called motion estimation. During mo-

tion estimation the frame currently being encoded is broken into

16×16 regions of pixels called macroblocks. For each macroblock,

the encoder attempts to find a similar 16 × 16 region in a pre-

viously encoded reference frame. H.264 allows macroblocks to

be further broken down into sub-blocks, and motion estimation

can be performed on sub-blocks independently. x264 calculates

the similarity for macroblocks and sub-blocks by computing the

sum of Hadamard transformed differences (SATD) between the



static int pixel_satd_wxh(pixel_t *current,

int cur_stride,

pixel_t *reference,

int ref_stride,

int w,

int h)

{

int value = 0;

int i, j;

short temp[4][4];

for( i = 0; i < h; i+=4 ) {

for(j = 0; j < w; j+=4 ) {

// Performs element-wise subtraction of the

// reference frame and the current frame

element_wise_subtract(temp, current[j], cur_stride,

reference[j], ref_stride,

4);

// Performs an in-place Hadamard transform on the

// difference computed in the previous step

hadamard_transform(temp, 4);

// Sum the absolute values of the coefficients

// of the Hadamard transform

value += sum_abs_matrix(temp, 4);

}

current += 4*cur_stride;

reference += 4*ref_stride;

}

return value;

}

Figure 1: Code to compute sum of Hadamard transformed differ-

ences. This function is important in video encoding and a good

candidate for code perforation.

macroblock (or sub-block) and candidate regions of the reference

frame. Figure 1 presents a C function for computing the SATD

between two regions.

To find the best match for a macroblock, an encoder would have

to search the entire reference frame, but searching such a large area

is prohibitively expensive in practice. Even searching every loca-

tion in a relatively small region of the reference frame can impose

an unacceptable performance burden [14]. In practice, motion esti-

mation algorithms typically use clever heuristics to move from one

search location to another without having to examine every possi-

ble location.

Development of these algorithms is an active area of research

in video processing. The common evaluation metric of these al-

gorithms is the reduction in video quality over the raw input and

the amount of additional bits required to encode the video. This

inherent tradeoff between quality and performance makes motion

estimation a potentially good candidate for code perforation.

To evaluate the effect of perforation on accuracy, the compiler

needs a standard method for determining an acceptability model.

This model has two parts; the first is an output abstraction or a

method for mapping the output of the program to a numerical value

or values. In some cases these values are selected directly from the

output, in others these values are computed from output values.

The second component is distortion, which is a measure of how

much the output abstraction of the perforated code differs from that

produced by the unperforated version.

As mentioned above, video designers are typically concerned

with two metrics: PSNR and encoded bitrate, typically measured

in Mb/s. We therefore use these two values as the output abstrac-

tion for the video encoder. To compute the distortion, we measure

the change in both PSNR and Mb/s as a percentage of these val-

ues from the original encoder. We combine the distortions of the

two values by taking the weighted average. For this example, we

weight PSNR and Mb/s equally.

SpeedPress perforates the pixel_satd_wxh() function as follows.

It first compiles the encoder with profiling instrumentation that

measures the execution time and output quality. It next perforates

different code portions and runs the resulting perforated applica-

tion on representative inputs to record the effect of the perforation

on performance and distortion. SpeedPress uses loop perforation

as its code perforation mechanism (see Section 3). In this exam-

ple, the compiler perforates the outer loop (over i) by generating

code that skips every other iteration of the loop. The inner loop

(over j) is perforated in the same manner. The speedup and distor-

tion of each of these perforations is measured individually by the

compiler.

Perforation Speedup Distortion

outer loop 1.457 3.65%

inner loop 1.457 4.66%

Table 1: Results of code perforation applied to the SATD function.

Table 1 shows the results of applying perforation to the SATD

function in the x264 implementation [32] of H.264 video encod-

ing for a high-definition, 1080p video sequence. In this case, each

loop is perforated by skipping every other execution (a perforation

rate of 50%). The table shows how the speedup of the perforated

version compares to the original. In addition, it shows how loop

perforation affects distortion. Perforating the outer loop produces a

46 % increase in speed and a distortion of 3.65 %. In this case, the

PSNR is reduced by less than 0.4 dB while the impact on Mb/s is

6.70%. Perforating the inner loop also results in a 46 % increase in

speed and a similar reduction in PSNR while increasing Mb/s by

8.85%.

Of course, the loops in this function are far from the only loops

in the application amenable to perforation. The compiler attempts

to perforate each loop. If perforating a loop does not yield speedup,

causes unacceptable distortion or causes the program to crash then

that loop is not considered as a candidate for perforation. At the

end of this process, the compiler has a complete set of speedup and

distortion numbers for each candidate loop. We have found that the

compiler is often able to discover a number of loops that can be

perforated to provide varying performance/accuracy tradeoffs. The

candidate loops are ordered by their score (see Section 3), which

is based on the speedup and distortion caused by perforating that

loop. The loops shown in Table 1 represent the two loops found to

have the highest scores for x264.

Given a bound on acceptable distortion, the compiler uses the

scores of individual loops to find a set of loops which maximizes

speedup for that bound. For example, suppose a distortion of 10%

is acceptable for x264. In that case the compiler determines a set of

loops to perforate that maximizes speedup while keeping distortion

below the 10% bound.

To determine the set of loops that provides maximum speedup

for a given bound, SpeedPress starts by perforating the loop found

to have the highest score during its initial search. SpeedPress then

perforates additional loops prioritizing those that have the largest

scores. As each loop is added to the set of perforated loops, Speed-

Press measures the cumulative speedup and distortion. Loops are

added until the maximum allowable distortion is surpassed, at which

point the last loop, which pushed the distortion over the acceptable



bound, is removed. The remaining set of loops represents the set

of perforations which maximize speedup for the given distortion

bound.

For x264 and a distortion bound of 10%, SpeedPress finds the

two loops in Table 1 and 5 additional loops (for a total of 7 loops)

to perforate such that the total speedup is over 2× while the distor-

tion is 9.51%. This distortion is due to a 0.5dB decrease in PSNR

(which is just at the widely accepted perceptability threshold of

0.5dB) and an 18% increase in Mb/s. The set of loops that the

compiler perforates in x264 is shown in Table 3 and discussed in

greater detail in Section 6.

In addition to providing static performance/accuracy tradeoffs,

the SpeedPress compiler supports dynamic code perforation, which

allows perforation to be turned on and off while the program exe-

cutes. The SpeedGuard runtime system combines dynamic code

perforation with runtime performance monitoring to enable appli-

cations to automatically respond to environmental changes that af-

fect performance. To make use of SpeedGuard the programmer

specifies a minimum acceptable performance. If SpeedGuard ever

detects a performance drop below that level it can dynamically in-

crease perforation to bring performance back to an acceptable level.

To illustrate the use of the SpeedGuard system, consider x264

running on a processor which allows dynamic frequency scaling.

The minimal acceptable performance for x264 is set to thirty frames

per second corresponding to real-time speed. If the cooling fan for

the processor fails, the operating system might adjust the clock fre-

quency to reduce power and heat and keep the processor from fail-

ing. The lower clock frequency will result in lower performance

which will be detected by SpeedGuard. If the clock frequency

changes from 2.5 to 1.75 GHz, SpeedGuard can compensate by

perforating the outer loop of the pixel_satd_wxh() function to main-

tain performance at the cost of some distortion as shown in Table 1.

The SpeedGuard system is discussed in greater detail in Section 4,

while Section 7 provides detailed discussion of how SpeedGuard

allows x264 to respond to both core failures and dynamic changes

in processor frequency.

Source 

Code

in C/C++

Application 

Profiling

Training 

Input

Acceptability

Metric

Loop 

Identification

Loop 

Selection

Loop Perforated 

Binary

Figure 2: Compiler Framework Overview

3. SpeedPress COMPILER FRAMEWORK

3.1 Overview
Our SpeedPress compiler is built using the LLVM compiler in-

frastructure [18]. Figure 2 presents an overview of the compiler

framework. The compilation process takes as input the application

source code, a set of representative inputs, and a user-defined ac-

ceptability model. Our evaluation focuses on applications written

in C/C++, but since SpeedPress operates on the level of LLVM bit-

code, it can support every language for which an LLVM front-end

exists (e.g. Fortran, Ada). The representative inputs are used to

determine the speedup/distortion tradeoff. The user-specified ac-

ceptability model consists of three parts: (1) abstraction of the pro-

gram output, (2) an accuracy test which measures the effect of code

perforation relative to the original (abstracted) output, and (3) the

maximum acceptable value of the accuracy test. SpeedPress per-

forms a set of transformation passes that insert instrumentation to

perform program profiling, loop identification, and loop selection.

3.2 Profiling
SpeedPress obtains its profiling information as follows. When it

compiles the original program for profiled execution, it inserts in-

strumentation that counts the number of times each basic block is

executed. It also inserts instrumentation that maintains a stack of

active nested loops. Additional instrumentation is added to count

the number of (LLVM bit code) instructions executed in each loop,

propagating the instruction counts up the stack of active nested

loops so that outermost loops are credited with instructions exe-

cuted in nested loops. The profile-instrumented version of the pro-

gram keeps track of the accesses of basic blocks within the loops,

the number of loop invocations (times the loop was entered from

outside), the number of loop iterations (times the loop body was

executed) and dynamic nesting of the loops (parent and children

loops) during the execution. SpeedPress uses the resulting instruc-

tion counts to prioritize the perforation of loops that execute more

instructions in the profiling runs over loops that execute fewer in-

structions.

3.3 Loop Perforation
Given a loop to perforate, our loop perforation transformation

takes as input a percentage of iterations to skip during the execu-

tion of the loop, and a perforation strategy. A transformation pass

alters the calculation of the loop induction variable to manipulate

the number of iterations that a loop will execute. The transforma-

tion may also include additional information from the run-time en-

vironment. Using the example from Figure 1, the pass conceptually

performs the following loop transformation:

for( i = 0; i < h; i+=4 ) { /* ... */ }

to

for( i = 0; i < h; i+=4 ) {

if (doPerforate(i, environment)) continue;

//...

}

The percentage of non-executed iterations is called the perfora-

tion rate (pr). Depending on the selected perforation rate a dif-

ferent performance/distortion trade-off can be made. For example

for a perforation rate pr = 0.5, half of the iterations are skipped,

for pr = 0.25, one quarter of the iterations are skipped, while for

pr = 0.75, three quarters of the iterations are skipped, i.e. only one

quarter of the initial work is carried out.

The compiler supports a range of perforation options, including

modulo perforation (which skips or executes every nth iteration),

truncation perforation (which skips either an initial or final block

of iterations), and random perforation (which skips randomly se-

lected iterations at a mean given rate). The actual generated code

exploits the characteristics of each specific loop perforation option

to generate optimized code for that option.

The current SpeedPress implementation supports both static and

dynamic loop perforation. Dynamic loop perforations can be turned

on and off by the run-time system, allowing for finer-grained con-

trol over the program execution. One example use of dynamic loop

perforation is given in Section 4.

3.3.1 Induction variables

SpeedPress perforation operations manipulate loops whose in-

duction variables are in canonical form [19]. It uses an LLVM

built-in pass which transforms loop induction variables into a form



in which the induction variable i has an initial value of 0 and is

incremented by 1 in every iteration until maxvalue is reached:

for ( i = 0; i < maxvalue; i++ ){ /* ... */ }

3.3.2 Modulo Perforation

Modulo perforation skips every n-th iteration, or executes every

n-th iteration. The percentage of skipped iterations is determined

by the perforation rate, pr, which is determined using the following

formula:

pr =















1
n

if every n-th iteration is skipped

1 − 1
n

if every n-th iteration is executed

The implementation of modulo perforation considers three cases:

(1) large, (2) small, and (3) small where n is power of 2. In the fol-

lowing paragraphs, the implementation for the case when pr ≥ 0.5

will be referred to as large perforation, while the case when pr <

0.5 will be referred to as small perforation. Additionally, for small

perforation, if n is power of 2, a more efficient implementation is

available for some computer architectures.

The following examples describe each transformation. The im-

plementation of static perforation is presented first, followed by the

implementation details of dynamic perforation.

Large Perforation: For large perforation the value of the induction

variable increment is changed from 1 to n:

for (i = 0; i < maxvalue; i += n) { /* ... */ }

Small Perforation: small perforation is implemented by adding a

new term to the induction variable increment. The goal is to incre-

ment the value of the induction variable by 2 when the iteration is

to be skipped. The value of the induction variable is incremented

by 2 if the remainder of i divided by n is equal to some constant

value k, 0 ≤ k < n:

for (i = 0; i < maxvalue;

i = i + 1 + ( i % n == k ? 1:0 ) ) {

//.....

}

Small Perforation when n is Power of 2: When n is power of 2

(n = 2m), small perforation uses faster bitwise and operations to

calculate the remainder of i divided by n, which in this case are

lowest m bits of i:

for (i = 0; i < maxvalue;

i = i + 1 + ( i & (n-1) == k ? 1:0 ) ) {

//.....

}

Dynamic Perforation

Dynamic perforation allows loop perforations to be turned on

and off during the program execution. The runtime system pro-

vides a function doPerforate(LoopId) to check whether the specific

loop should be perforated in the next invocation. LoopId is an in-

ternal unique loop identifier assigned by the compiler. There are

two approaches to implementing dynamic perforation: (1) duplica-

tion of loop code and (2) augmenting increments with perforation

specific behavior. Loop code duplication involves duplication of

(part of) the original loop body, and subsequent modification of the

induction variable increment, as outlined for the static perforation

case.

Augmented increments, on the other hand, are inserted in the

original loop, and are activated only if the loop is to be perforated.

To decrease the overhead of the augmented perforation checks, the

call to the doPerforate function for all nested loops is located in

the preheader of the topmost loop, when loops belong to the same

function. Additionally, the compiler makes the list of loops that can

be dynamically perforated available to the runtime. In the following

paragraphs, we discuss the details of augmented increments, and

how they modify the original loops.

The dynamic implementation of large perforation assigns the

value of increment based on the perforation check:

int increment = doPerforate(loopId)? n : 1

for (i = 0; i < maxvalue; i += increment) { /* .... */ }

The dynamic implementation of small perforation controls the

iteration increment by assigning the appropriate value of the re-

mainder based on the perforation check. It utilizes the property

that the value of the remainder must be less than the value of the

divisor:

int remainder = doPerforate(loopId)? k : n;

for (i = 0; i < maxvalue;

i = i + 1 + ( i % n == remainder ? 1:0 ) ) {

//.....

}

Similarly, small perforation for n = 2m utilizes the property that

the result of a bitwise and with an m-bit number cannot exceed m

bits:

int remainder = doPerforate(loopId)? k : n

for (i = 0; i < maxvalue;

i = i + 1 + ( i & (n-1) == remainder ? 1:0 ) ) {

//.....

}

3.3.3 Truncation Perforation

Truncation perforation skips iterations at the beginning or at the

end of the loop execution. The iteration count of the perforated loop

is equal to (1 − pr) · maxvalue. Discarding iterations at the begin-

ning of the loop involves initialization of the induction variable i

to i = pr * maxvalue where maxvalue is known before the loop invo-

cation and is not changed during the loop’s execution. If dynamic

perforation is used, the induction variable i is initialized based on

the result of doPerforate(). The example of the loop is:

for (i = pr * maxvalue; i < maxvalue; i++) { /* ... */ }

Perforating iterations at the end of the loop accomplishes earlier

exit from the loop. This is implemented by decreasing the loop con-

dition bound. The new condition becomes i < (1 - pr) * maxvalue:

for (i = 0; i < (1 - pr) * maxvalue; i++) { /* ... */ }

If maxvalue is not modified from within the loop body, the new

condition can be precomputed. Otherwise, it needs to be checked in

every iteration. Instead of performing floating point multiplication,

which may be expensive on some architectures, it is possible to

represent the rational number 1 − pr as p/q, where p and q are

natural numbers. Then, the condition can be represented as q * i <

p * maxvalue. If p or q are powers of 2, shifting may be used instead

of multiplication. In case of dynamic perforation, the value of the

loop upper bound (or p and q) would be initialized based on the

result of the doPerforate() function.



3.3.4 Randomized Perforation

Randomized loop perforation skips individual iterations at ran-

dom, based on a user-specified distribution with mean pr:

for( i = 0; i < maxvalue; i++ ) {

if (skipIteration(i, pr)) continue;

//...

}

This type of perforation is the most flexible, but introduces the

greatest overhead. It allows the runtime to dynamically control per-

foration during the execution of the loop body and change the un-

derlying perforation distribution in the course of loop execution.

However, the complexity of the skipIteration() function may be-

come an issue, due to its frequent execution. It is preferable to

apply this technique on loops that have a smaller number of it-

erations and/or perform more work in each iteration. The call to

skipIteration() is, in most cases, inlined by the compiler to reduce

the call overhead. In the case of dynamic perforation, the loop may

be cloned before applying the perforation transformation. Cloning

allows the program to use the original version of the loop when the

perforation is off and the modified version when the perforation is

turned on.

3.3.5 Perforation Mode Discussion

Different perforation options may be more applicable to differ-

ent types of loops. Modulo perforations are most suitable for the

loops that have the work and/or data evenly distributed across the

iterations. The loops from Figure 1 are good candidates for modulo

perforation. Assuming a perforation rate pr = 0.5 the differences

that contribute to the final sum are sampled from a “checkerboard”

of 4 × 4 sub-blocks of the macroblock.

Truncation perforations are most suitable for loops that quickly

approach an answer in initial iterations and improve the approx-

imation of the final result in latter iterations. For example, from

Figure 1, a truncation-perforated program would calculate the sum-

of-Hadamard-transformed-difference for only one part (e.g. 8x8

subregion) of the macroblock. This may be appropriate in some

cases, but may not be appropriate when a contiguous sub-region of

the macroblock is not representative of the entire block. In contrast,

truncation perforation can be a good match for simulated annealing

programs where the final iterations of the perforated loop refine an

approximate answer generated in earlier iterations.

Finally, randomized perforation can be used interchangeably with

both modulo and truncation perforations. However, randomly per-

forated loops should tolerate the overhead of the internal logic and

updates to the state of the random number generator. Additional

care must be taken for multithreaded programs, as the shared pseudo-

random number generator may become a performance bottleneck.

3.4 Acceptability Model
To measure the effect of loop perforation, SpeedPress requires

the user to provide an acceptability model for the program output.

This model has two components, the first is an output abstraction,

while the second is a distortion metric. As part of the model the

user provides a bound on the acceptable distortion.

3.4.1 Output Abstraction

The output abstraction is a mapping from a program’s specific

output to a measurable numerical value or values. In the example

in Section 2, the output abstraction consists of the peak signal-to-

noise ratio and bitrate.

Creating a program output abstraction is a straightforward pro-

cess for users with basic knowledge of an application. Without

prior knowledge of the PARSEC benchmark applications, we were

able to produce output abstractions for each examined application

in a short time.

3.4.2 Distortion metric

To evaluate the effect of loop perforation on program output we

use an accuracy test based on the relative scaled difference be-

tween selected outputs from the original and perforated executions.

Specifically, we assume the program output abstraction produces

an output of the form o1, . . . , om, where each output component oi

is a number.

Given an output o1, . . . , om from an unmodified execution and an

output ô1, . . . , ôm from a perforated execution, the following quan-

tity d, which we call the distortion, measures the accuracy of the

output from the perforated execution:

d =
1

m

m
∑

i=1

∣

∣

∣

∣

∣

oi − ôi

oi

∣

∣

∣

∣

∣

The closer the distortion d is to zero, the less the perforated exe-

cution distorts the output. Because each difference is scaled by the

corresponding output component, distortions from different execu-

tions and inputs can be compared. By default the distortion equa-

tion weighs each component equally, but it is possible to modify

the equation to weigh some components more heavily. For more

on distortion see [22].

3.4.3 Bias Definition and Use

The distortion measures the absolute error induced by loop per-

foration. It is also sometimes useful to consider whether there is

any systematic direction to the error. To measure systematic error

introduced through loop perforation we use the bias [22] metric:

b =
1

m

m
∑

i=1

oi − ôi

oi

Note that this is the same formula as the distortion with the ex-

ception that it preserves the sign of the summands. Errors with dif-

ferent signs may therefore cancel each other out in the computation

of the bias instead of accumulating as for the distortion.

If there is a systematic bias, it may be possible to compensate for

the bias to obtain a more accurate result. Consider, for example, the

special case of a program with a single output component o. If we

know that bias at a certain is b, we can simply divide the observed

output ô by (1 - b) to obtain an estimate of the correct output whose

expected distortion is 0.

3.5 Loop Selection
The goal of the loop selection algorithm is to find the set of loops

that can be perforated to produce the highest performance increase

for the lowest output distortion value, given the maximal accept-

able distortion and desired perforation rate. The algorithm for loop

selection performs the following steps:

• Identification of candidate loops for perforation.

• Measurement of performance and distortion for each candi-

date loop.

• For each input, the discovery of the loop set that maximizes

performance for a specified distortion bound.

• Selection of the loop set that provides the best results for all

training inputs.



LoopSelection (program, inputs, maxDist)

candidateLoops = {}

scores = {}

for i in inputs

candidateLoops[i] = performProfiling(program, i)

for each l in candidateLoops[i]

scores[i][l] = assignInitialLoopScore(l)

filterProfiledLoops(candidateLoops[i])

for l in candidateLoops

spdup, dist = perforateLoopSet(program, {l}, i)

scores[i][l] = updateScore(spdup, dist, scores[i][l])

filterSingleExampleLoops(candidateLoops[i], scores[i], maxDist)

candidateLoops, scores =

mergeLoops(candidateLoops[*], scores[*])

if size(candidateLoops) == 0

return {}

candidateLoopSets = {}

for i in inputs

candidateLoopSets[i] =

selectLoopSet(program, candidateLoops, scores, i, maxDist)

loopsToPerforate =

findBestLoopSet(program, candidateLoopSets, inputs)

return loopsToPerforate

Figure 3: Loop selection algorithm pseudocode

The pseudocode of the SpeedPress loop selection algorithm is

given in Figure 3. The steps of the algorithm are described in the

following sections.

3.5.1 Identification of Candidate Loops

Initially, all loops are candidates for perforation. The algorithm

invokes the profile-instrumented program, described in Section 3.2

on all training inputs in order to find candidate loops for perfora-

tion. Each loop is given a score according to its effect on the pro-

gram execution time and the number of invocations. The score is

calculated based on the normalized values of instruction count and

invocation number. The loops that have only a minor contribution

to the program execution time, an unsatisfactory number of itera-

tions/invocations, or that cannot be instrumented are filtered from

the candidates list.

3.5.2 Individual Loop Performance and Distortion

The algorithm perforates each candidate loop in isolation and

observes the influence of the perforation on the speedup and distor-

tion. The loop is statically perforated with a predefined perforation

rate. The pseudocode for the execution of loop perforation is

given in Figure 4. After the execution of the instrumented program

SpeedPress uses the acceptability model to calculate the distortion

from the expected output.

An extension of the algorithm tries different perforation rates

for individual loops in order to fit them within the bound. If the

speedup contribution of the added loop is not positive, the step will

be repeated with a higher perforation rate for the loop. If the dis-

tortion introduced by adding a loop is greater than allowed, the per-

foration rate of the loop may be decreased. Due to the potentially

large number of additional training runs, this extension is primarily

used for loops that have a greater influence on execution time.

The score for each loop is updated based on the measured speedup

and negative distortion from the performed executions and calcu-

lated as a weighted harmonic mean. Using a weighted harmonic

mean allows a user to prioritize loops either by greater speedup

(although the distortion may be larger, leading to fewer perforated

perforateLoopSet(program, loopSet, input)

program’ = instrumentLoops(loopSets)

time, output = execute(program, input)

time’, output’ = execute(program’, input)

abstrOut = abstractOutput(output)

abstrOut = abstractOutput(output’)

speedup = calcluateSpeedup(time, time’)

distortion = calculateDistortion(abstrOut, abstrOut’)

return speedup, distortion

Figure 4: perforateLoopSet pseudocode

loops), or by smaller distortion, at the expense of the speedup (lead-

ing to more perforated loops, each having lesser influence on pro-

gram speedup).

The current implementation uses only one, predefined perfora-

tion strategy for all loops. It is straightforward to extend the algo-

rithm to automatically select a perforation strategy (e.g. modulo, or

truncate) based on profiling information and the additional training

executions.

It is possible that a program with perforated loops will terminate

unexpectedly or hang during loop evaluation. If the program ter-

minates due to error (e.g. segmentation fault), the distortion is set

to 100%, disqualifying the loop from further consideration. If the

program is not responsive for a time greater than the execution of

the reference version, it is terminated, and the speedup set to 0, also

disqualifying the loop. Loops that do not increase the performance

and loops that cause distortion greater than the maximum bound

specified by the user are also removed from the candidates list.

After assigning scores for all individual loops, the algorithm

merges the results from multiple examples. The loop scores are

averaged over all inputs. Only the loops that have positive scores

for all inputs remain as candidates. If there are no such loops, the

selection algorithm terminates and returns the empty set.

At this point, the algorithm has finished its initial exploration of

candidate loops for perforation. The following steps search for a set

of candidate loops that, when perforated simultaneously, provide

maximum speedup while keeping distortion below the acceptable

bound.

3.5.3 Discovery of Loop Sets with Acceptable Dis-
tortion

The next step is to combine loops with high individual scores on

all training inputs and observe their joint influence on program ex-

ecution. Note that the distortions and speedups of programs with

multiple perforated loops may not be linear in terms of the individ-

ual perforated loop results (because of potentially complex inter-

actions between loops, including nesting, work dispatching, etc.).

This step is executed separately for each training input. Pseudocode

for multiple loop selection is given in Figure 5.

The algorithm maintains a set of loops that can be perforated

without exceeding the maximal acceptable distortion bound (maxDist)

selected by the user. At each step, it tries the loop with the high-

est individual score, and executes the program where all the loops

from the set and the new loop are perforated. If the performance in-

creases, and the distortion is smaller than the maximum allowable,

the loop is added to the set of perforated loops.

3.5.4 Selection of the Best Performing Loop Set

Finally, the loop sets from all training inputs are compared, as

shown in Figure 6. The best loop sets for each input are executed



selectLoopSet(program, candidateLoops, scores, input, maxDist)

loopQueue = sortLoopsByScore(candidateLoops, scores)

LoopSet = {}

cummulativeSpeedup = 1

while loopQueue is not empty

tryLoop = loopQueue.remove()

trySet = LoopSet U {tryLoop}

speedup, distortion = runPerforation(trySet, input)

if speedup > cummulativeSpeedup and distortion < maxDist

loopSet = trySet

cummulativeSpeedup = speedup

return LoopSet

Figure 5: selectLoopSet pseudocode

on other inputs. The score for each loop set is derived as a statistic

(e.g. minimum or mean) of the scores of executing the loop sets on

all inputs. A loop set that fails to terminate normally on some input

is excluded from the set of candidates. The loop set with the best

score on all training inputs is returned as the final loop selection.

findBestLoopSet(program, loopSets, inputs)

for each ls in loopSets

for each i in inputs

speedup, distortion =

perforateLoopSet(program, ls, i)

score[ls][i] = assignScore(speedup, distortion)

score[loopSet] = scoreFinal(score[ls][*])

return argmax(score)

Figure 6: findBestLoopSet pseudocode

The order of the loops is important if SpeedPress performs dy-

namic perforation. The set of loops in the loop set may be ordered

by their individual scores. The compiler encodes the information

about the speedup and distortion of perforated loops and makes it

available to the runtime subsystem. If the compiler performs static

perforation of the program, the set of loops is unordered, since all

loops are perforated throughout the program’s execution.

4. SpeedGuard RUNTIME SYSTEM

HB
API

Perf
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SpeedGuard
Runtime Monitor

HB
API

Loop i

Loop 1

Loop 2
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Select
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Figure 7: SpeedGuard runtime system

This section describes the SpeedGuard runtime system for ap-

plying Code Perforation for fault tolerance. Figure 7 shows an

overview of the SpeedGuard system, which consists of three com-

ponents.

SpeedGuard uses the Application Heartbeats API to monitor the

dynamic performance of the application [16]. The loop perforation

selector enables dynamic loop perforation selection. The Speed-

Guard monitor orchestrates responses to events (such as failures,

recoveries, changes in the load, and frequency scaling) by dynami-

cally selecting loops to perforate.

4.1 Application Heartbeats
The Application Heartbeats API provides a standardized way for

an application to report both its performance goals and its dynamic

performance. Using this API, an application registers a heartbeat

at some interval. The performance of the application is then mea-

sured in terms of its heart rate. Additional functions allow the ap-

plication to specify its goals in terms of a minimum and maximum

heart rate. External services, such as the operating system, can

query an application’s current heart rate as well as its desired min-

imum and maximum.

The SpeedGuard framework requires that the programmer make

use of the Heartbeat API for any managed application. The pro-

grammer is responsible for placement of heartbeat calls, establish-

ing the minimum and maximum heart rate as well as the call to

register the heartbeat. This procedure typically requires minimal

code changes and need only be performed once per application.

Adding the appropriate heartbeat calls is typically straightfor-

ward given a basic knowledge of the application. The PARSEC

documentation describes the inputs processed by each benchmark.

Given this description, we were able to quickly find the loop that

iterates through the input and place the call to register the heartbeat

in the loop. At most a half-a-dozen lines of code were required to

augment each benchmark with the Heartbeat interface.

Establishing the minimal and maximal heart rate should be easy

for anyone who wants to make use of SpeedGuard. Since Speed-

Guard is designed to monitor performance and keep it within a

specified bound, we assume that the user already has determined

the desired performance for the application.

4.2 Dynamic Loop Perforation
The SpeedGuard framework can be incorporated with Speed-

Press to support dynamic loop perforation. In this case, the com-

piler performs dynamic perforation of the loops after finding the set

of loops that improve performance while keeping accuracy within

an acceptable range. Turning loop perforations on and off dynam-

ically, during the course of program execution, results in perfor-

mance increase while keeping the accuracy within the acceptable

range.

The compiler provides the runtime with a table that contains all

information about the dynamically perforated loops. For any loops

that SpeedGuard considers perforating, it can look up the expected

speedup and the expected distortion. Having this information al-

lows the runtime to make informed decisions in response to dy-

namic events.

Perforation is initially set to be off for all loops, so the application

initially runs as the unmodified version. Additionally, the compiler

adds a run-time system that adjusts perforation as described in the

next section.

4.3 Runtime Monitor
SpeedGuard is inserted by the compiler to monitor the applica-

tion’s heart rate by making calls to the Heartbeat API. If the heart

rate ever falls below the desired minimum, the SpeedGuard system

increases the amount of perforation. If performance later increases

above the desired maximum, the run-time decreases the amount of

perforation. SpeedGuard only perforates loops that have been dis-



covered and profiled by the compiler so their effect on the distortion

is known.

The SpeedGuard monitor checks performance at a given inter-

val specified in terms of heartbeats. For example, the monitor may

check performance every 20 heartbeats. This interval can be tuned

for the needs of a particular deployment of an application. Set-

ting the interval to be small results in more aggressive response to

performance changes while a larger interval leads to a more con-

servative response.

When performance dips below the desired minimum, Speed-

Guard computes the percentage difference. With this information,

SpeedGuard can determine a loop whose dynamic perforation re-

sults in a speedup that is most likely to reclaim the lost perfor-

mance. For example, if SpeedGuard detects performance 30 % be-

low the desired minimum, it will attempt to dynamically perforate

a loop that the compiler previously found to provide a speedup of

1.3.

SpeedGuard supports two modes of operation. In the first, ag-

gressive mode, it attempts to reclaim all lost performance at once.

Operating aggressively, the runtime may perforate multiple loops to

regain performance. In the second, conservative mode, the runtime

will dynamically perforate one loop, observe the change in perfor-

mance and then perforate additional loops as needed. The aggres-

sive mode tends to have a faster response to performance changes,

while the conservative mode tends to have the smallest impact on

distortion.

It is possible that SpeedGuard cannot find one set of loops that

keeps performance within the desired bounds. In this case, the run-

time will continuously raise and lower perforation to keep the aver-

age performance in the desired bound. An example of this behavior

is shown in Section 7.

4.4 Example
To illustrate how SpeedGuard operates, consider again the video

encoder example from Section 2. To make use of this framework,

the programmer first modifies the encoder to use the Heartbeat API

so that it registers a heartbeat as each frame is encoded. Addition-

ally, the programmer uses the API to specify the desired minimum

and maximum heart rate. In this case, the minimum might be thirty

beats per second, corresponding to thirty frames per second.

Having added a heartbeat to the application, the programmer

then submits it to SpeedPress. The compiler applies perforation and

adds the ability to turn this perforation on and off. Additionally, the

compiler inserts the calls to the run time system that monitor appli-

cation performance and adjust the level of perforation.

The resulting encoder can then be deployed. Initially the en-

coder will run at the desired speed of thirty frames per second.

Suppose the fan cooling the system fails and the operating sys-

tem reduces the processor frequency from 2.5 to 1.6 GHz to reduce

power and temperature. This change in frequency will result in a

change in the application performance to about 19 frames per sec-

ond. The change in performance is reflected in the change in heart

rate. When the application’s heart rate changes, it is detected by

SpeedGuard which perforates the inner loop of the SATD function

to increase performance by 45 % as shown in Table 1. This will

raise performance back to about twenty-seven frames per second.

If performance is still not acceptable, the runtime can perforate the

outer loop, bringing performance back up to the desired target.

In practice, the compiler finds a much richer set of loops to per-

forate in a video encoder which gives the run time system more op-

tions and more fine-grained control over performance adjustments.

See section Section 7 for the results of applying the full system to

create a fault tolerant video encoder.

5. EVALUATION METHODOLOGY
This section presents the methodology used to evaluate Speed-

Press and its ability to find meaningful performance-accuracy trade-

offs for a wide range of applications. All results are collected using

a single core of an Intel x86 server with dual 3.16 GHz Xeon X5460

quad-core processors. Benchmarks are taken from the PARSEC 1.0

benchmark suite because of its focus on capturing a diverse set of

emerging workloads [8]. These workloads are designed for the next

generation of processor architectures and their high computational

load makes them candidates for code perforation as it can reduce

this load at the cost of some accuracy loss.

5.1 Benchmarks
We use the following benchmarks in our evaluation. Together,

these benchmarks represent a broad range of computations includ-

ing financial analysis, media processing, engineering, and data min-

ing workloads.

• x264. This media application performs H.264 encoding on a

video stream. Distortion is calculated using the peak signal-

to-noise ratio (PSNR) of the encoded video as well as the

bitrate of the encoded video. PSNR is measured using the

H.264 reference decoder. For each of these values the per-

forated output is compared to the original. The distortions

for PSNR and bitrate are then averaged. The x264 bench-

mark includes both assembly and vanilla C implementations

of some functions. We use the C implementations to give the

compiler a larger set of loops to perforate.

• streamcluster. This data mining application solves the on-

line clustering problem. Distortion is calculated using the

BCubed (B3) clustering quality metric [2]. The metric cal-

culates the homogeneity and completeness of the clustering

generated by the application, based on external class labels

for data points. The value of the metric ranges from 0 (bad

clustering) to 1 (excellent clustering). The distortion is repre-

sented as the scaled difference between the clustering quality

of the perforated and original code. If the perforated program

performs better than the unmodified version it is considered

to have no distortion.

• swaptions. This financial analysis application prices a port-

folio of swaptions by using Monte Carlo simulation to solve

a partial differential equation. Distortion is calculated using

the price of the swaption and comparing the price of the per-

forated application to that calculated by the original. The

PARSEC benchmark only uses a single set of parameters so

all swaptions have the same value. To obtain a more real-

istic computation, the input parameters were altered so that

the underlying interest rate of the swaption can vary from

0 − 10 %.

• canneal. This engineering application uses simulated an-

nealing to minimize the routing cost of microchip design.

Distortion is calculated using the routing cost and comparing

the cost of the perforated version to the cost of the original.

• blackscholes. This financial analysis application computes

the price of a portfolio of European options by solving a

partial differential equation. The distortion is calculated by

comparing the price of options determined by the perforated

application to the price generated by the original application.

• bodytrack. This computer vision application tracks a hu-

man’s movement through a scene using an annealed parti-

cle filter. Distortion is calculated using a series of vectors



that represents the changing configurations of the body be-

ing tracked. Distortion is measured by computing the relative

mean squared error (RelMSE) for each vector by comparing

the vectors generated by the perforated version to those pro-

duced by the original. The RelMSE for each vector is then

divided by the magnitude of the vector produced by the orig-

inal and these values are averaged for all vectors.

In addition to these benchmarks, the PARSEC benchmark suite

contains the following benchmarks: facesim, dedup, fluidanimate,

ferret, freqmine, and vips. We do not include freqmine and vips

because these benchmarks do not successfully compile with the

LLVM compiler. We do not include dedup and fluidanimate be-

cause these applications produce complex binary output files. Be-

cause we were unable to decipher the meaning of these files, we

were unable to develop meaningful acceptability models and dis-

tortion metrics. We do not include facesim because it does not

produce any output at all (except timing information).

Finally, we do not include a detailed evaluation of ferret because

all of the time-intensive loops in this application fall into one of two

categories: either perforating the loop causes unacceptable output

distortion or the loop is part of a filtering phase that coalesces im-

age segments for use during a subsequent evaluation phase. Be-

cause perforating such loops increases the number of image seg-

ments considered during the evaluation phase, this process actually

decreases the overall performance. The initial exploration of the

performance/accuracy trade off space indicates that loop perfora-

tion is unable to acceptably increase the performance of this appli-

cation.

5.2 Perforated Executions
Each PARSEC application comes with three training inputs and

one native input. The training inputs are provided to support ac-

tivities (such as compiler optimizations that use dynamic profiling

information) that exploit information about the run-time behavior

of the application prior to building the production version. The

native inputs are designed to enable the evaluation of the applica-

tion on production inputs. We use the training inputs to explore

the performance/accuracy tradeoff space and select loops to perfo-

rate that provide the best combination of performance and accuracy

(see Section 6). We report performance and accuracy results from

executions that process the native inputs. These inputs were not

used as representative inputs during the exploration of the perfor-

mance/accuracy tradeoff space.

In all experiments except canneal, we set the compiler perfora-

tion rate to 0.5 (i.e., each perforated loop skips half of the loop

iterations). The modulo perforation strategy is used for all loops. If

a loop contributes less than 1% to the total execution time, the com-

piler never perforates the loop (and does not evaluate the effect of

perforating the loop during the exploration of the performance/ac-

curacy tradeoff space). Because canneal delivers a better combina-

tion of performance and accuracy at a higher loop perforation rate,

we use a perforation rate of 0.97 for this benchmark.

For some of the applications the provided datasets are not al-

ways appropriate for providing the full coverage needed to train

the compiler. All training inputs for x264 use the same video in

different resolutions. To avoid potential over-fitting, we perform

the training on different video with the same resolution as the na-

tive input (1080p). For bodytrack, the training datasets contain at

most 4 frames, which is insufficient for the training. We perform

the training using the first 20% (52 frames) of the native data set. In

streamcluster, points are drawn from a uniform distribution across

the input space – since the data is not cluster-able, it is impossible

to assess the effect of code perforation. We therefore use an existing

clustering evaluation data set covtype1 for testing. We also create

our own synthetic training inputs for this application. These train-

ing inputs have a predefined number of centers, with other points

normally distributed around the centers.

6. EVALUATION OF SpeedPress
This section presents an evaluation of the SpeedPress perforat-

ing compiler applied to the six PARSEC benchmarks described in

Section 5.1. The section begins by discussing general trends and

then discusses each benchmark individually.

6.1 General Trends
Figures 8–13 present, for each application, the normalized per-

formance (left y axis) and distortion (right y axis) as a function of

the acceptable distortion bound. The normalized performance is

computed as the speedup — the execution time of the original ver-

sion divided by the execution time of the perforated version. The

distortion is presented as a percentage. For each application, the

test input is the native input from the PARSEC benchmark suite.

In general, both the performance and distortion increase as the

acceptable distortion bound increases. Several points exhibit non-

monotonic behavior (the performance decreases as the acceptable

distortion bound increases). We attribute these anomalies to differ-

ences in the execution characteristics of the loops in the application

when run on the training versus native inputs. For others, increas-

ing the distortion bound does not enable the perforation of addi-

tional loops, so the performance stays the same as the acceptable

distortion bound increases.

For all benchmarks, SpeedPress is able to provide at least 2×

speedup for a maximum distortion bound of 15 %, and several of

the benchmarks can achieve 3× or greater speedup. In addition to

finding large speedups, SpeedPress keeps the distortion close to the

acceptable limit used during training. These results demonstrate

SpeedPress’s ability to deliver significant performance gains while

keeping the distortion within a (small) given bound. Furthermore,

these results show that SpeedPress can successfully increase the

performance of a range of computations, including financial analy-

sis, media processing, computer vision, and engineering computa-

tions.

Table 3 shows the data that SpeedPress collected during train-

ing for each of the six benchmarks. For each benchmark, the table

shows the function where the loop was found, the loop’s individual

effect on distortion and speedup, and the cumulative effect of distor-

tion and speedup when perforating that loop and every loop above

it in the table. This table demonstrates the importance of searching

for multiple loops to perforate, as for four of the six benchmarks,

multiple loops are perforated to achieve the best speedup.

6.2 Individual Benchmark Evaluation
This section presents a detailed analysis of the performance/ac-

curacy tradeoffs for each of the examined benchmarks. For each

benchmark we discuss the loops perforated by SpeedPress during

the training run with the 10 % distortion bound, discuss the impact

of distortion on the usability of the application, and discuss scenar-

ios in which perforated execution may be preferable.

6.2.1 x264

Figure 8 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the x264 benchmark. As described in Sec-

tion 2, SpeedPress discovered considerable speedup opportunities

1Publicly available at UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/)
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Figure 8: x264
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Figure 9: streamcluster
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Figure 10: swaptions
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Figure 11: canneal
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Figure 12: blackscholes
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Figure 13: bodytrack

with low output distortion by perforating loops in x264’s motion

estimation functions. Motion estimation is a computationally ex-

pensive component of x264’s total computation and one function

in particular, pixel_satd_wxh(), contributes to over 40% of the total

runtime. This function was described in Section 2. Clearly, perfo-

rating this loop will improve performance.

Table 3 shows the loops that SpeedPress perforates for x264

during training using a 10% distortion bound. All seven loops are

functions used for motion estimation. The pixel_satd_wxh() func-

tion is the same one described in the example from Section 2.

The H.264 standard allows motion estimation to be performed to

quarter-pixel accuracy (using interpolation to generate these sub-

pixel values). The refine_subpel() function manages the process of

sub-pixel motion estimation and perforating the loop in this func-

tion reduces the number of locations that are searched for sub-pixel

matches. The pixel_sad_8x8() is similar to the SATD function dis-

cussed in the example section, except that this function computes

the sum-of-absolute-differences for 8 × 8 regions of the reference

and current frames without using a Hadamard transform. The func-

tion x264_me_search_ref() manages the entire process of motion es-

timation, and perforating this loop reduces the number of locations

searched during this phase of computation. Finally, the function

pixel_sad_8x16() is similar to pixel_sad_8x8() except it computes

the sum-of-absolute-differences on 8 × 16 regions of the current

and reference frames.

For the native input, SpeedPress is able to achieve a 2× speedup

on x264 with less than 10% distortion. In fact, the changes to image

quality are likely to be imperceptible to humans as the PSNR of

perforated x264 is within .3 dB of the unperforated version when

processing the native input. The major contributor to distortion is

file size; the perforated version increases the size of the file by 18%

for the native input.

There are several areas where using a perforated version of x264

may be a preferable to the original. One example is transcoding,

where one might want to convert an HD video to be viewed on

a personal electronic device. Here the speed of conversion may

be more important than saving memory. Also, real-time encoders

may prefer to run faster and meet performance deadlines if there

is sufficient bandwidth available to handle the increase in file size.

All these concerns can be expressed using the acceptability model.

6.2.2 Further Encoding Studies

Given the importance of motion estimation in video encoding, it

is surprising that it is possible to perforate the loops that govern mo-

tion estimation and still produce an acceptable result. These results

suggest two further studies. The first examines the effects on the

speedup and distortion if we simply do no motion estimation. The

second examines the effect of doing motion estimation with a 100%

perforation rate for the nested loop structure in the pixel_satd_wxh()

function (which, in effect, eliminates the execution of the loop). We

perform both studies using the native input. Table 2 summarizes

the results of these additional studies. For reference, the table re-

peats the results of the 50% perforation rate applied to both loops

in pixel_satd_wxh().

Experiment Speedup Distortion

No motion estimation 6.80 178.0%

pr = 100% for pixel_satd_wxh() 1.75 116.0%

pr = 50% for pixel_satd_wxh() 1.67 9.67%

Table 2: Additional studies examining perforation in x264.

Table 2 shows the speedup and distortion when we modify the

encoder to eliminate motion estimation. This implementation of the

encoder does not attempt to exploit temporal redundancy. Instead,

it encodes each frame using only spatial redundancy (or redun-

dancy found within a single frame). Such an encoder is known as an

I-frame (or intra-coded frame) only encoder. As shown in Table 2,

eliminating motion estimation provides a substantial speedup, but



this speedup comes at the cost of 178% distortion. In this case,

the distortion is due entirely to the 355% increase in the size of the

encoded video.

Table 2 also presents the speedup and distortion for our second

study, when we apply a 100% perforation rate to the loops in the

pixel_satd_wxh() function. This implementation of the encoder will

still perform motion estimation, but due to the complete elimina-

tion of the loops in the macroblock comparison function this func-

tion will always return zero. Returning zero causes any attempted

match for a macroblock to be viewed as a perfect match. As shown

in Table 2, the 100% perforation rate provides a speedup of 1.75,

which is better than that found using a 50% perforation rate; how-

ever, this speedup comes with 116% distortion. This distortion is

due to a 233 % increase in the size of the encoded video and a .3

dB loss of PSNR.

These studies show that eliminating motion estimation entirely,

or even eliminating a key part of it, produces unacceptable results.

These conclusions by themselves are not surprising as motion esti-

mation is a key feature of video encoding. However, it is surprising

that code perforation can skip a significant amount of the motion

estimation computation while still producing encoded video with

acceptable distortion. These studies highlight the ability of Speed-

Press to automatically find non-trivial parts of a computation to skip

while still producing acceptable output.

6.2.3 streamcluster

Figure 9 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the streamcluster benchmark. This benchmark

solves the online clustering problem by partitioning a set of points

such that each is assigned to a group with the closest mean. Speed-

Press finds two loops to perforate for the streamcluster benchmark

as shown in Table 3. The first loop, in function pFl(), estimates the

cost of opening a new cluster center. Perforating this loop allows

the application to make a less accurate estimate of this cost more

quickly. The second loop, in function dist(), calculates the dis-

tance between two points. Perforating this loop effectively allows

the application to estimate the distance by treating the points as if

they had lower dimensionality. SpeedPress achieves a speedup of

2.5x with a distortion of 0.35%.

There are several applications for which the increased speed of

the perforated streamcluster might be preferable. For example, con-

sider the problem of performing data mining on a stream of network

traffic. In this scenario it might be more important to get an approx-

imation of the clustering while maintaining performance that keeps

up with the rate of network traffic. Using perforation allows this

tradeoff. Another potential use is to quickly assess some unknown

initial clustering parameters, such as an estimation of the minimal

and maximal number of clusters. After this initial assessment, a

more accurate, but slower version of the code could be used.

6.2.4 swaptions

Figure 10 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the swaptions benchmark. This benchmark

computes the price of a portfolio of swaptions using Monte Carlo

simulation. swaptions is the only benchmark of the six which shows

significant bias, and correcting that bias is important for allowing

the compiler to achieve significant speedup. When SpeedPress ac-

counts for bias, it perforates three loops in the HJM_Swaption_Blocking()

function. This function is the where most of the time is spent in the

program and these loops govern how many Monte Carlo simula-

tions are used. The function HJM_SimPath_Forward_Blocking() com-

putes and stores the results of one simulation. Perforating these

four loops results in a speedup of 2×, while the bias adjusted out-

put has a distortion of only 2 %.

The ability of the perforated and bias adjusted swaptions to ap-

proximate the true result in a fraction of the time has several appli-

cations. For example, an application could use perforation to spec-

ulatively price swaptions and then slowly compute the exact price

later as a monitoring step. In addition, in a very volatile situation

it may be preferable to quickly achieve an estimate of the swaption

price and act on that price immediately rather than waiting for a

slower, but more accurate result.

6.2.5 canneal

Figure 11 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the canneal benchmark. This benchmark per-

forms the place-and-route function on a processor netlist using sim-

ulated annealing. As shown in Table 3, SpeedPress finds only

one significant loop to perforate for this application, in the run()

method of the annealer_thread class. This loop is a for loop nested

in a while loop. The while loop checks a termination condition

and if it does not terminate, then the for loop attempts a number of

moves to improve the routing cost. Perforating this for loop causes

less work to be done between checking the termination condition.

Checking the termination condition more often allows the program

to exit sooner in the case where it has reached a point of diminish-

ing returns — the point when moves are more likely to be rejected

than accepted. In exchange for the earlier termination, the perfo-

rated application attempts fewer moves at this point of diminishing

returns and thus misses some additional moves that further reduce

cost.

While the training run estimated the speedup for canneal to be

1.3× with a 10 % distortion bound, the actual speedup measured

using the test data set shows a speedup of over 2.5× for the same

distortion bound. We attribute this difference to the much greater

complexity of the test data set compared to that used for training.

The native input netlist is over six times larger than the simlarge

input. The larger complexity of the input means that the unper-

forated program spends a longer time operating past the point of

diminishing returns.

The perforated canneal could be useful for rapid prototyping,

saving the more time consuming full version for the final step. Chip

layout is a time-consuming part of processor design and a perfo-

rated version of such an application allows engineers to explore

different designs quickly.

6.2.6 blackscholes

Figure 12 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the blackscholes benchmark. As shown in the

figure, both the speedup and distortion curves are flat. This is be-

cause SpeedPress only finds one loop to perforate. This is the outer

loop of the main() function, as shown in Table 3. SpeedPress deter-

mines that this single loop can be perforated to provide a speedup

of almost 2 with no distortion.

The fact that SpeedPress is able to double the speed of the ap-

plication without affecting the result is surprising. Closer inspec-

tion of this loop reveals it is superfluous as it does not affect the

result. Rather, this loop appears to have been added to the bench-

mark solely to increase the workload and causes the same results

to be computed repeatedly. This benchmark demonstrates how

SpeedPress can be used to find redundant computation.

6.2.7 bodytrack

Figure 13 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the bodytrack benchmark. As shown in the

figure, SpeedPress is able to find good speedups for this benchmark



Figure 14: Reference frame. Figure 15: Output of bodytrack in the presence of core failures with

perforation.

with very little distortion. bodytrack uses an annealed particle filter

and Monte Carlo simulation to track a human through a scene and

SpeedPress finds several loops to perforate within the annealing

and Monte Carlo steps. The loop with the biggest impact is the one

which updates the application’s internal model of the body’s current

pose. This loop is a good candidate for perforation due to its signif-

icant contribution to program runtime and because it uses particle

annealing and Monte Carlo methods to approximate the position of

the body at each time step. Additionally, the compiler finds several

other loops that compute measurements of various image features

and determines that they can be perforated without significant loss

in accuracy.

Table 3 shows that SpeedPress is able to find a number of loops

to perforate, and the total effect of perforating these loops results

in a speedup of more than 3× while keeping distortion below 2%.

The loop in the Update() method of the ParticleFilter class is the

one mentioned above that controls the Monte Carlo and particle

annealing steps. For each new frame, bodytrack computes the po-

sition of the body and the likelihood that the new position is correct

given the old position. The ImageErrorInside() function contributes

to this calculation. GetObservation() reads the data for a new frame

and performs some image processing including edge detection and

creation of binary images. Perforating GetObservation() means that

the application uses less data for subsequent computation. The next

four functions for bodytrack listed in Table 3 all contribute to de-

termining the location of various body parts in the current frame.

The OutputBMP() function writes an image illustrating the current

position of the body. Perforating this function does not affect dis-

tortion because our output abstraction for bodytrack only includes

the numerical representation of the body’s position and not the out-

put image2. The last three loops listed in the table perform a one-

dimensional filter on rows of the image.

As shown in Figure 13, despite considerable performance gains,

distortion levels remain low. This is due to the fact that the dis-

tortion metric is influenced heavily by a small number of rela-

tively large magnitude components of the vector which describes

the body’s configuration. The large components represent the chest

and head of the body being tracked. The perforated version of

bodytrack is able to identify and track the head and chest with high

accuracy at the cost of reduced accuracy for the arms and legs. The

degree to which the application miscalculates the position of the

arms and legs is proportional to the amount of perforation. Fig-

ure 15 shows how perforation affects the output of bodytrack for

our experiments on fault tolerance. Section 7 contains detailed dis-

2For experiments on fault tolerance, we disable perforation in this
loop to have visual confirmation that the output is acceptable.

cussion of these figures.

The perforated version of bodytrack may be appropriate for sev-

eral machine vision applications where quick understanding of the

general location of a person is more important than determining the

exact configuration of their appendages. An example of such a sce-

nario is an autonomous car that needs to quickly determine whether

or not a person is on a course likely to result in collision. Also secu-

rity cameras may need to quickly determine whether or not a person

has entered a scene without regard to their exact configuration.

7. EVALUATION OF SpeedGuard
This section presents several experiments illustrating how the

SpeedGuard runtime system can use the performance/accuracy trade-

offs discovered by SpeedPress to provide robustness in the face of

faults. In the first experiment, the run-time responds to simulated

core failures. In the second experiment, the run-time responds to

a dynamic change in clock speed. We focus on our fault tolerance

experiments on x264 and bodytrack because they are the largest

(in lines-of-code) and most complicated of the six benchmarks and

therefore provide the most realistic scenarios in which to evaluate

SpeedGuard.

For these experiments, we use a different video as input to x264.

The native input video of PARSEC has regions of varying difficulty

making it difficult to separate performance changes due to the en-

vironment from changes due to the input. For this reason we use a

video which is, on average, more difficult to encode, but the diffi-

culty does not vary much from frame to frame. For bodytrack, we

use the native input in all fault tolerance experiments.

We measure the overhead of SpeedGuard by comparing the speed

of the benchmarks with the run-time enabled to the speed with no

run-time system. We find that SpeedGuard contributes less than 1%

to the execution time and conclude that the overhead of the system

is insignificant.

7.1 Core Failure
In the first experiment, SpeedGuard responds to simulated core

failures. Parallel versions of x264 and bodytrack are run on eight

cores of an Intel Xeon X5460 dual quad-core processor. At a given

point in the computation core failure is simulated by restricting the

operating system from scheduling the benchmark on three of the

eight cores. The target performance for both programs is commu-

nicated to SpeedGuard using the Heartbeat API. Both applications

request a minimal heart rate between 90% and 115% of what they

achieve in a system with no failures.

Figures 16 and 17 show the results of the core failure experi-

ments for each of the benchmarks. These figures show the dynamic



x264

Individual Cumulative

Function Distortion Speedup Distortion Speedup

pixel_satd_wxh, outer 3.65% 1.457 3.65% 1.460

pixel_satd_wxh, inner 4.66% 1.457 9.67% 1.672

refine_subpel 0.05% 1.098 9.83% 1.789

pixel_sad_8x8, outer 0.01% 1.067 9.96% 1.929

pixel_sad_8x8, inner 0.03% 1.060 9.94% 1.986

x264_me_search_ref 0.21% 1.014 9.51% 2.054

pixel_sad_8x16, outer 0.02% 1.005 9.53% 2.058

streamcluster

Individual Cumulative

Function Distortion Speedup Distortion Speedup

pFL, inner 0.00% 1.252 0.00% 1.252

dist 0.00% 1.037 0.00% 1.708

swaptions (with bias adjustment)

Individual Cumulative

Function Distortion Speedup Distortion Speedup

Swaption_Blocking, outer 2.854% 1.983 2.854% 1.983

SimPath_Forward_Blocking 4.903% 1.014 8.593% 2.068

Swaption_Blocking, middle 1.111% 1.010 7.816% 2.129

Swaption_Blocking, inner 1.312% 1.014 7.990% 2.154

canneal

Individual Cumulative

Function Distortion Speedup Distortion Speedup

annealer_thread::run 7.467% 1.289 7.467% 1.289

blackscholes

Individual Cumulative

Function Distortion Speedup Distortion Speedup

main, outer 0.0% 1.898 0.0% 1.898

bodytrack

Individual Cumulative

Function Distortion Speedup Distortion Speedup

ParticleFilter::Update 0.050% 1.526 0.050% 1.526

ImageErrorInside, outer 0.038% 1.192 0.032% 1.809

ImageErrorInside, inner 0.028% 1.160 0.040% 1.957

GetObservation 0.371% 1.186 0.309% 2.291

BinaryImage, inner 0.023% 1.127 0.573% 2.409

BinaryImage, outer 0.036% 1.114 0.684% 2.449

MultiCameraProjectedBody, inner 0.146% 1.108 0.416% 2.752

MultiCameraProjectedBody, outer 0.062% 1.102 0.416% 2.935

ProjectedCylinder, outer 0.098% 1.036 0.968% 2.975

ProjectdCylinder, inner 0.056% 1.033 1.260% 3.036

OutputBMP 0.000% 1.017 1.260% 3.174

TrackingModel 0.064% 1.007 0.387% 3.214

FlexFilterRow, outer 0.000% 1.007 0.387% 3.247

FlexFilterRow, inner 0.078% 1.001 1.826% 3.284

Table 3: Loops selected for perforation in PARSEC benchmarks during training using 10% distortion bound.



behavior of the benchmark in the presence of core failures. For both

figures, time, measured in heartbeats, is displayed on the x-axis,

while performance is displayed on the left y-axis. Performance is

measured using a sliding average over the last twenty heartbeats

and it is shown for three scenarios. The first scenario is repre-

sented by the curve labeled “Baseline” and shows the performance

of the system with no runtime and no core failures. The second sce-

nario, represented by the curve labeled “No perforation” shows the

performance of the system with core failures but without run-time

support. The third scenario, labeled “SpeedGuard w/ perforation”

shows the performance of the benchmark with SpeedGuard enabled

in the presence of core failures. All performance is normalized to

that of the baseline system. The points where core failures occur

are the same for scenarios with and without perforation and these

points are marked in the figures using a dashed vertical line. The

right y-axis shows how the number of perforated loops varies dy-

namically as SpeedGuard responds to changes in performance.

7.1.1 Core failure in x264

Figure 16 shows the behavior of x264 in the presence of core

failures. The “No perforations” curve shows that the core failures

cause performance to fall to about 65% that of the baseline sys-

tem. In contrast, SpeedGuard is able to respond to the core failures

by dynamically perforating loops. As shown in the chart, when

the core failures occur SpeedGuard begins perforating loops until

performance returns to the desired value. By heartbeat 260, per-

foration has caused the application to exceed the maximal desired

heart rate, so SpeedGuard reduces perforation. From that point on,

SpeedGuard alternates between perforating three or four loops in

an attempt to keep performance as close as possible to the desired

value. By the end of the sequence performance is within 3% of the

baseline system.

SpeedGuard is able to maintain the performance of x264 with-

out resorting to video-specific fault tolerance methods like skipping

frames. While common, the technique of dropping frames can have

a large detrimental effect on user experience. For this example,

the system with core failures would have to drop one out of every

three frames, which would reduce a system with a frame rate of 25

frames per second to 16 frames per second. This drop in frame rate

would be noticeable to the viewer as a stutter in the video. Further-

more, enabling an encoder to drop frames requires additional work

for the programmer beyond the development of the encoder itself.

SpeedGuard is able to adjust to meet the performance goal with

no measurable change to the quality of the video (measured in

PSNR)3. SpeedGuard does increase the bitrate of the encoded video

by 6%. This increase in bitrate could easily be tolerated by allocat-

ing a small amount of additional bandwidth or disk space. Speed-

Guard is able to provide this service for the user with no additional

burden other than inserting calls to the Heartbeat API.

7.1.2 Core Failure in bodytrack

Figure 16 shows the behavior of bodytrack in the presence of

core failures. The “No perforation” curve shows that the core fail-

ures cause performance to fall to about 82% of the baseline sys-

tem. As for x264, SpeedGuard is able to respond to the core fail-

ures by dynamically perforating loops. When the core failures oc-

cur, SpeedGuard begins perforating loops until performance returns

to the desired value around heartbeat 90. For bodytrack, Speed-

Guard consistently alternates between using three and four perfo-

rated loops to keep the average performance within the bounds.

From heartbeat 90 until the end of the sequence the average perfor-

3Output videos are available at
http://www.youtube.com/view_play_list?p=0347D028F143EA93.

mance is only 7% greater than that of the baseline system and well

within the specified bounds.

We view the SpeedGuard system as “pushing” bodytrack along

in this instance. When performance dips below a certain level

SpeedGuard gives the application a push and it momentarily ex-

ceeds its goals, so the system backs off and stops pushing. With-

out the push, however, performance falls back below an acceptable

level and the process repeats. Even though the instantaneous per-

formance (measured using a 20 heartbeat sliding window) is not

in the desired range, the average performance is, and these pushes

allow bodytrack to keep up with its goals. In a real-time system,

the periods where bodytrack runs below desired speed correspond

to the application falling behind while data accumulates in a buffer.

The momentary burst in speed (from the push) allows bodytrack to

catch up and clear this buffer to keep it from overflowing.

SpeedGuard achieves this performance with less than 2% in-

crease in distortion. The bodytrack benchmark outputs images that

illustrate the track, and Figure 14 shows the output of the unmodi-

fied program while Figure 15 shows the output of the system which

uses SpeedGuard to maintain performance in the face of core fail-

ure. The two images are almost identical, except that SpeedGuard

has lost track of the location of the person’s left forearm. Such a

small error would likely not effect the performance of a robot or

other autonomous system designed to interact with the human.

7.2 Frequency Scaling
In the second experiment, SpeedGuard responds to a dynamic

change in core frequency. In this case, the benchmarks are run on

an Intel Core 2 Duo T9400. The operating frequency of the chip

can be adjusted dynamically using the cpufrequtils infrastructure

of Linux [1]. Approximately one quarter of the way through the

computation the chip frequency is reduced from 2.53 GHz to 1.6

GHz. Then, approximately three quarters of the way through the

computation, the frequency is reset to its original value. The target

performance for both benchmarks is established using the Heart-

beat API. Both applications request a minimal heart rate that is no

less than 90% and no more than 115% of what they achieve in a

system with no frequency scaling.

Figures 18 and 19 show the dynamic behavior of the benchmarks

in reaction to a dynamic change in processor frequency. As in the

core failure experiment, time is displayed on the x-axis, while per-

formance is displayed on the left y-axis. Performance is again mea-

sured using a sliding average over the last twenty heartbeats and it

is shown for the baseline scenario (with no frequency change), a

scenario with sudden frequency change but no perforation, and the

scenario with a frequency change, but with SpeedGuard enabled.

The points where frequency changes are labeled in the figures us-

ing dashed vertical lines. The right y-axis shows how the number

of perforated loops varies dynamically.

We note that the frequency scaling experiment demonstrates not

only the ability to use code perforation to respond to faults, but

also the ability to trade accuracy for power savings. Power in a

microprocessor is proportional to cv2 f , where c is capacitance, v

is voltage and f is frequency. In these experiments, processor fre-

quency is reduced by 36% and SpeedGuard maintains performance.

This allows us to effectively reduce power by 36% in exchange for

some accuracy loss; however, if the processor operates at lower

frequency, we could also lower the voltage for further reductions

in power. In fact, the processor used in this study does lower volt-

age when frequency is lowered. When voltage is also reduced from

1.3V to 1.1V, the total power savings is over 2.2×.
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Figure 16: Dynamic behavior of SpeedGuard for x264 benchmark in

the presence of three core failures.

Core 
failures

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250
Time (heartbeat)

P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

8

N
u

m
b

er
 o

f 
P

er
fo

ra
te

d
 L

o
o

p
s

Baseline
No perforation
SpeedGuard w/ perforation
# of Perforations

Figure 17: Dynamic behavior of SpeedGuard for bodytrack bench-

mark in the presence of three core failures.
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Figure 18: Dynamic behavior of SpeedGuard for x264 benchmark in

the presence of frequency scaling.
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Figure 19: Dynamic behavior of SpeedGuard for bodytrack bench-

mark in the presence of frequency scaling.

7.2.1 Frequency scaling in x264

Figure 18 shows the behavior of x264 during a sudden change

in processor frequency. The “No perforation” curve shows that this

sudden decrease in computing power causes performance to fall to

about 65% that of the baseline system by heartbeat 120. Perfor-

mance remains at this level until the frequency increases and then

it returns to the expected level. In contrast, SpeedGuard is able to

respond to the frequency change by dynamically perforating loops.

As shown in the chart, when the frequency change occurs Speed-

Guard perforates three loops and the performance returns to the

desired value by heartbeat 160. When the frequency is raised to

its original value, SpeedGuard quickly reduces the number of per-

forations so that by heartbeat 400, the program is again running

unperforated code.

As in the core failure experiment, SpeedGuard dynamically ad-

justs perforation level to meet the application’s performance goals

with no measurable change to the quality of the video. In this case,

SpeedGuard only increases the bitrate of the encoded video by 2%.

Again, for a real-time encoder, this small and temporary increase

to bitrate might be preferable to a few seconds of choppy video.

7.2.2 Frequency scaling in bodytrack

Figure 19 shows the behavior of bodytrack during a sudden

change in processor frequency. The “No perforation” curve shows

that the sudden loss of processing power causes performance to fall

to about 60% that of the baseline system by heartbeat 85. Perfor-

mance remains at this level until the frequency increase allows it

to return to the desired level. In contrast, SpeedGuard is able to

respond to the frequency change by dynamically perforating loops.

As shown in the chart, when the frequency change occurs Speed-

Guard perforates three loops and the performance returns to the

desired value by heartbeat 100. When the frequency increases,

SpeedGuard quickly reduces the number of perforations so that by

heartbeat 250 bodytrack is again running unperforated code.

As in the core failure experiment, SpeedGuard is able to meet

bodytrack’s performance goals with only a small degradation of its

ability to track the body through the scene. Perforation causes some

inaccuracies in the position of the subject’s forearm, but we have al-

ready identified several applications where this might be preferable

to failing to return any result promptly.



7.3 Summary of Fault Tolerance Experiments
These experiments demonstrate several important features of the

SpeedGuard system. First, they demonstrate how the performance

gains found by SpeedPress can be converted into robustness in the

face of errors. Second, this study highlights SpeedGuard’s flexibil-

ity to respond to different types of faults without changing the ap-

plication code or even the compiled binary. SpeedGuard achieves

this flexibility by detecting performance changes instead of particu-

lar faults, meaning that the system can respond to any environmen-

tal change that causes a variation in performance. Third, these re-

sults are achieved with no application specific fault tolerance code

and no additional burden on the user apart from the required calls

to the heartbeat interface.

8. RELATED WORK
Trading accuracy of computation for other optimizations is a

well-known technique. It has been shown that one can trade off

accuracy for performance [22], robustness [22], energy consump-

tion [10, 31, 22] and fault tolerance [10, 31, 22]. We note that de-

velopers have, for years, manually navigated performance/accuracy

tradeoffs. For example, the Search benchmark in the Jade bench-

mark set [9, 25] was manually optimized to use more efficient, less

accurate, but still acceptably accurate alternate implementations of

mathematical functions such as sqrt, sin, and cos.

8.1 Software Techniques
Rinard [22, 23] presents a technique for automatically deriving

empirical probabilistic distortion and timing models that character-

ize the accuracy/performance tradeoff space of a given application.

To the best of our knowledge, this research is the first to propose

and infer such models. Given a program that executes a set of tasks,

these models characterize the effect of skipping task executions on

the performance and execution time. The results show that skip-

ping tasks can often significantly reduce the execution time (be-

cause the program performs less computational work) while pro-

ducing acceptable changes in the output. Note that because the

execution time reductions correspond directly to reductions in the

amount of computational resources required to perform the compu-

tation, execution time reductions correspond directly to energy re-

ductions. The research evaluates the use of these models to tolerate

task failures (or failures of the underlying computational platform

executing the task), purposefully discard tasks to reduce the execu-

tion time and/or the energy consumption, and eliminate idle time

at barriers terminating parallel phases, all while keeping the result-

ing output distortion within acceptable bounds. Many of the tasks

in the reported benchmark set execute subsets of loop iterations.

Discarding such tasks has essentially the same effect as loop per-

foration. This research was the original inspiration for the research

presented in this paper.

In comparison, the primary advantage of loop perforation is its

ability to operate on applications written in standard languages with-

out the need for the developer to identify task boundaries. This pa-

per also demonstrates how to use loop perforation in combination

with dynamic performance monitoring techniques and fine-grain

control over skipped computation to enable applications with real-

time performance goals to adapt to events such as core failures and

clock frequency changes.

Researchers have also developed systems that allow developers

to provide multiple different implementations for a given piece of

functionality, with different implementations occupying different

points in the performance/accuracy trade off space. Petabricks [3]

is a new parallel language and compiler that developers can use

to provide multiple alternate implementations of a given piece of

functionality, each with potentially different accuracy/performance

characteristics. Given these alternatives, the compiler and runtime

system can dynamically select and create an optimized hybrid al-

gorithm that is tailored for solving a particular problem given input

characteristics (e.g. size) and environmental constraints such as the

level of available parallelism (e.g. number of cores).

Green [5] also provides constructs that developers can use to

provide alternate implementations for given pieces of functional-

ity, with the alternate implementations typically offering better per-

formance or energy consumption characteristics but less accuracy.

One of the supported alternate implementations is loop approxima-

tion, or loops that exit early, effectively skipping the remaining con-

tiguous set of loop iterations, an optimization similar to our trun-

cation perforation. The Green framework requires programmers to

annotate their code using extensions to C and C++ and to provide

additional functions needed by the Phoenix compiler framework.

In contrast to these techniques, this paper presents an automated

solution that works directly on original unmodified applications.

There is no need for the developer to provide multiple implemen-

tations of any piece of functionality, no need for the developer

to understand the characteristics of the application and its imple-

mentation to identify which approximations are likely to provide

reasonable performance gains with acceptable accuracy, and no

need to understand or modify the source code of the application

at all. In contrast, our implemented system automatically gener-

ates a large performance/accuracy tradeoff space and automatically

searches that space to find points that simultaneously meet both

performance and accuracy goals.

We also present the SpeedGuard framework, which, combined

with the Application Heartbeats framework, enables our system to

automatically control the amount of applied perforation to enable

effective automatic responses to a wide variety of environmental

changes that affect performance and energy consumption, includ-

ing dynamic changes in the clock frequency.

8.2 Hardware Techniques
Considerable research has gone into exploring how to trade off

accuracy for reduced energy consumption. George et al [15] show

how circuit level errors can be ignored if the application level im-

pact is low and if such a tradeoff leads to considerable gains in

energy efficiency. Chakrapani [10] extends that work with a more

detailed theoretical model of the tradeoff between energy consump-

tion and error induced by propagation delay in circuits that imple-

ment arithmetic operations that can be exploited to gain energy

savings. Deviation-tolerant computation [31] present an analysis

of how one can trade off correctness, in the presence of hardware

faults, for performance or energy efficiency. Their method for trad-

ing accuracy for performance models how altering an external sys-

tem feature (e.g. circuit noise margins) may result in a performance

increase at the cost of higher error probability.

These techniques are complementary to our work as they oper-

ate at a different scope. They show to trade performance for ac-

curacy at a bit, or sub-word level (e.g. simple ripple-carry adders)

while our approach deals with performance/accuracy trade-offs at

a the level of loops and function calls. Additionally, our method

for trading off accuracy relies on skipping the execution of code

rather than tolerating errors at the hardware level. Finally, we have

implemented our techniques in a real system including both the

SpeedPress compiler and SpeedGuard runtime system.

8.3 Feedback-Driven Optimization
One way to view code perforation is an optimizing compiler that

examines the accuracy-performance space to drive program opti-



mizations. Optimizing programs based on run time profiling is

a well studied area [30]. Feedback-directed optimization (FDO)

is general term used to describe optimization techniques that al-

ter a program’s execution based on information gathered at run

time [30]. FDO techniques range from static to dynamic. At the

static end of the spectrum, run time profiling information is used

to produce new, optimized, binaries (recompilation) [11, 29, 17].

Fully dynamic hardware [26, 20] and software techniques[6, 12, 4]

are at the other end of the spectrum. All of these techniques oper-

ate under the constraint that the transformed program must produce

the identical output as the original program. Code perforation, in

contrast, is designed to produce programs whose outputs may dif-

fer within acceptable distortion bounds. This additional freedom

enables code perforation to, in general, deliver larger performance

increases.

8.4 Fault Tolerance
Recently, several techniques that trade off correctness for sys-

tem availability have been proposed. Examples include failure-

oblivious computing [24], error virtualization [27, 28], DieHard [7],

acceptability-oriented computing [21] and data-structure repair [13].

These techniques exploit the concept of software elasticity: the

ability of regular code to recover from certain types of failures

when low-level faults are masked by the operating system (OS)

or by appropriate instrumentation. When applied to fault tolerance,

these techniques are useful for recovering from failures that cause

memory errors but cannot respond to failures that cause system per-

formance degradation. Our approach also harnesses software elas-

ticity, but instead responds to errors affecting system performance

rather than memory.

9. CONCLUSIONS
We have presented and evaluated a technique, code perforation,

for automatically enabling applications to increase their performance

on demand while keeping any resulting output distortion within ac-

ceptable bounds. Our experimental results show that this technique

can enable applications to deliver acceptable results to users more

quickly. It can also enable applications to automatically adapt to

meet real-time performance goals in the face of disruptive events

such as core failures, clock speed changes, and increased loads.

We acknowledge that code perforation is not appropriate for all

possible applications. But within its target class of applications, our

results show that it can automatically deliver an important capabil-

ity that dramatically increases the ability of systems to deal suc-

cessfully with complex and dynamically changing combinations of

performance demands, failures, and accuracy requirements.
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