Lawrence Berkeley National Laboratory
Recent Work

Title
USING COMMON SUBEXPRESSIONS TO OPTIMIZE MULTIPLE QUERIES

Permalink
https://escholarship.org/uc/item/Owc8798d

Authors

Park, J.
Segev, A.

Publication Date
1988-02-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0wc8798c
https://escholarship.org
http://www.cdlib.org/

{
LBL-23597

o,%

UNIVERSITY OF CALIFORNIA, BERKELEY

E Lawrence Berkeley Laboratory

e : :
¥ Information and Computing
Py ‘ ' . LAWRENCE
: Sciences Division SERKELEY (ABGRATORY
MAY 10 1988
) LIBRARY AND
Presented at the 4th International Conference DOCUMENTS SECTION
on Data Engineering, Los Angeles, CA,
February 2-5, 1988
Using Common Subexpressions to
Optimize Multiple Queries
J. Park and A. Segev
February 1988 .
Y

[bSee — 147

_.€'9

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER.

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

~t

-

USING COMMON SUBEXPRESSIONS TO OPTIMIZE
MULTIPLE QUERIES

Jooseok Park and Arie Segev

School of Business Administration and
Lawrence Berkeley Lab’s Computer Science Research Department
' The University of California
Berkeley, California 94720

Abstract

This paper deals with the problem of identifying com-
mon subexpressions and using them in the simultaneous
optimization of multiple queries. In particular, we
emphasize the strategy of selecting access plans for the
single queries and their integration into a global access
plan that takes advantage of common tasks. We present
a dynamic programming algorithm for the selection of
individual access plans such that the resulting global
access plan is of minimum processing cost. The compu-
tational complexity of this algorithm represents a
significant improvement over existing algorithms.

1. INTRODUCTION

The relational model [CODD70] allows for nonpro-
cedural queries where the user expresses the result
rather than how to get it. Consequently, an important
component of a relational database management system
(DBM\IS) is the query.optimizer which transforms the
user’s query into a procedural access plan, These query
optimizers employ algorithms such as [WONG?8] and
[SELL79|; see [JARI(S4a] for a survey of query optimi-
zation in a centralized DBMS. Query optimizers in
current relational database systems minimize the cost of
processing onme query at a time. There are situations.
however, where global optimization of multiple queries
can provide substantial savings over the current single
query approach by sharing common resources in pro-
cessing them.

In traditional applications, the multiple-query
optimization approach is attractive when a set of
queries is embedded in application programs or submit-
ted for batch processing [KKIM84]. Global optimization
can reduce the processing cost significantly in on-line
environments, if queries enter the system at a steady
rate and can be grouped within a tolerable time-interval
(e.g.. a few seconds) [CHAIS2, JARIS84b, CHAKSG|.
There should be a trade-off between the reduction of
processing cost and the delay in response, however
[CHAKS2]. :

In more recent applications, the multiple-query
optimization approach is useful in the cases of deduc-
tive query processing {CHAIS6] and integrity con-
straints checks [KIMS4]. In relational DBMSs that are

extended to provide deductive capabilities, a single user
query may be translated into a set of database queries.
Quite frequently this transiation results in a disjunction
of non-recursive queries that have to be optimized
Jointly. In the case of integrity checks, there is a need
to simultaneously optimize a set of queries which are
asutomatically triggered to check for possible violation
of integrity rules when the user issues a data manipula-
tion statement [KDM84]. If the integrity check consists
of a conjunction of queries, they can be integrated into
one query by a general integrity modification procedure
[STON7?3], and thus be optimized by a curreat query
optimizer. However, if the integrity constraints are
represented by a disjunction of queries, this resulting
processing should be optimized by a multiple-query
optimization algorithm. In the above applications.
queries are issued simultaneously for a single answer, so
they can be grouped naturally for global optimization
without a degradation response time. In fact, both
response time and processing cost can be reduced
significantly because these queries have a tendency to
access the same data frequently.

Multiple-query optimization algorithms consist of
two conceptual parts - identifying common subexpres-
sions, and constructing a global access plan. Some stu-
dies have focused more on how to identify common
subexpressions among queries, and to check for possible
benefits of their sharing [FINK82, JARKS4b, CHAI86].
while other studies emphasized the global access plan

" and taking advantage of current query optimizers

[GRANBO, KIM84, SELLSS). It should be noted that
the problem of identifying common subexpressions is a
"hard™ problem in terms of complexity theory
[ROSES0, JARKS4b|, and that sharing of common
subexpressions during execution is not always better
than independent execution [GRANSO|. Therefore, the
use of common subexpressions should be determined
based on a cost-benefit analysis.

In this paper, we analyze the case of constructing a
global access plan using candidate plans generated by a
traditional optimizer, and present a dynamic program-

.ming algorithm for doing it. This algorithm bas a

significantly lower computational complexity than exist-
ing algorithms. In Section 2. we analyze the approach
of using access plans and their tasks as the building
blocks for a global access plan construction. The

dynamic programming algorithm for access plan selec-
tion in the case of identical tasks is presented in Section
3. and the case of implied tasks is discussed in in Sec-
tion 4. Section 5 concludes the paper with a summary
and directions for future research.

2. INTEGRATION OF ACCESS PLANS

There are several approaches to identifying and
using common subexpressions. A bottom-up heuristic
method of using algebraic operator irees (expression
trees) was developed to detect common subexpressions
in a query [HALL?4, HALL76]. The query graph (object
graph) approach takes advantage of common intermedi-
ate results among queries, by comparing query graphs
[FINI<82, CHAKS?2, JARKS84b, LARS8S, CHAKSE).
Unlike these approaches, the methods discussed next
are based on identifving common tasks among access
plans and constructing a global access plan. We will
use the following definitions presented in [SELLSS).
Deflnition 1. A task T; implies task T; (T; =>
T;) iff T; is a conjunction of selection predicates on
attributes A}, Aa -, A; of some relation R, T; is
a conjunction of selection predicates on attributes A |,
Aa -, A5 of the same relation with [< k, and the
result of evaluating T; is a subset of the result of
evaluating T, .

Definition 2. A task T; is identical to task T; (T;
== T;)iff a) Selections : T; => T; and T; => T,
or b) Joins : T; is a conjunction of join predicates
EI‘AI = EQ‘B“ Ep."g == E:aB'_u ey, EIA. ==
E.B; and T; is a conjunction of join predicates
E{u‘l - Eg'.Bl, E{.Az - E:’-B:- AR
E!' A, = E, .B, where each of E}, Es, £,/ and
E. is a conjunction of selections on a single relation
and EX=EI' 3udEz=El_b' .

These definitions are similar to those in [FINKS2,
JARINS4b]. However, the main difference is that the
relationships are between tasks in access plans, not
between nodes in query graphs.

In general, the problem to be addressed is the fol-
lowing. Let Q, denote query i and let S; == {P;, P;.,
-+, P, } be a set of alternative access plans for Q;.
Each access plan P;; consists of a set of tasks {1;},
T}, -+ TS} Then, given a set of queries Q,
<« -, @, and the associated access plans and relation-
ships among tasks. a2 minimum-cost global access plan
has to be constructed from {P,-}, i =1, -, n,

where k£ ° is the selected access plan for query Q.

For this problem, a branch and bound algorithm
with a depth-first-search method is presented in
[GRANS0|, which is limited to the case of identical rela-
tionships. This algorithm is modified in [SELL86| by
using a new lower bound function and s breadth-frst-
search method. [SELLSG| also extended his algorithm
to the case of implied relationships. [SELL8S] reduced
the search space in a stochastic sense as compared to
[GRANSO], but the worst-case complexity is an exhaus-
tive search of the solution space. In the next section,

we present an access plan selection algorithm which
reduces the state-space search compared with
[GRANS0O, SELLSS].

3. PLAN SELECTION ALGORITHEM

In this section we develop an efficient dynamic pro-
gramming (DP) algorithm [HORO?8] to select the set
{Sy-} for a global access plan. The logic of the algo-
rithm for the case of identical relationships among tasks
will be illusirated using several examples. In section 4,
we will outline the procedure for the case of implied
relationships, and discuss the computational complexity
of the algorithm. Due to space limitations, a complete
description of the mathematical details was not feasible:
we refer to the reader to [PARKSS| for a complete

-deseription. We first consider an example f{rom
- [GRANEO]. :
Example 1. Three queries Ql. Q2, and Q3 are con-

sidered. The alternative access plans are: Ql: P11,P12;
Q2: P21,P22,P23; Q3: P31,P32.

Each access plan consists of a set of tasks. Some
tasks are common among access plans. This example
can be represented by aa undirected graph G(V.E) with
edge-weights S < 0 and node-weights C > 0 as illus-
trated in Figure 1. In this graph, each node represents
an access plan, and the squares in each node represent
the tasks in the corresponding access plan. We will
refer to the set of nodes associated with a single query
as & column or stage interchangeably. An edge

Pu@w
| 3

o

n

'Y
w

P12

GCEEEDRE

(D&

Fig.1: Graph Representaiton for Example 1

el

b
N

o

between two squares, say s and !, means that tasks s

and ¢ are identical: we will refer to such an task-edge

as TE(s.t). A node-weight represents the estimated
cost of the corresponding access plan, whereas the abso-
lute value of each edge-weight represents the saving
from shariog the connected common tasks. The access
plan selection problem can be stated as the following
graph problem: Find a set of nodes such that one and
only one node is chosen from each column of the graph
to minimize the sum of weights associated with the
chosen nodes and the task-edges connecting squares in
these nodes.

To develop an algorithm for this graph problem,
the following definitions and notations are used.
Definition 3. An edge, EQLY), is defined between two
nodes X and Y if there exists at least one task-edge con-
pecting a task in plan X and a task in plan Y. The
weight of E(NX,Y), EW(X.Y), is the sum of weights of all
task-edges between nodes X and Y.

Deflnition 4. In the graph G(V,E), the distance of an
edge is defined as the difference between the stages of
the two nodes connected by that edge. For instance,
the distance of E(P11,P32) is 2.

Definition 5. In the graph G(V.E), an edge is defined
as regular when its distance is 1. For example,
E(P11.P22) is a regular edge.

Definition 6. In the graph G(V.E), an edge is defined
as distant when its distance is greater than 1. For
instance, E(P11.P32) is a distant edge. Consequeatly,
the edges in the graph are divided into two types:
regular edges and distant edges, referred to as RE(X,Y)
and DE(X.Y') respectively.

Definition 7. When nodes X and Y. where the stage
of X is lower than the stage of Y, are connected by an
edge, we say that E(X.Y) is incident to node Y or is
tncident from node X.

Definition 8. A node X is distantly-adjacent to a node
Y or X is distantly-adjacent from Y, if X and Y are con-
nected by DE(X,Y) and X has a lower stage number
than Y.

Fig. 2: A Simplified Graph for Example 1

Let us consider Example 1| sgain. The graph
G(V.E) can be simplified into a graph G'(V,E') as
shown in Figure 2. In this figure, we deleted the task
identifiers and added the origin node PO with zero
weight, anod connected each node with all nodes ia the
next stage. For computational convenience. we
adjusted the weights of edges and nodes in G'(V,E’) as
follows. For each regular edge RE(X.Y), its adjusted
weight is EW(X.Y) plus the weight of node Y in

G(V.E). For example, the adjusted weight of
E(P11.P21) = (-30) + 70. The weights of all distant
edges remain the same as in G(V,E}. All node-weights
were set to zero. In addition to G'(V,E'), we have to
retain the information about plans with identical tasks.
.whenever the number of such related plans is greater
‘than two. This information is represented by identical
list. For example, in Figure 1, plans P12, P21, and P31
have a common task: T3 = T3 = T3. The
identical-task list is {P12, P21, P31}. Finally. the
access plan selection problem can be stated as the fol-
lowing graph problem over G'(V,E'): choose one node
from each column to minimize the sum of edge-weights
associated with the chosen nodes.

At a first glance it seems that this problem can be
solved by a simple DP algorithm: one node is chosen for
each stage (column), and there is no edge between -
nodes in the same stage. However, this is not so
because of the existence of distant edges. The existence
of such edges results in two cases; in one case the algo-
rithm should choose a single minimum path, and in the
other case it should merge two paths into one. There-
fore, & straightforward application of a DP algorithm
requires all past information in order to choose the next
pode, and thus the search space increases in terms of
multiplicative complexity, rather than additive com-
plexity.

In this paper, we devise a DP algorithm with a

' reduced computational complexity (as discussed in the

next section). We will present several strategies to
derive the logic of the algorithm. The first strategy is
to modify the problem structure in order to apply a
simple DP algorithm. The graph G'(V,E') can be
transformed into a graph with only regular edges
‘according to the following strategy.

:Strategy 1. Each distant edge DE(X.Y) is replaced by
‘a path between X and Y (referred to as an artifictal
path) that represents the optimal path from X to Y.
We koow that DE(X.Y) is a part of the optimal path
between X and Y because any path between X and Y
can be reduced by the weight of DE(X.Y).

Fig. 3: A Modified Problem Structure for DP

Applying strategy 1 to Example 1 results in the
modified structure shown in Figure 3. AR artificial path
consists of artificial nodes and artificial edges. In Fig-
ure 3. the broken lines represent artificial edges and the
diamonds represents artificial nodes. We will denote an

artificial edge between X and Y by AE(X)Y) and its_

weight by AW(X,Y). For computational convenience,

the weights of all regular edges incident to Y were:

reduced by the weight of DE(X)Y) in the modification
procedure. Then, when constructing an artificial path
between X and Y, the weights of the regular edges in
the optimal path were assigned to the weights of the

corresponding edges in the artificial path. The detailed

modification procedure for Example 1 follows. Coun-
struction of the artificial path between P11 and P32 for

DE(P11.P32): i) Delete DE(P11,P32) from the graph. ii)’
Adjust the weights of the edges incident to P32 by the:

weight of DE(P11,P32): EW(P21,P32) « 45 - 10,
EW(P22.P32) ~ 45 - 10, and EW(P23,P32) « 45 - 10.
iii) Find the optimal path from P11 to P32 by a simple
DP algorithm: min {70+35,35+35,55+35] == 70. Iv)
Connect P11 and P32 using a chain of artificial edges.
v) Assign to the artificial edges the following weights:
AW(P11,P32) — EW(P22,P32) and AW(P11,P11) —
EW(P11,P22

Construction of the artificial path between P21 and P31
for DE(P12.P31): i) Delete DE(P12.P31). ii)
EW(P21.P31) — 20 - 0t, EW(P22,P31) — 50 - 30, and
EW(P23,P31) «— 50 - 30. iii) Optimal path from P12 to
P31 is min {20+20.55+20,55+20} == 40. iv) Connect
P12 and P31 using a chain of artificial edges. v)
AW(P12.P31) — EW(P21,P31) and AW(PI‘.’,P12) -
EW(P12.P21).

The resulting modified problem can be solved by a sim-
ple DP algorithm. The following strategy makes the
problem's modification more eflicient.

Strategy 2. For each distant edge incident from node

X, construct the artificial path starting from X,
Path(X). in a single scan. Path(X) connects X with all

nodes which were distantly-adjacent from node X in the

original graph. At each stage to be scanned., we keep

the the values of the optimal paths from node X to

nodes in this stage.

The following example illustrates strategy 2. Consider
the graph of Figure 43. This graph has four distant
edges incident from P12: DE(P12.P41), DE(P12.P51),

DE(P12.P32), and DE(PIﬁ.PTI). This graph represen- .
tation is modified as shown in Figure S using the follow- :

ing notations. Let From(P,;.k), ¢ < k, be the set of
the values of the optimal paths from P;; to all nodes in
stage k. Let Last(X.Y) be the set of possnble values for
the weight of the last artificial edge AEQN,Y), which are
the weights of all regular edges incident to Y reduced
by the weight of DE(X,Y). These two sets will be used

¢ The weight of E(P2i.P31) is oot reduced by the weight of
DE(P12.P31) since the edges are identical. The details will be dis-
cussed in strategy 4.

3 Fig. 4 - 11 a8 end of paper.

to find an optimal path for each distant edge. In Figure
S, the values in parenthesns on the k-th AE(NX.X) from
X represent From(X.k) (e.g.. {4 ,8} on the first
AE(P12.P12)), and the values in parenthesis on
AE(X)Y) represent Last(X.Y) (e.3.. {10,12} on
AE(P12,P41)). In Figure 5. Path(P12) was constructed
instead of four distant edges in the following procedure:
Stage 1. From(P12,1) = {7,8}. Stage 2.
From(P12,2) = {min(7+8,8+11], min[7+10,8+12]} =
{16,17}). Stage 3. Existence of DE(P12.P41):
Last(P12,P41) = {13-3.15-3} From(P123) =
{mm[w+10 17+12], min[16+14,17+16]} {26.30}.
'Stage 4. Existence of DE(P12.P51): Last(P12,P51) =
{17-8,19-8} Existence of DE(P12,P52): Last(P12,P32) =
{18-12,20-12} From(P12,4) == {min{26+11.30+13].
min[26+6,30+8]} = {37,32}. Stage 5. From(P12.3)
= {min{37+21,32+23}, min(37+22,32+24]} = {535,36}.
Stage 6. Existence of DE(P12.P71): Last(P12,P71) =
{25-90,27-0} From(P12,8) == {min[55+16,56+18],
min[55+26,56+28]} = {71,81}.

Therefore, a modified problem structure is obtained by
a single scaa from P12 to nodes in column 7.

We should generalize strategy 2 to coosider the
case of interactions among distant edges. The following
definitions are needed.

Definition 9. In the graph G'(V.E'), a distant edge
DEX,Y) contains another distant edge DE(Z.\WV) if
pode X has a smaller stage number than node Z and
node Y has a larger stage number than node W.

Deflnition 10. In the graph G'(V.E’), a distant edge

DE(X.Y) overiaps another distant edge DE(Z.\\) if
node X has s smaller stage number than node Z but
pode Y has a larger stage number than node Z and a
smaller stage number than node W.

.Suppose DE(X,Y) overlaps or contains DE(Z,\W). The
igraph problem modified by strategy 2 is not always
1equivalent to the original problem because the artificial
;path between X and Y may not dominate all possible
tpaths between X and Y. We will use two examples to
!show how the problem is overcome. The first example
ns for the case where one distant edge contains another.
‘The simplified graph representation for this example is
given in Figure 6. Figure 8 shows that DE(P12.P71)
contains DE(P32,P81). First transform DE(P32,PG1)
into the artificial path between P32 and P81 based on
strategy 1. This artificial path dominates all possible
paths between P32 and P81. On the other hand.
DE(P12,P71) ecannot be transformed into the
corresponding artificial path according to strategy 1.
because the cost of path P12 — P32 — P61 — P71l is
reduced by the weights of DE(P12.P71) and
DE(P32,P61) while the cost of the other paths are
reduced by the weight of DE(P12.P71) only. Therefore.
when constructing the artificial path between P12 and
P71, the algorithm should consider all pessible paths
including the artificial path between P32 and PGl. The
resulting modified problem structure is givea in Figure
7.

Pt

-

o

B’

The second example is for the case where a distant
edge overlaps the other. The simplified graph represen-
tation for this example is given in Figure 8. In this
figure, DE(P12.P51) overlaps DE(P22.P71). If two
artificial paths are constructed for DE(P12,P51) and
DE(P22.P71) by strategy 1, they dominate all possible
paths between P12 and P51 and between P22 and P71
respectively. Then let us consider the dominant path
between P12 and P71. Three paths are possible: path
P12 — P51 — P71, path P12 — P22 — P71, and path
P12 — P22 — P51 — P71. The cost of the first path is
affected by the weight of DE(P12,P51), and that of the
second path is aflected by the weight of DE(P22,P71).
The cost of the last path. however, is affected by the
weights of both DE(P12,P51) and DE(P22,P71). If stra-
tegy 1 is applied to this overlapping case, the last path
cannot be considered. In order to conmsider the last,
path, the artificial path starting from P12 is con-:
structed as follows: i) When finding the optimal path,!

all possible paths including the artificial path between;

P23 and P71 are considered. ii) An artificial edge,
AE(P12,P22), is introduced to connect the two artificial
paths: the last artificial node in the first artificial path
is adjacent to the artificial node with the next stage
number in the second path. The resulting modified
problem structure for the example is given in Figure 9.
The following strategy is proposed to generalize the
ideas from the previous two examples.

Strategy 3. As the construction order of Path(X),
start the distant edge(s) incident from the node with
the largest stage number in the original graph, and con-
tinue until transforming the distant edges incident from
the node with the smailest stage number. When con-
structing a Path(X), find aa optimal path by applying a
DP algorithm to the currently modified problem struc-
ture,

So far, we have discussed only the case where no
more than two plans had a common identical task.
Now, let us consider the case where more than two
plans have the common identical task(s). Let us look at
plans P12, P21, and P31 in Figure 1 again. To analyze
this case more easily, let us consider three task-edges
only: TE(TS.TH) TE(TA.TH) and
TE(T 3,75). If these three plans are chosen, the
total saving is not the sum of the weights of all three
task-edges, because one task should be executed and its
result used by the other two tasks. Hence. the total
saving is 60 and not 90. Consequently, *he calculation
method should handle the case of two plans sharing a
task differently than the case of three or more plans.
The following propositions are used to reduce the com-
plexity of identifying the cases.

Proposition 1. Given the graph G'(V.E') with N
stages, suppose n < N access plans have a common
identical . task, the subgraph (nodes and
representing these n plans is always a complete graph.

Proof) In the graph G(V.E), one plan should be con-
nected to the other n-1 plans by an identical task-edge
representing the common task. For any n -plans, it is

edges)

alway true. Therefore, in the graph G'(V.E’), the nodes
representing these n plans are completely connected to
each other.

Proposition 2. Given that the complete subgraph of
propesition 1 results from only one identical task, say
task T, then the resulting saving from these n plans is
the sum of the weights of n-1 edges, not of n(n-1)/2
edges.

Proof) Task T is shared by all n access plans. Ouly one
plan has to execute task T. For the global plan, there
is one edge connecting the node with the executed task
T to each of the n-1 nodes with the unexecuted task T.
Therefore, the saving is the sum of the weights of -1
edges incident to the node with the executed task T.

Prop. 1 implies that if more than two plans have a
common identical task?, then there exists at least one
distant edge among the corresponding nodes since they
form a complete graph. Hence, in order to identify the
case of a task being shared by more than two plans, we
have to check only for the existence of a distant edge.
Prop. 1 also indicates that in order to detect how many
plans have common task(s) with a given plan, we check
only the nodes adjacent to that node in G'(V,E'). If a
distant edge overlaps or contains another distant edge,
they do not have a common identical task. Prop. 2

. implies that when detecting several identical task-edges

incident to a node, we use the only one of them to cal-
culate the saving from the sharing.

The afore-mentioned ideas for are incorporated
into the procedure in the {ollowing way. According to
strategy 2, the last artificial edge in the coastruction of
each artificial path reflects the saving associated with a
distant edge. In strategy 3. the case of three or more
plans sharing a task is a special case of containment
where several distant edges are incideat to the same
node. Therefore, the modification procedure of strategy
3 is revised as follows: the algorithm is to find an
optimal path using Last(X,Y) based on the following
strategy.

Strategy 4. Given three nodes X, W, and Y (in-
ascending order of stage numbers) and the values in
!Last.(\\’,Y). we need to find the values of Last(X,Y).
Last(X,Y) represents not only the adjusted weights of
the regular edges adjacent to Y but also the adjusted
~weights of the artificial edges adjacent to Y in the
i currently obtained artificial paths. If X. W, and Y are
‘s part of an identical-task list for some task. then the
_values of Last(\V,Y') appear in in Last(X.Y) are adjusted
by subtracting from them the weight of DE(X,Y) and
adding to them their common weights of the identical
lists.

Let us consider an example to illustrate the
modification procedure implied by strategy 4. The
simplified graph representation for the example is given

¢ If the plans are located in two adjacent columns, this case is
exactly the same as the case of oaly two plans with the same com-
mon task.

in Figure 10. In this graph. the identical-task list is
{P12.P42.P71};: DE(P12.P42), DE(P42,P71), and
DE(P12.P71) has a common task and their common
weight is 10. The modification procedure for this graph
is: i) Applying strategy 2: From(P42.2) = {32.33} and
Last(P42.P71) = {34-15,32-15}. ii) According to stra-
tegies 3 and 4., From(P12.5} = {37,38,40,41} and
Last(P12.P71) = {34-25,32-25, 18-(25-10),17-(25-10)}.
Then, the value of the optimal path between P12 and

71 is min[37+9,38+7,40+4,41+2] = 43. It should be
noticed that the last two elements of Last(P12,P71)
were reduced by 15, not 25. The resulting modified
problem structure is given in Figure 11.

In this section we have described the logic of the
algorithm using examples. We have discussed five pos-
sible relationships between two distant edges. 1)
Independent relationship (See Figure 2). 2) Incidence-
from relationship (Figure 4). 3) Containment relation-
ship (Figure 8). 4) Overlapping Relationship (Figure 3).
8) Incidence-to relationship: (Figure 10). After modify-
ing the graph as demonstrated in this section, the
optimal solution can be achieved by applying s stan-
dard DP procedure to the modified graph. However the
DP algorithm described in [PARKSS] performs the

modifications at each stage during its process. The.

minimum value in From(PO,NV), where N is the last
stage number, gives an optimal solution to the access
plan selection problem.

4. IMPLIED RELATIONSHIPS

In this section, the DP algorithm is extended to the
case of implied relationships among tasks. \We present
here an informal description of the procedure; a formal
analysis is given in {PARIS88|. Consider the access
plans, P1 and P2, as shown ia Figure 12.

P P2
(oerT) (ProECT) oerr) (PROJECT)
e T S R
aaumber sumder
100 yezr__IQBSI p; IC.J . year<1987 !
T3 — [Ts -
poamewmpaame poamesspaame|

Fig. 12: Access Plans P1 and P2

Assume that task T4 implies task T1, and that task T2"
implies task T5. The implied relationship between

tasks T1 and T4 illustrates the difference of this case

from the case of identical relationships: i} The result of.

the implied task T1 can be used for the execution of the
implying task T4, but the reverse is not true. ii) The
savings from sharing T1 and T2 is dependent on the
cost of T1, not oo the cost of T4.

The savings is calculated by a joint consideration of the

two implied relationships, T4 => T1 and T2 => TS,

because the global access plan for P1 and P2 is given as
in Figure 13. '

n —-—
gumber -\
< 100 Té —

sumber
< 10

TS —
T2 — |1 year <1987
year<1985]

T8 —
pRamem=paame

Fig. 13: Global Access Plan for P1 and P2

Let us consider N access plans to generalize the
idea of the previous example. The plans and their rela-
tionships can be represented by a directed graph
G(V,A) with arc-weights S < 0 and node-weights C >
0. Assume that for each plan Pi, there exists only one
plan Pj, j 54, such that a task of Pj has an implied
or identical relationship with a task in plan Pi. Then
the total savings from using the N plans is the sum of
-the weights of all arcs connecting tasks in the N plans
in G(V,A), regardless of the direction of the arcs. Under

the above assumption, using all arcs does not make the
graph cyclic according to [SELLSSJ; so, the maximum
savings results from the use of all ares. In this case. the
saving depends on the chosen plans and not on their
order. Therefore, the graph G(V.A) can be simplified
Into G'(V,E"), which is the same as G'(V.E’) in the pre-
‘vious section.

Now, we discuss the case of relating more than two
plans. Consider three access plans as shown in Figure
14. This graph shows that there is a task in each plan
having an implied relationship with tasks in the other
two plans.

Ps

110

Fig. 14: G(V.A) for Plans P3, P4, and P5
IF plaas P3, P4, and P5 are chosen by the access plan
selection algorithm, the total savings is not the sum of
the weights of all ares, because we can use the results of
,either P3 or P4 (but not both) for the execution of PS5.
Hence, the maximum saving is the sum of the weights
of Arc(P4.P3) and Are(P3,PS). the same direction.

Let us consider the graph G(V.A) with N stages,
each of which has only one plan. The following obser-
vations in G(V.A) and G'(V.E’) can be derived from the

(w

previous example (n < N}

i} If a task in a given plan is related to7(is identical to
or implies) tasks in n-1 plans respectively, thea in
G(V.A). the subgraph (nodes and ares) representing
these n tasks is always a complete digraph. Moreover,
in G'(V.E’) the subgraph representing the n plans with
these tasks is always a complete graph. ii) For each
complete sub-digraph Gi(Vi.Ai) in G(V,A), its maximum
saving can be obtained by solving the directed spanning

forest problem [LAWLTG] over Gi(Vi.Ai). iii) The max-.

imum savings for each Gi(Vi.Ali) is equal to the optimal
value of the maximal spanning tree problem [LAWL78};
it results in the total weight of N-1 arcs chosen in des-
cending order of their weights.

The above two cases show that the calculation of
the savings depends on how many plans have common
relationships, but not on the order of the chesen plans.
Therefore, for the access plan selection problem, G(V,A)
can be simplified into G'(V.E') pius the sets of
Jdentical-task and implied-task lists. It can be con-
cluded that the strategies proposed in the previous sec-
tion, except strategy 4, can be applied directly to the
case of implied relationships. Strategy 4 is modified by
choosing the edge with the maximum weight as the dis-
tant edge used to reduce the weights in Last(X,Y).

We now consider the computational complexity of
the DP algorithm. The worst-case complexity of the
DP algorithm occurs where each node in a stage is com-
pletely connected with all nodes in all other stages
(which is impossible in a real situation). Let N; denote
the number of candidate access plans for query Q;.
The tntmir:nltt’.tr:xl numlber of nodes searched by our algo-

-1 i- .
rithm ist Y (JI Ny) + 3. This complexity is for
: iem2 k]
the case of general predicates. Moreover, we believe
that in most situations the number of distant edges are
not large and the complexity is much less than this

worst case. The worst-case complexity A?f [SELLS6) for

the case of identical relationships is]V, and it is
N N =t

TI (¥ Ny) in the case of implied relationships.
iml kmi

In the case of implied relationships, our algorithm
presents better worst-case performance with 1o
qualification. In the case of identical relationships, we
require that Ny Ny_, > N. This is a reasonable
assumption because we are free to permute the order of
the stages. and have the last two be the ones with the
maximum number of candidate plans. To appreciate
the complexity improvement of our algorithm, consider
the case of 8 queries, each with 5 candidate plans. The
maximum number of nodes for [SELLSS| is 15,625 for
the case of identical relationships and 11,250,000 for
implied relationships. In the case of our algorithm, the
number is 783 for the two cases

8. CONCLUSIONS

The problem of multiple-query optimization con-
sists of two conceptual parts - identifying common

subexpressions {or tasks) and constructing a global
access plan for a set of queries such that their process-
ing cost is minimized. In this paper we focused on the
second part, and proposed a DP algorithm. The follow-
ing considerations guided our work: i) As expert data-

"base systems and extended database systems are

developed, the number of rules or queries considered at
one time can become quite large. Therefore, the com-
putational complexity of the access plan selection algo-
rithm is a very important factor in the design of such
systems. ii) The construction of a global plan should be
based on a cost-benefit analysis in order to achieve a
satis{ying performance of processing several queries. iii)
The savings from the sharing of several plans depends
on the chosen access plans but not on their order.

Future research is concerned with the analysis of
the average performance of the algorithms, and the use
of fathoming techniques such as in [SELL86E]. We
would also like to incorporate the algorithm for identi-
fying common subexpressions as an integral part of our
access plan selection algorithm.

ACKNOWLEDGMENT

This research was supported by the Applied Mathemat-
ies Sciences Research Program of the Office of Eaergy
Research U.S. Department of Energy under contract
DE-AC03-78SF00098.

REFERENCES

Astrahan, M. et al. "Svstem R: A Relational Approach
to Database Management”, ACM Transactions
on Database Systems, (1), 2, June 1976.

Chakravarthy, U.S. and Minker, J., "Processing Multi-

le Queries in Database Systems®, Database
ngineering, (1), 1982.

Codd, E.F., "A Relational Model for Large Shared Data
Banks®, Communication of the ACM, (13). 6,
June 1970.

Chakravarthy, U.S. and Minker, J., "Muitipie Query
Processing in Deductive Databases using Query
Graphs™, Proceedings of the 12th Interna-
tional Conference on Very Large Data Bases,
Kyoto, August, 1986.

. Finkelstein, S., "Common Expression Analysis in Data-

base Applications®, Proceedings of the ACM-
SIGMOD International Conference on
Management of Data, Orlando, FL, June 19082.

Grant, J. and Minker, J., "On Optimizing the Evalua-
tion f a Set of Expressions”, University of Mary-
land, Technical Report TR-0168, College Park,
MD, July 1980.

Grant, J. and Minker, J., "Optimization in Deductive
and Conventional Relational Database Systems”, in
Advanced in Database Theory, vol. 1, H. Gal-
larie, J. Minker and J.M. Nicolas, Eds., Pleaum
Press, New York, 1981.

- Hall, P.V.,, "Common Subexpression Identification in

General Algebraic Systems®, [BM United King-
dom Scientific Center, Technical Report UKSC
0060, November 1974.

Hall, P.V.,, "Optimization of a Single Relational Expres-
sion in a Relational Database System”, IBM

Journal of Research and Development, (20),
3, May 1978. .-

Horowitz, E.. Sahni, S., "Fundamentals of Computer
Algorithms™, Computer Science Press, Inec.,
1978.

Jarke, M.. and Koch J., "Range nesting: a fast method
to evaluate quantified queries®, Proceedings of
the ACM-SIGMOD Conference on Manage-
ment of Data, San Jose, 1083.

Jarke. M. and Koch, J., "Query Optimization in Data-
base Systems”, ACM Computing Survey, (18),
2, June, 1984a.

Jarke, M., "Common Subexpression Isolation in Multi-

le Query Optimization™, in Query Processing
n Database Systems, W, Kim, D. Reiner and D.
Batory, Eds.. Springer-Verlag, New York, 1984b.

Kim, W., "Global Optimization of Relational Queries:
A First Step™, in Query Processing in Database
Systems, W. Kim, D. Reiner and D. Batory, Eds.,
Springer-Verlag. New York, 1984.

Larson. P. and Yang, H., "Computing Queries from
Derived Relations”, Proceedings of the 11th
International Conference on Very Large
Data bases, Stockholm, August 1985.

Lawler, E., "Combinatorial Optimization: Networks and
Matroids™, Holt, Rinehart and Winston Inec.,
1978.

Park, J. and Segev, A, "Common Subexpression
Optimization in Database Systems”, Working
Paper, 1988. - ‘

Rosenkrantz, D.J., and Hunt, H.B., "Processing Con-
junctive Predicates and Queries”, Proceedings of

the 6th International Conference on Very
Large Data Bases, Montreal, October 1980.
Roussopoulos. N., "View Indexing in Relational Data.

bases”, ACM Transactions on Database Sys-
tems, (7), 2, June 1982,

-Sellinger, P.G., "Access Path Selection in a Relational

Database System”, Proceedings of the ACM-
SIGMOD International Conference on
Management of Data, May 1979.

Sellis, T., "Global Query Optimization”, Proceedings
of the ACM-SIGMOD International Confer-
ence on Management of Data, Washington,
DC, May 1088. (An extended version is forthcom-
ming in ACM Traasactions on Database Systems)

Shoeiderman, D.W. and Goodman V, "Batched search-
ing of sequential and tree structured files®, ACM
Transactions on Database Systems, (1), 3,
September 1978.

Stonebraker, M., "Implementation of Integrity Con-
straints and Views by Query Modification”,
Proceedings of the ACM-SIGMOD Interna-
tional Conference on Management of Data,
San Jose, May, 1975.

Stonebraker, M.R., Wong, E., Kreps, P., Held, G., "The
Design and Implementation of INGRES®, ACM
Transactions on Database Systems, (15), 4,
September 1976.

Wong, E. and Youssefi, K., "Decomposition - a Strategy

for Query Processing®, ACM Transactions on
Database Systems, (1), 3, September 1978.

&—e

]
(7\ 8) ,12)

{11 {
! 1(8.8) h
§12 feany @ (255@' ¥ }Pv‘t 55.38) .@ (7;.;1
f

16,18)

(31'

ig. $: Modified Problem Structure {or Figure 4

-

v - gy TN ! .
\ *
(s\.a}. @;:251 P32 ('it.x:);

{17,18,20.21}{30,31,33,34}

e S

Fig. 7: Modified Problem Structure for Figure 8

@ @ - T Ps2
N ! ‘ /
\ '{73}‘ 18,17} A (29.20) A7) A 1719}
\ B4 \@‘ ‘,‘@
\

\ {8.9,11,12} (17.18.22.21) (29::1.31.&4} {48,47,48,49) (s

D e ot

Fig. 9: Modified Problem Structure for Figure 8.

\ (1’)
: 2,33)
/
\ . \0—- !
/ @ @
et/ l{0.7.42)

\
a0 (20.21,23,24) (37,38.4042} /'

QOG-

Fig. 11: Modified Problem Structure for Figure 10

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

