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ABSTRACT

Sharing information is critical to multi-robot team coordi-
nation when robots are widely deployed in a dynamic and
partially observable environment. To be efficient, robots
should balance well between broadcasting information and
reserving limited bandwidth so that only the right informa-
tion should be broadcast to the interested receivers. Robots’
communication decision is normally modeled as a multi-
agent decision theoretical problem. However, when the team
expands to very large, the solution is classified as NEXP-
COMPLETE. In this paper, in addition to building heuristic
approaches to solve the decision theoretical problem based
on the information context to be broadcast, we put forward
a novel context-free decision model that allows fast commu-
nication decision by considering complex network attributes
in large teams. Similar to human society, information should
be broadcast if the action can make a good information cov-
erage in the team. We analyze how complex network at-
tributes can improve communication in a broadcast network.
By putting forward a heuristic model to estimate those com-
plex network attributes from robots’ local view, we can build
decision models either from robots’ experiences or from their
local incoming communications. Finally, we incorporate our
algorithm in well-known information sharing algorithms and
the results manifest the feasibility of our design.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence -Intelligent Agents, Multiagent Systems.
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1. INTRODUCTION

Coordinating large groups of robots or unmanned vehi-
cles in a dynamic and partially observable environment is
compelling in various domains such as urban search and res-
cue [1], planet exploration [2] and military operations [3]. In
such applications, information sharing is necessary because
robots have to share their observations and intentions so
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that their mutual beliefs as well as joint activities towards
the best team performance can be reached [4]. In a mobile
robot team, robots use wireless connections to broadcast
information to their neighbors. But when the team scales
up, communication bandwidth becomes a serve bottleneck.
Robots then are required to balance well between broadcast-
ing valuable information and reserving limited bandwidth.
Their decision is hard because robots in this scenario are
normally highly distributed and have only a partial view of
the team. Without a complete knowledge on what the others
know, robots may not be able to make rational decisions [5].

The information sharing problem on how to decide to
broadcast valuable information in large robot teams has
been intensively studied in recent years. In the computer
network research community, researchers have focused on
how to avoid redundant information coverage overlay no
matter what the information is. Typically, Scalable Broad-
cast Algorithm (SBA) [6] shares information and avoids robots
rebroadcasting if most of their neighbors already have it.
Low-Energy Adaptive Clustering Hierarchy (LEACH) [7]
uses static hierarchical protocol and its improved proto-
col [13] combines clustering with predefined forming chains
to proactively share information. Sensor Protocols for In-
formation via Negotiation (SPIN) [8] is a reactive protocol
which avoids redundant data transmission by meta-data ne-
gotiation between neighbors. Robots only need to forward
data to the neighbors who need it. But if no request is
received, robots will prefer to not sending the information.

Information sharing research in AI community starts from
the view of how the information to be shared can help the
robot team improve its performance [5]. Therefore, infor-
mation sharing is modeled as a decision theoretical problem
that, for each specific piece of information, robots evalu-
ate the utilities if it were broadcast. When the utility of
broadcasting it is beyond the cost, the robot will broad-
cast. However, with the partial observable capability of
each robot, the information sharing utility calculation is
a typical DEC-POMDP problem with the expand of team
scale [9]. Extra efforts have been done on building heuristic
algorithms to solve this intrinsic NEXP-COMPLETE prob-
lem in each specific coordination domain, such as myopic
decision model [10], and State-Connection-Reward matrix-
based model [11]. Although their performances are proven
to be good, they are usually hard to be optimized.

In this paper, addition to the information sharing algo-
rithm design in previous studies, we explore how the com-
plex network effects can be used in the robot communication
decision, and put forward an interesting approach to help lo-



cal robots improve their information sharing overlap while
reducing communication cost on redundant message trans-
missions. Since a large group of robots build a complex
social network as human society does, our key idea comes
from a comparison of how distributed robots and human
beings share information. Although a human being does
not gain a complete view of his society, he can make ratio-
nal decisions based on a partial understanding of his social
network structure. For example, with an understanding of
Milgram’s six-degree separation theory, although people try
passing information randomly, they will stop sending it after
a limited relays [12]. As another example, without under-
standing who will be interested in a specific piece of infor-
mation, people prefer to disseminate it to whom has more
friends [18]. Therefore, in human society, information shar-
ing can be done without precise calculations of information
utility or its coverage on the team.

Next, we analyse the characters of broadcasting and ex-
plore how their complex attributes can be helpful. There
are three key observations. First, by evaluating the average
distance, robots can infer the information coverage from the
length of information path so as to decide wether it should
be rebroadcast. Second, robots with higher connections will
be helpful for information dissemination. Third, the high
betweenness robots are more likely to be involved in infor-
mation transmission than the robots in a cluster do.

According to the observations, our second contribution
comes to a combined updating function to estimate the
complex network attribute values solely from robots’ local
view. In the very beginning when robots get very few mes-
sages, robots can learn the initiated network attributes from
the introduction phase and make a good use of those val-
ues for their rebroadcasting decisions. Later, when robots
get enough messages from the team, they can effectively
infer the network attributes from their received informa-
tion. Based on the complex network updating algorithm,
we are able to build an integrated algorithm for informa-
tion rebroadcast decision making from the estimated com-
plex attribute values. In the last part, this algorithm has
been incorporated into several classic information sharing
approaches such as Flooding [21], SBA [6], Dominate Prun-
ing [19] and heuristic myopic algorithm [10]. The exper-
imental results illustrate that by taking the advantage of
complex attribute evaluation, our design uniformly helps the
algorithms to improve their sharing performances.

2. INFORMATION SHARING PROBLEM IN

LARGE MUTI-ROBOT TEAMS

Over an ad-hoc wireless network created by the robots
themselves, when a team member gets some information,
the sharing problem is to decide whether it should be re-
broadcast. With a dynamically changing team states such as
the information distribution and network connection, robots
must balance well between providing useful information and
reserving network bandwidth. Specially, the robot team
R = {ri,re,...75,....} is composed of a set of distributed
robots and N (¢) an(r, t) defines the network, where

n(r,t) is defined as all robots who can receive a broad-
cast message from robot r at time ¢. In short, we call
the robots of n(r,t) as the neighbors of r at that time.
In addition, we defined 7’s two-hops neighbors n?(r,t) as
{Vr; € n(rg,t)|Vri € n(r,t)}.
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The information I considered to be broadcast is encapsu-
lated as a communication message m, and a message m is
normally described as the following data structure: m =<
ID,I,Path >. In this data structure, a message is com-
posed of at least three parts: the identification of the mes-
sage as I D, the context of message containing the informa-
tion I, and the path of message m that records the sequence
of robots m transmitted. Specially, m.Path.getFirst() re-
turns the first robot in the queue, which discovers the infor-
mation and is its source. When a robot r decides to broad-
cast m, it will append itself at the end of m.path before
broadcasting it.

As robots use broadcast to share information, all their
neighbors at that time may be able to get the message. To
avoid creating intensive redundant communication, with the
message with the same m.I D, robots are allowed to broad-
cast the message at most once at its first time of getting the
message. Therefore, we will have:

Lemma: If robots broadcast as flooding, m.Path records
the shortest distance between any pairs of robots in the path.

Proof: Suppose not. [We take the negation of the lemma
and suppose it to be true.] As shown in Figure 1, we suppose
A and B are two robots recorded in the path of m, 3 a
shorter distance between A and B. Then B will receive
another message called m’ from the shorter path, which is a
copy of m broadcast by A. Broadcast at the same time from
A, m’ is passed in the shorter path and reached B earlier.
Because the message with same content is only allowed to
broadcast once by each robot, the latter message m will
be dropped and B will not be recorded in m.path, which
contradicts the supposition that B is recorded in m. [Hence,
the supposition is false and the lemma is true.]

Figure 1: The proven of shortest distance

3. COMPLEX NETWORK EFFECTS IN IN-
FORMATION BROADCASTING

In computer network research, the objective of context-
free information sharing is to reach a good information over-
lay so that the robots interested in the information can get it,
but avoid redundant information dissemination. In this pa-
per, before introducing our algorithm, we explore how com-
plex network effects can be used to infer robots’ information
sharing coverage. The key observation is that complex net-
work effect can help robots make context free information
sharing decisions without knowing the complete distribution
of the other robots.

3.1 Average distance

Distances between nodes is the primary attribute evalu-
ated in the complex network research. Starting from Mil-
gram’s six degree separation theory [12], we have learned
that the average distance in a complex network is far less
than the size of the network. In some cases, the average dis-
tance has been fixed to an extreme small number no matter
the size of the network and this scenario is called a "Small



world effect" [14]. In a typical distributed robot team, al-
though it may be not a typical small world network, its av-
erage distance is bounded. In most cases, when a message
is broadcast for several times, the coverage of this message
hardly rises and it is gradually stabilized, a phenomenon
called full coverage hops. We hypothesize that the full cov-
erage hops is linear to the average distance of the network.
If the function exists, we can use it to find the full con-
verge hops and avoid redundant broadcasting. In order to
manifest how the information coverage is related to average
distance, we set up a simple simulation and deploy some
robot teams where the network generates by distance. In
this fixed scene, we perform eight groups experiments with
different team sizes (from 300 robots to 1000) which means
different densities. Initially, a piece of information is broad-
cast from a random robot. At each time step, each message
for each robot can be broadcast at most once. Therefore,
within a few time steps, the information coverages are shown
in Figure 2.
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Figure 2: Information coverage by average distance

According to the experimental result, we list the average
distances and full coverage hops of each scenario in Table
1. As shown in the result, there is always an optimal step
to broadcast the message such that the robot team is just
fully covered by the information. In addition, according to
the Figure 2 we find out that the full coverage hop is about
twice average distance of the network in our simulations.
Therefore, if a robot knows the average distance, it can use
this property to reduce broadcasting and improve the effi-
ciency by inferring the full coverage distance with an offline
learned linear function.

Table 1: Average distance and full coverage hops.
Sconario] Team | Average [ Average | Coverage on | Full coverage Bias to
size | degree |distance| Avg dist hops Avg_ distx 2
1 300 6.9 9.8 0.572 20 +2.0%
2 400 8.5 9.4 0.608 19 +1.1%
3 500 11.12 9.0 0.558 18 0.0%
4 600 12.43 8.6 0.608 18 +4.4%
5 700 15.09 8.2 0.542 17 +3.5%
6 800 17.46 8.1 0.584 17 +4.7%
7 900 19.42 7.9 0.619 16 +1.3%
8 1000 21.72 8.0 0.600 16 0.0%

3.2 Degree distribution

The distribution of the robots’ connection degree is simi-
lar to human’s social connections, called "Matthew Effect".
Therefore, if a robot has more connections, it has more ways
to disseminate information. The efficiency of sharing infor-
mation can be improved by using those "high degree nodes"
to broadcast. For example, in a scale free network, hubs
can promote the formation of a team, and make sure agents
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with different abilities to cooperate with others to reach a
common goal [17]. Some related work shows that in a multi-
robot system which is based on scale free network or ran-
dom network for peer to peer information sharing, if there
are some nodes that can act as hubs, they can significantly
cut down the average distance of the network [20].
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Figure 3: High degree nodes improve the information coverage

Similar to human society, to spread information quickly,
people often choose the person who has more friends to push
the information. In order to explore the capability of the
high degree robots to improve the information coverage, we
build simulation to deploy 500-robot team in seven differ-
ent network deployments, where networks are generated by
distance. Initially, a piece of information starts from a ran-
dom robot. We use a function Choose(methods, numbers)
to determine the way to send information and the number
of receivers. We choose one receiver in Figure 3(a) and two
receivers in Figure 3(b). And the red scatter plots represent
the information coverage that robots always forward mes-
sages to high degree nodes and the green scattered plots rep-
resent the coverage that information is randomly forwarded.
As shown in Figure 3, although the information coverage
keeps increasing in each setting, the way of forwarding to
high degree nodes diffuses information much quicker than
the random way. Therefore, high degree robots are more
helpful to spread information.

3.3 Clustering and betweenness centrality

In a large robot team, robots tend to form a cluster,
where the robots inside are densely connected. Those robots
from outside are sparsely connected. Between the clusters,
the robots are of high betweenness centralities. Between-
ness centrality was introduced to human communication by
Bavelas [15] [16], and he concluded that centrality plays an
important role in group efficiency. Betweenness centrality of
a node is one of the measures, which addresses the impor-
tance of a node as intermediary in the interaction between
the others. Similar to human society, we hypothesize that
in a typical distributed robot team, the robot with high be-
tweenness centrality as the source node to broadcast a mes-
sage, can help to speed up the spreading of this information.
To manifest how cluster and betweenness centrality help to
speed up the information diffusion, we simulate a team of
robots around a lake as Figure 4(a) shows. Blocked by the
lake, robots in each direction form a cluster. We assume
that each cluster has 60 robots. In the lake, there are 5
robots connecting all the clusters around the lake.

As shown in Figure 4(a), in the simulation, we deploy
three scenarios with 2 clusters (A and B), 3 clusters (A, B
and C) and 4 clusters (A, B, C and D). In each scenario, we
select a robot as a given information source that starts to
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Figure 4: High betweenness helps to the information coverage

disseminate information but there are two cases. In the first
case, the robot selected is one with the high betweenness
that is located in the lake to connect clusters. In the other
case, the robot selected is one with low betweenness that is
located within a given cluster. We investigate in each case
all the scenarios of the information coverage of the team
(Y-axis) with the progress of time horizon (X-axis). Figure
4(b) shows the results with 2, 3 and 4 clusters, which are
marked with blue, purple and orange lines respectively. In
each scenario, the result that information is broadcast from
low betweenness is shown in solid line, and the result that
information is broadcast from high betweenness is shown in
dashed line. Clearly, from Figure 4(b) we can see that in all
the scenarios, the time horizon is divided into three stages.
In the first stage, information starts from a low between-
ness robot covers the team quicker than information from
high betweenness robots. The reason is that the low be-
tweenness robot located in a cluster can quickly cover the
information within its cluster, while the high betweenness
robots located in the lake can only cover very few robots
in the early stage. In the second stage, while information
starting from the low betweenness begins to cut across the
lake and their information coverage goes into a bottleneck,
the information starting from the high betweenness begins
to be broadcast within all the clusters and reaches the full
coverage very quickly. In the last stage, information starting
from low betweenness begins to be broadcast in other clus-
ters to reach full coverage, while the information from the
high betweenness has already done that. Therefore, high
betweenness centrality robots are helpful to speed up the
information diffusion.

4. LOCAL OBSERVATION TO COMPLEX
NETWORK ATTRIBUTES

As robots in a large team can only obtain a partial view
of the team, in this section we analyze and build a local
observation algorithm to help robots maintain a valid ob-
servation of the complex network attributes of the team so
that they can be used to help robots’ local information shar-
ing decisions. The key of the observation function comes as
two basic investigations.

e Robots can maintain complex network attributes if
they previously gain a complete view of the network
within a time interval. Therefore, they can use this
knowledge to infer their current connections.

e Robots can effectively evaluate and update the net-
work attributes solely from their received messages.
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Therefore, in the very beginning when robots get very few
messages, robots can learn the initiated network attributes
from the introduction phase and make a good use of those
values for their rebroadcasting decisions. Later, when robots
get enough messages from the team, they can effectively
infer the network attributes from their received information.

4.1 Complex network attributes maintenance
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Figure 5: Complex network attributes in a dynamic robot team

Complex network attributes maintenance is based on the
assumption that the variance of the complex network at-
tributes in a large robot team is little in a short time due
to robots’ movements being far slower than their communi-
cation rate. Therefore, decentralized robots can effectively
maintain the attributes if they previously gained a com-
plete view of the network. For example, robots can gain
a complete view of the network with a two-hop neighbor-
hood knowledge obtained by exchanging the adjacent node
lists with their neighbors. The two-hop introduction is nor-
mally used in network initiation, which is to help robots get
a complete view of their connections with some centralized
census approach [19]. To verify the assumption, we investi-
gate the real multi-robotic applications. Although the team
dynamically changes, not all the robots move in each time,
and not all the moving robots change the network due to
their limitations on moving range, task location as well as
formation in a short time. In this scenario, we build two
brief simulations where a 300-robot team was deployed in a
given area and the network was generated according to the
distance between robots. In the first simulation, we assumed
in a short time interval, only a set of robots randomly move
in a quarter of their communication range, and the moving



percentages are 5%, 10%, 15%, 20%, 30%. In the second
simulation, 10% of robots move and their moving distances
are 1/4, 1/3, 1/2, 3/4 and 1 of their communication range.
Figure 5 shows our simulation results. We can see that in
Figure 5(a)(d) network clustering coefficients in both exper-
iments keep around 0.6, while in Figure 5(b)(e), the average
distance keeps around 9.2. Figure 5(c)(f) illustrate the de-
gree distribution of the network after robots’ movements in
each experiment. The simulations manifest that the com-
plex network attributes change very little, even when 30%
robots have moved or the moving distance has reached its
communication range. Therefore, consistent with our hy-
pothesis, once robots get a connection map, they may be
able to use the map to infer their future state of complex
network attributes within a short time interval, especially
in the stage of the robots starting to work.

4.2 Complex network attribute updating

Complex network attribute updating function evaluates
robots’ local complex network attributes solely based on the
massages they have received. With the time passed by, al-
though their network keeps changing, robots will gain more
and more information to coordinate their joint activities [5].
With the rich information base (IB), robots are able to in-
fer their local complex network attributes from their local
views, which are built from their previously received mes-
sages.

4.2.1 Local network attribute model

Before the updating algorithm is introduced, we define the
robot’s local network attribute model. Since robots cannot
gain a complete view of the team, their local model is slightly
different from the complex network model of the whole net-
work which has to be centrally counted. The local network
attribute model for a robot r is composed of three parts:
< r.avg_dist,r.degree_ distribution, r.freq_nodes >

r.avg_dist defines robot r’s local view of the average
distance of the network. The robot always assumes that it
is the center of the network and the information source is
randomly scattered in the network. Therefore, the average
distance of the network from 7’s view is the average path
length of the messages it has received. The full coverage
distance is normally linear to its local average distance and
according to section 3.1, it is twice of r.avg_ dist.

ZmET‘IB m.path.length

r.avg__dist = 18|

r.degree_ distribution defines robot r’s view of its neigh-
bor’s degree distribution. Since r cannot observe the whole
team, it cannot observe the network degree distribution.
But it can easily understand the degree for a given neighbor
r; by count its 2 hops neighbors:

{m.path.get2ndLast()|Vm € IB, m.path.getLast() = r;}

where m.path.get2ndLast() popups the second last robot of
the message which comes to r from neighbor r;.
r.freq_nodes defines robot 7’s local view of high frequent
nodes which are not within its 2-hop neighbors. From the
analysis in section 3.2 and 3.3, they could be high degree
nodes within a cluster or the high betweenness nodes in the
robot team. As r cannot get a good view of what they are,
those high frequent nodes can help to diffuse information.
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The frequent nodes can be found from the received infor-
mation and each frequent node will be recorded as a data
structure

< ID, frequency, {..., neighbor;, ...} >

ID and frequency denote the ID of the frequent node and
its frequency that appeared in the received information. Af-
ter these, there is a neighbor list, called neighbor_ list, and
each neighbor; denotes that the neighbor of robot r who
sends a piece of information to r that was broadcast by the
frequent node. Please note that although robot only uses the
first few high frequency nodes in 7. freq_nodes for their de-
cision, r.freq_nodes is required to be long enough because
some low frequency nodes may become high frequent by ex-
tensive messages. They still can be sorted and recorded in
r.freq_nodes.

To manifest the model, considering the following example
shown in figure 6. For robot r’s I B, there are five pieces of
information m1, ms, ms, ma, ms, the paths are shown in Fig-
ure 6(b). Then, r.avg_dist = 2.2, r.degree__distribution =<
{ri,<ra >} {re,<rs >} {rs,<rs,re,r7 >} >, and Figure
6(c) shows r.freq_nodes.
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Figure 6: An example of local model updating function

4.2.2  Local network attribute updating

A robot 7 can build it’s local network attribute model
from its previous received information, and for each piece
of incoming message, it can be used to update this model.
For an incoming message m, the local updating function for
robot r is described as algorithm 1.

In this algorithm, robot r will firstly update its local av-
erage distance (line 1). Next, it searches on m’s path to
see its neighbor and its 2-hop neighbor (line 2-3). If the
neighbor has been in r’s neighbor list, it will check whether
the 2HopNgb is in the neighbor’s 2-hop neighbor set (line
4-5). Otherwise, they should be updated into r’s local neigh-
borhood model (line 6-10). Thirdly, to update the high fre-
quency nodes, each node in m.path should be used (line 12).
If the nodes have been in the high frequency node list, its
frequency as well as its connection neighbor list should be
updated (line 13-17). Otherwise, the node should be added
to the frequency node list and its frequency and connection
neighbor list should be initiated (line 19-21). After r up-
dates all the frequent nodes, the frequent nodes list need to
be sorted according to the frequency (line 24). Then mes-
sage m will be added into r’s information base (line 25).

Considering the example above, if a new message ms
comes and me.path =< r12 — T14 — 16 — T3 >, after
updating we will have r.avg_dist = 2.3. But r.freq_nodes



Algorithm 1 localUpdating(r, m)

Algorithm 2 Booleanlocal Decision(r, m)

. r.avg_distX|r.IB|4+m.path.length
r.avg__dist < FIBIT ;

: Ngb < m.path.getLast();
: 2HopN gb < m.path.get2ndLast();
if Ngb € r.neighbors then
if 2HopNgb ¢ r.neighbors[N gb|.2hopsN eighbor
then
r.neighbors[N gb].2hopsN eighbor.add(2HopN gb);
end if
else
9:  r.neighbors.add(N gb);
10:  r.neighbors[N gb].2hopsN eighbor.add(2HopN gb);
11: end if
12: for all r; € m.path do

A

13:  if r.freq nodes.search(r;) = true then

14: r.freq_nodes|r;]. frequenecy + +;

15: if Ngb ¢ r.freq_mnodes[r;].neighbor_list then
16: r.freq_mnodes[r;].neighbor_list.add(N gb);
17: end if

18:  else

19: r.freq_nodes.add(r;);

20: r.freq_nodes[r;]. frequenecy < 1;

21: r.freq_nodes[r;].neighbor__list, add(N gb);
22:  end if

23: end for

24: r.freq_nodes.sort();

25: r.IB.add(m);

and r.degree_ distribution model remain, as shown in Fig-
ure 6(d). Note that, a key advantage of the design is that
there is a reinforced effect because the better the local model
is, the right information will be broadcast. In addition,
robots gain more valuable information to polish their local
models to make right decisions.

S.
WITH COMPLEX NETWORK EFFECTS

As explained, the information sharing problem for a dis-
tributed robot is to decide whether a newly received message
m should be rebroadcast. When robots can maintain their
local complex network attribute model either from complex
network attribute maintenance function in section 4.1 or
complex network attribute updating algorithm in section
4.2, it can be used for their sharing decision. According to
the analysis in section 3, the key lies on how complex net-
work denotes the information coverage. In summary, when
robot r well maintains its < avg_ dist, degree_ distribution,
freq_mnodes > model, it can infer that:

The hops on full information coverage is linear to the
average distance of the team. When the length of path
is more than the full coverage hops, it should be stopped
to be rebroadcast. Therefore, we can define a threshold:
thresholdavg dist = k X r.avg__dist, where k is a predefined
parameter and most times, kK = 2 as the experimental re-
sult in Table 1. r should less likely rebroadcast m when
m.path.length exceeds the threshold.

Higher degree nodes help to achieve information diffu-
sion. Therefore, if r finds that its high degree neighbors are
not covered, it is more like to rebroadcast m.

High frequency nodes which consist of either high de-

INFORMATION SHARING ALGORITHM
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1: decision < false;
2: thresholdavg dist + k X r.avg_ dis;
3: degree < 0;
4: fullDegree < 0;
5: for all r; € r.neighbors do
6: if r; ¢ m.path then
7: degree+ = r.neighbors|r;].2hopsN eighbor.length;
8: end if
9:  fullDegree+ = r.neighbors|r;].2hopsNeighbor.length;
10: end for
11: accessList « select(r.freq_nodes, M );
12: for all freq node € accessList; do
13:  if freq_node € m.path then
14: accessList.delete(freq_node);
15:  end if
16:  for all acessNgb € freq_node.neighbor_list do
17: if acessNgb € m.path then
18: accessList.delete( freq_mnode);
19: end if
20:  end for
21: end for
22: degree2 + 0;
23: unvistedN gb < r.neighbors
24: for all freq_node € accessList; do
25:  for all acessNgb € freq_mnode.neighbor_list do
26: unvistedN gb.delete(acessN gb);
27:  end for
28: end for
29: unvistedN gb < r.neighbors — unvistedN gb
30: for all r; € unvistedNgb do
31:  degree2+ = r.neighbors[r;].2hopsNeighbor.length;
32: end for
33: Pr= ol - gl ) + B e + Y Rl e
34: decision < lottery(Pr);
35: return(decision);

gree nodes within a cluster or high betweenness nodes, help
to sharing information. Therefore, if robot r finds that its
high frequency nodes are not covered by m, it is more likely
to rebroadcast m. However, there are two cases. First, al-
though the frequency nodes are not in m.path, if most neigh-
bors in frequency nodes’ lists are covered, r cannot infer that
they are not covered because the broadcasts to them may
have been sent without knowing by r. On the other hand, if
the neighbors on the frequency nodes’ lists are not covered,
m is more likely rebroadcast.

Algorithm 2 briefly describes the local decision process of
robot r for each piece of incoming message m. Robot r first
evaluates the threshold based on its local average distance
(line 2). Next, r will search its neighbors to find who is
not covered by m (line 5, 6) and count the uncovered neigh-
bors’ degree for their importance (line 7-9). Thirdly, robot
r selects the top M high frequency nodes as the accessList
(line 11). By using accessList, r can find (1) whether the
high frequency nodes has been covered by m and (2) the
neighbor of » who connects the high frequency nodes have
been covered (line 12-21). Then, by deleting those covered
high frequency nodes, the robot counts the neighbors that
connect potential uncovered high frequency nodes (line 22-
32). Line 33 combines all the three factors: threshold of



Table 2: The performace in different time steps Table 3: The experimental results for different density
Fime Statics FLOOD SBA Dominate Pruning Myopic Team size in Statics FLOOD SBA Dominate Proning Myopic
Original [Heuristic] Original [Hi Henristic | Original | Henristic (500¢6dH) Original | Heuristic | Original | Hearistic | Original | Hearistic
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Improved|30.64% 0.00% [25.70% 0.00% 30.97% Improved| 11.06% §.81% 18.14% 12.79%
Utility | 96.44% | 85.88% | 07.78% | 91.66% | 98.04% | 88.74% | 96.73% | Uility 100.00.&:.‘100.0(1%- 100.00% | 100.00% | 100.00% | 100.00% | 100.00% 100.00%
=20 Cost | 4677.2 | 32709 | #4643 | 32127 | 4704 | 31198 1000 Cost | 17388 | 15275 | 17112 | 15190 | 17388 | 14658 | 17388 | 15287
Improved|  31.79% 30.26% 36.48% Improved 13.83% 12.65% 18.63% 13.74%
Utility | 99 34% [93.03% | 08.86% [ 03.01% [ 00.33% [ 92.05% Utility [ 100.00%[ 100.00% [ 100.00% [ 100.00% | 100,002 [ 100,002 [100,00%] 100.00%
=25 Cost | 4781 | 33035 | 4486 [ 32770 4701 | 32060 1500 Cost | 3g6s2 | 33080 | 38360 | 33091 | 38652 | 32823 | 38632 | 33196
Improved|  32.21% 28.76% 38.45% Improved| 16.85% 15.92% 17.76% 16.44%
Table 4: The experimental results for scalability Table §: The experimental results in dynamic networks
Teamsize &| o . FLOOD SBA Dominate Pruning Myopic S | S FLOOD SBA Dominate Pruning Myopic
area size Original |Heuristic] Original [Hearistic| Original | Heuristic | Original | Heuristic Original | Hearistic | Original Heuristic| Original | Meuristic | Original | Henristic
Utility [100.00% | 80.44% [100.00% | 80.66% [ 100000 78.65% [100.000 | 80.70% Utility [100.00% | 90.75% [100.00% | 94.59% [100.00% | 92.14% [100.00%
4';:;1':;0 Cost 2830 | 19603 | 2732 | 1o3s7| 2830 | 1s153 | 283 | 19s12 0% Cost 4698 | 34123 | 44784 | M33.7 | 4698 | 32719 | 4698 .
Improved 16.49% 13.67% 23.00% 15.64% Improved 24.94% 23.37% 32.30% 26.23%
— tility | 99.56% 5.5 T8 | Ulility [ 100.00% | 90.83% | 99.13%  91.88% | 50.57% | 91.51% | 99.78% | 93.07%
it Cost | 4701 | 34368 | 448 33246 | 47101 | 32078 5% Cost | 47067 | 3387.1 | 44715 | 3287.6 | 4673.9 | 3223.]1 | 4705 | 3432
Improved 31.50% 27.65% 36.22% Improved 26.22% 26.06% 33.27% 27.46%
500 & Uility [ 100.00% | 33.80% [100.00% | 93.47% wo.r;p"»._.( 92,39% [100.00% ] 95.02% Tility |100.00% | 92.60% | 90.77% | 89.97% [100.00% | 75.22% [100.00%] 87.13%
TRiiED Cost | 7605 | 51225 72675 | 49211 | 7605 | 48146 | 7605 | 51344 0% Cost | 4577 | 31972 | 42036 | 30527 43614 | 24808 | 4576.2 [ 3178
Improved|  39.25% 38.03% 45.04% 40.74% Tmproved 32.56% 26.83% 38.92% 17.91%
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AE0ASED Cost 0200 | 64747 | 88232 [ 63055 | 2200 | 60880 [ 0200 [ 64873 15% Cost | 4562.7 2043.1 | 4254 3052 | 46033 | 27164 | 4603.9 | 33
Improved 33.40% 30.88% 30.03% 33.10% Tmproved 26.92% 24.96% 37.79% 28.95%
: Utility | 100.00%6] 20.82% [100.00% | 21.27%6 | 100.00% ] 87.229% [100.00%] 00.08% Tility 99.57%|9o 220 | 99.35% | 85.11% | 99.14% | 65.78% [100.00%] 91.43%
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Improved|  37.63% 34.43% 40.28% 36.56% Improved 27.82% 28.56% 37.56% 33.03%

average distance, uncovered high degree neighbors and un-
covered high frequency nodes and produces the probability
whether m should be rebroadcast. Note that «, 3, are pre-
defined importance factors. Finally, the robot decides to
perform broadcast by lottery based on the computed prob-
ability (line 34-35).

6. SIMULATION AND RESULTS

In this section, we present an abstract simulation test bed
to manifest our design. The basic setting is to simulate a
group of 500 robots deployed and coordinated in a given
600 x 600 units square. For each robot, the wireless commu-
nication range r is 45. In this deployment, the average de-
gree of each robot is 9, and their average distance is close to
10. However, for the random deployment, a few of the robots
may be isolated. In the simulation, one robot is randomly
chosen as the source node to broadcast an important mes-
sage m, and before it is broadcast, we randomly choose 10%
robots in the team as sink robots who are interested in it and
each of those robots will first broadcast one piece of related
message to express their interests in m. Each piece of related
message will be allowed to rebroadcast TT'L hops and TTL
follows Poisson distribution: P(TTL = k) = # Where
A = 15 is the control parameter. Next, the message m is
broadcast and robots are required to balance well between
sharing m to sink robots and avoiding communication cost.

In our experiments, we implemented four classic infor-
mation sharing algorithms (labeled as "Original"): Flood-
ing [21], SBA [6], Dominate Pruning [19] and myopic al-
gorithm [10]. In addition, for each algorithm, we integrate
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our heuristic local updating and decision model (labeled as
"Heuristic") to help improve their performance. The exper-
iments are evaluated with three performance categories:

Utility is the summary of the information utility of the
team in each experiment. A given amount of utility can be
credited to the team when m reaches a sink robot;

Cost records the summary of the communication cost in
broadcasting m around the team. When a robot broadcasts
m, one sending cost and one receiving cost per neighbor will
be counted;

Improved reflects the improvement of robots’ trade off
between broadcasting m to gain higher wtility and mini-
mizing cost to stop rebroadcasting. By integrating our al-
gorithm into those "original" algorithms, this value is com-
puted as

Utility_O/Utility__H B
Cost_O/Cost_H

Improved = 1

where Utility O and Cost__O represent the Utility and cost
with "original" algorithms, while Utility H and Cost_H
are those with our "heuristic" algorithm.

In the following experiments, we set « = 0.5, § = 0.2
and v = 0.3 in our heuristic algorithm and each experimen-
tal result is based on 100 runs. Our experimental results
are presented with five tables. Table 2 presents the perfor-
mances of the 500-robot team in different time steps. Ta-
ble 3 presents the performances on different robot density,
where each team is consisted of 300, 500, 800, 1000 and 1500
robots. Since the team size varies and the teams are limited
in the same size of square, their densities are different. Dif-



Table 6: The "Improved" results for different TTL

A FLOOD SBA Dominate Pruning Myopic
9 28.97% 24.52% 42.87% 34.95%
12 27.50% 27.11% 39.59% 32.46%
15 32.21% 28.76% 38.45% 34.23%
18 33.66% 29.12% 34.78% 31.81%
21 30.91% 26.64% 35.84% 33.55%

ferent with Table 3, we present the performances in Table 4
to verify the scalability. Although similar teams with 300,
500, 800, 1000 and 1500 robots are deployed, with different
size of squares, the robot teams maintain "flat" network den-
sity. Table 5 shows how the 500-robot team performs when
its network dynamic changes, and in this experiment, we set
0% to 20% robots in the team to dynamically move. Table
7 in short display the results when the related messages are
broadcasted with different TTLs, which is controlled by A.

All the experimental results in those tables, as we ex-
pected, uniformly manifest that the "heuristic' model by
integrating our complex network attribute based local deci-
sion model helps robots to significantly improve the balance
between Utility and Cost. Although this model in most
cases gains less utility, it is able to cut off most unnecessary
communications so that effective information sharing in a
large robot team can be reached. Specially, As shown in the
Table 3, when the team only has 300 robots, many robots
are isolated and our local model helps a lot to understand
the network and improves their performances.

7. CONCLUSION

In this paper, by leveraging how complex network effects
can be used for multi-robot information sharing, we pre-
sented a novel context-free decision approach. By building
robots’ local decision model consisting of their local aver-
age distance, degree distribution and high frequency node
estimations, they are able to dynamically update and make
rational decisions. There are three key advantages in the
approach. First, the decision model is light weight and al-
lows robots to make fast decision in large teams. Second, it
is a reinforcement model because the better incoming infor-
mation the better local decision model and this model can
promote information sharing to improve their knowledge.
Thirdly, this approach is compatible with any existing infor-
mation sharing algorithms and our experiments also mani-
fested that it can be integrated and help those algorithms
work better.
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