Using Compression to Improve Chip Multiprocessor Performance

Alaa R. Alameldeen Dissertation Defense

Wisconsin Multifacet Project University of Wisconsin-Madison http://www.cs.wisc.edu/multifacet

Motivation

- Architectural trends
 - Multi-threaded workloads
 - Memory wall
 - Pin bandwidth bottleneck
- CMP design trade-offs
 - Number of Cores
 - Cache Size
 - Pin Bandwidth
- Are these trade-offs zero-sum?
 - No, compression helps cache size and pin bandwidth
- ➡ However, hardware compression raises a few questions

Thesis Contributions

- Question: Is compression's overhead too high for caches?
- Contribution #1: Simple compressed cache design
 - Compression Scheme: Frequent Pattern Compression
 - Cache Design: Decoupled Variable-Segment Cache
- Question: Can cache compression hurt performance?
 - + Reduces miss rate
 - Increases hit latency
- Contribution #2: Adaptive compression
 - Adapt to program behavior
 - Cache compression only when it helps

3

Thesis Contributions (Cont.)

- Question: Does compression help CMP performance?
- Contribution #3: Evaluate CMP cache and link compression
 - Cache compression improves CMP throughput
 - Link compression reduces pin bandwidth demand
- Question: How does compression and prefetching interact?
- Contribution #4: Compression interacts positively with prefetching
 - Speedup (Compr, Pref) > Speedup (Compr) x Speedup (Pref)
- Question: How do we balance CMP cores and caches?
- Contribution #5: Model CMP cache and link compression
 - Compression improves optimal CMP configuration

Outline

- Background
 - Technology and Software Trends
 - Compression Addresses CMP Design Challenges
- Compressed Cache Design
- Adaptive Compression
- CMP Cache and Link Compression
- Interactions with Hardware Prefetching
- Balanced CMP Design
- Conclusions

5

Technology and Software Trends

- Technology trends:
 - Memory Wall: Increasing gap between processor and memory speeds
 - Pin Bottleneck: Bandwidth demand > Bandwidth Supply

Using Compression

- On-chip Compression
 - Cache Compression: Increases effective cache size
 - Link Compression: Increases effective pin bandwidth
- Compression Requirements
 - Lossless
 - Low decompression (compression) overhead
 - Efficient for small block sizes
 - Minimal additional complexity
- Thesis addresses CMP design with compression support

9

Outline

- Background
- Compressed Cache Design
 - Compressed Cache Hierarchy
 - Compression Scheme: FPC
 - Decoupled Variable-Segment Cache
- Adaptive Compression
- CMP Cache and Link Compression
- Interactions with Hardware Prefetching
- Balanced CMP Design
- Conclusions

Frequent Pattern Compression (FPC)

- A significance-based compression algorithm
 - Compresses each 32-bit word separately
 - Suitable for short (32-256 byte) cache lines
 - Compressible Patterns: zeros, sign-ext. 4,8,16-bits, zero-padded half-word, two SE half-words, repeated byte
 - Pattern detected ⇒ Store pattern prefix + significant bits
 - A 64-byte line is decompressed in a five-stage pipeline

Decoupled Variable-Segment Cache

- Each set contains twice as many tags as uncompressed lines
- Data area divided into 8-byte segments
- Each tag is composed of:
 - Address tagPermissionsSame as uncompressed cache
 - CStatus: 1 if the line is compressed, 0 otherwise
 - CSize: Size of compressed line in segments
 - LRU/replacement bits

Outline

- Background
- Compressed Cache Design
- Adaptive Compression
 - Key Insight
 - Classification of Cache Accesses
 - Performance Evaluation
- CMP Cache and Link Compression
- Interactions with Hardware Prefetching
- Balanced CMP Design
- Conclusions

15

Adaptive Compression

Use past to predict future

- Key Insight:
 - LRU Stack [Mattson, et al., 1970] indicates for each reference whether compression helps or hurts

Compression Predictor

- Estimate: Benefit(Compression) Cost(Compression)
- Single counter : Global Compression Predictor (GCP)
 - Saturating up/down 19-bit counter
- GCP updated on each cache access
 - Benefit: Increment by memory latency
 - Cost: Decrement by decompression latency
 - Optimization: Normalize to memory_lat / decompression_lat, 1
- Cache Allocation
 - Allocate compressed line if GCP ≥ 0
 - Allocate uncompressed lines if GCP < 0

23

Simulation Setup

- Workloads:
 - Commercial workloads [Computer'03, CAECW'02]:
 - OLTP: IBM DB2 running a TPC-C like workload
 - SPECJBB
 - · Static Web serving: Apache and Zeus
 - SPEC2000 benchmarks:
 - · SPECint: bzip, gcc, mcf, twolf
 - · SPECfp: ammp, applu, equake, swim
- Simulator:
 - Simics full system simulator; augmented with:
 - Multifacet General Execution-driven Multiprocessor Simulator (GEMS) [Martin, et al., 2005, http://www.cs.wisc.edu/gems/]

System configuration

Configuration parameters:

L1 Cache	Split I&D, 64KB each, 4-way SA, 64B line, 3-cycles/access
L2 Cache	Unified 4MB, <i>8-way</i> SA, 64B line, access latency 15 cycles + <i>5-cycle decompression latency</i> (if needed)
Memory	4GB DRAM, 400-cycle access time, 16 outstanding requests
Processor	Dynamically scheduled SPARC V9, 4-wide superscalar, 64-entry Instruction Window, 128-entry reorder buffer

25

Simulated Cache Configurations

- Always: All compressible lines are stored in compressed format
 - Decompression penalty for all compressed lines
- Never: All cache lines are stored in uncompressed format
 - Cache is 8-way set associative with half the number of sets
 - Does not incur decompression penalty
- Adaptive: Adaptive compression scheme

Optimal Adaptive Compression?

> Optimal: Always with no decompression penalty

Adaptive Compression: Summary

- Cache compression increases cache capacity but slows down cache hit time
 - Helps some benchmarks (e.g., apache, mcf)
 - Hurts other benchmarks (e.g., gcc, ammp)
- Adaptive compression
 - Uses (LRU) replacement stack to determine whether compression helps or hurts
 - Updates a single global saturating counter on cache accesses
- Adaptive compression performs similar to the better of Always Compress and Never Compress

Outline

- Background
- Compressed Cache Design
- Adaptive Compression
- CMP Cache and Link Compression
- Interactions with Hardware Prefetching
- Balanced CMP Design
- Conclusions

Link Compression

- On-chip L3/Memory Controller transfers compressed messages
- Data Messages
 - 1-8 sub-messages (flits), 8bytes each
- Off-chip memory controller combines flits and stores to memory

Hardware Stride-Based Prefetching

- L2 Prefetching
 - + Hides memory latency
 - Increases pin bandwidth demand
- L1 Prefetching
 - + Hides L2 latency
 - Increases L2 contention and on-chip bandwidth demand
 - Triggers L2 fill requests ⇒ Increases pin bandwidth demand

• Questions:

- Does compression interfere positively or negatively with hardware prefetching?
- How does a system with both compare to a system with only compression or only prefetching?

Interactions Terminology

 Assume a base system S with two architectural enhancements A and B, All systems run program P

```
Speedup(A) = Runtime(P, S) / Runtime(P, A)
```

$$Speedup(A, B) = Speedup(A) \times Speedup(B)$$

39

Compression and Prefetching Interactions

Positive Interactions:

- + L1 prefetching hides part of decompression overhead
- + Link compression reduces increased bandwidth demand because of prefetching
- + Cache compression increases effective L2 size, L2 prefetching increases working set size

Negative Interactions:

- L2 prefetching and L2 compression can eliminate the same misses
- ⇒ Is Interaction(Compression, Prefetching) positive or negative?

Evaluation

- 8-core CMP
- Cores: single-threaded, out-of-order superscalar with a 64-entry IW, 128-entry ROB, 5 GHz clock frequency
- L1 Caches: 64K instruction, 64K data, 4-way SA, 320 GB/sec total on-chip bandwidth (to/from L1), 3-cycle latency
- Shared L2 Cache: 4 MB, 8-way SA (uncompressed), 15-cycle uncompressed latency, 128 outstanding misses
- Memory: 400 cycles access latency, 20 GB/sec memory bandwidth
- Prefetching:
 - Similar to prefetching in IBM's Power4 and Power5
 - 8 unit/negative/non-unit stride streams for L1 and L2 for each processor
 - Issue 6 L1 prefetches on L1 miss
 - Issue 25 L2 prefetches on L2 miss

Compression and Prefetching: Summary

- More cores on a CMP increase demand for:
 - On-chip (shared) caches
 - Off-chip pin bandwidth
- Prefetching further increases demand on both resources
- Cache and link compression alleviate such demand
- Compression interacts positively with hardware prefetching

61

Outline

- Background
- Compressed Cache Design
- Adaptive Compression
- CMP Cache and Link Compression
- Interactions with Hardware Prefetching
- Balanced CMP Design
 - Analytical Model
 - Simulation
- Conclusions

Simple Analytical Model

- Provides intuition on core vs. cache trade-off
- Model simplifying assumptions:
 - Pin bandwidth demand follows an M/D/1 model
 - Miss rate decreases with square root of increase in cache size
 - Blocking in-order processor
 - Some parameters are fixed with change in #processors
 - Uses IPC instead of a work-related metric

Balanced CMP Design: Summary

- Analytical model can qualitatively predict throughput
 - Can provide intuition into trade-off
 - Quickly analyzes sensitivity to CMP parameters
 - Not accurate enough to estimate throughput
- Compression improves throughput across all configurations
 - Larger improvement for "optimal" configuration
- Compression can shift balance towards more cores
- Compression interacts positively with prefetching for most configurations

Related Work (1/2)

- Memory Compression
 - IBM MXT technology
 - Compression schemes: X-Match, X-RL
 - Significance-based compression: Ekman and Stenstrom
- Virtual Memory Compression
 - Wilson et al.: varying compression cache size
- Cache Compression
 - Selective compressed cache: compress blocks to half size
 - Frequent value cache: frequent L1 values stored in cache
 - Hallnor and Reinhardt: Use indirect indexed cache for compression

69

Related Work (2/2)

- Link Compression
 - Farrens and Park: address compaction
 - Citron and Rudolph: table-based approach for address & data
- Prefetching in CMPs
 - IBM's Power4 and Power5 stride-based prefetching
 - Beckmann and Wood: prefetching improves 8-core performance
 - Gunasov and Burtscher: One CMP core dedicated to prefetching
- Balanced CMP Design
 - Huh et al.: Pin bandwidth a first-order constraint
 - Davis et al.: Simple Chip multi-threaded cores maximize throughput

Conclusions

- CMPs increase demand on caches and pin bandwidth
 - Prefetching further increases such demand
- Cache Compression
 - + Increases effective cache size Increases cache access time
- Link Compression decreases bandwidth demand
- Adaptive Compression
 - Helps programs that benefit from compression
 - Does not hurt programs that are hurt by compression
- CMP Cache and Link Compression
 - Improve CMP throughput
 - Interact positively with hardware prefetching
- Compression improves CMP performance

71

Backup Slides

- Moore's Law: CPU vs. Memory S
- Moore's Law (1965)
- Software Trends
- Decoupled Variable-Segment Cache

 Classification of L2 Accesses

 Compression Ratios

 Generativity to #Cortes
 Analytical Model: IPC

 Model Parameters

 Model Sensitivity to Model
- Compression Ratios
- Seg. Compr. Ratios SPECint SPECfp Commercial

 Model Sensitivity to Pin Bandwidth
- Frequent Pattern Histogram
- Segment Histogram
- (LRU) Stack Replacement
- Cache Bits Read or Written
- Sensitivity to L2 Associativity
- Sensitivity to Memory Latency
- Sensitivity to Decompression Latency
- Sensitivity to Cache Line Size
- Phase Behavior

- CMP Compression: Sensitivity to Memory Latency
- CMP Compression: Sensitivity to Pin Bandwidth

- Sensitivity to #Cores OLTP
- Sensitivity to #Cores Apache

- Model Sensitivity to Memory Latency
- Model Sensitivity to L2 Miss rate
- Model-Sensitivity to Compression Ratio
- Model Sensitivity to Decompression Penalty
- Model Sensitivity to Perfect CPI
 Simulation (20 GB/sec bandwidth) apache
- Simulation (20 GB/sec bandwidth) oltp
 Simulation (20 GB/sec bandwidth) jbb
 - Simulation (10 GB/sec bandwidth) zeus
 - Simulation (10 GB/sec bandwidth) apache
- CMP Compression: Sensitivity to L2 Size

 - Online Transaction Processing (OLTP)
 - Java Server Workload (SPECjbb)
 - Static Web Content Serving: Apache

Classification of L2 Accesses

- Cache hits:
 - Unpenalized hit: Hit to an uncompressed line that would have hit without compression
 - Penalized hit: Hit to a compressed line that would have hit without compression
 - + Avoided miss: Hit to a line that would NOT have hit without compression
- Cache misses:
 - + Avoidable miss: Miss to a line that would have hit with compression
 - Unavoidable miss: Miss to a line that would have missed even with compression

Seg. Compression Ratios - SPECint

Seg. Compression Ratios - SPECfp

Seg. Compression Ratios - Commercial

Frequent Pattern Histogram 100 80 Uncompressible 60 Pattern % Compr. 16-bits Compr. 8-bits Compr. 4-bits Zeros 20 bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

(LRU) Stack Replacement

- Differentiate penalized hits and avoided misses?
 - Only hits to top half of the tags in the LRU stack are penalized hits
- Differentiate avoidable and unavoidable misses?

 $Avoidable_Miss(k) \Leftrightarrow \sum_{LRU(i)=1}^{LRU(i)=LRU(k)} CSize(i) \leq 16$

- Is not dependent on LRU replacement
 - Any replacement algorithm for top half of tags
 - Any stack algorithm for the remaining tags

Cache Bits Read or Written

85

Sensitivity to L2 Associativity

Sensitivity to Memory Latency

87

Sensitivity to Decompression Latency

Phase Behavior

Commercial CMP Designs

- IBM Power5 Chip:
 - Two processor cores, each 2-way multi-threaded
 - ~1.9 MB on-chip L2 cache
 - < 0.5 MB per thread with no sharing
 - Compare with 0.75 MB per thread in Power4+
 - Est. ~16GB/sec. max. pin bandwidth
- Sun's Niagara Chip:
 - Eight processor cores, each 4-way multi-threaded
 - 3 MB L2 cache
 - < 0.4 MB per core, < 0.1 MB per thread with no sharing
 - Est. ~22 GB/sec. pin bandwidth

91

CMP Compression – Miss Rates 1.0 Normalized Missrate No Compression L2 Compression 15.2 11.3 3.3 3.5 75.2 9.3 17.5 5.1 mgrid apache oltp jbb apsi fma3d zeus art

u

CMP Compression: Pin Bandwidth **Demand**

93

CMP Compression: Sensitivity to L2 Size

CMP Compression: Sensitivity to Memory Latency

95

CMP Compression: Sensitivity to Pin Bandwidth

Benc hmark	L1 I Cache			L1 D Cache			L2 Cache		
	PF rate	coverage	accuracy	PF rate	coverage	accuracy	PF rate	coverage	accuracy
apache	4.9	16.4	42.0	6.1	8.8	55.5	10.5	37.7	57.9
zeus	7.1	14.5	38.9	5.5	17.7	79.2	8.2	44.4	56.0
oltp	13.5	20.9	44.8	2.0	6.6	58.0	2.4	26.4	41.5
jbb	1.8	24.6	49.6	4.2	23.1	60.3	5.5	34.2	32.4
art	0.05	9.4	24.1	56.3	30.9	81.3	49.7	56.0	85.0
apsi	0.04	15.7	30.7	8.5	25.5	96.9	4.6	95.8	97.6
fma3d	0.06	7.5	14.4	7.3	27.5	80.9	8.8	44.6	73.5

Sensitivity to #Cores - OLTP

Sensitivity to #Cores - Apache

apache

99

Analytical Model: IPC

$$IPC(N) = \frac{N}{CPI_{PerfectL2} + dp + MissPenalty_{L2}.\alpha.\sqrt{\frac{N - sharers_{av}(N) + 1}{c.(m - k_p.N)}}}$$

 $MissLatency_{L2} = MemoryLatency + LinkLatency \\$

$$LinkLatency = \overline{X} + \frac{IPC(N).Missrate(S_{L2p}).\overline{X}^{2}}{2.(1 - IPC(N).Missrate(S_{L2p}).\overline{X})}$$

Model Parameters

- Divide chip area between cores and caches
 - Area of one (in-order) core = 0.5 MB L2 cache
 - Total chip area = 16 cores, or 8 MB cache
 - Core frequency = 5 GHz
 - Available bandwidth = 20 GB/sec.
- Model Parameters (hypothetical benchmark)
 - Compression Ratio = 1.75
 - Decompression penalty = 0.4 cycles per instruction
 - Miss rate = 10 misses per 1000 instructions for 1proc, 8 MB Cache
 - IPC for one processor, perfect cache = 1
 - Average #sharers per block = 1.3 (for #proc > 1)

101

Model - Sensitivity to Memory Latency

- Compression's impact similar on both extremes
- **Compression can shift optimal configuration towards more cores (though not significantly)**

Model - Sensitivity to Pin Bandwidth

103

ij.

Model - Sensitivity to L2 Miss rate

Model-Sensitivity to Compression Ratio

105

Model - Sensitivity to Decompression Penalty

Model - Sensitivity to Perfect CPI

107

Simulation (20 GB/sec bandwidth) - apache

กล

Simulation (20 GB/sec bandwidth) oltp

Simulation (20 GB/sec bandwidth) - jbb

Simulation (10 GB/sec bandwidth) - apache

L.B

Simulation (10 GB/sec bandwidth) oltp

113

Simulation (10 GB/sec bandwidth) - jbb

Compression & Prefetching Interaction – 10 GB/sec pin bandwidth

⊃ Interaction is positive for most configurations (and all "optimal" configurations)

Model Error – oltp, jbb

117

Online Transaction Processing (OLTP)

DB2 with a TPC-C-like workload.

- Based on the TPC-C v3.0 benchmark.
- We use IBM's DB2 V7.2 EEE database management system and an IBM benchmark kit to build the database and emulate users.
- 5 GB 25000-warehouse database on eight raw disks and an additional dedicated database log disk.
- We scaled down the sizes of each warehouse by maintaining the reduced ratios of 3 sales districts per warehouse, 30 customers per district, and 100 items per warehouse (compared to 10, 30,000 and 100,000 required by the TPC-C specification).
- Think and keying times for users are set to zero.
- 16 users per processor
- Warmup interval: 100,000 transactions

Java Server Workload (SPECjbb)

SpecJBB.

- We used Sun's HotSpot 1.4.0 Server JVM and Solaris's native thread implementation
- The benchmark includes driver threads to generate transactions
- System heap size to 1.8 GB and the new object heap size to 256 MB to reduce the frequency of garbage collection
- 24 warehouses, with a data size of approximately 500 MB.

119

Static Web Content Serving:

Apache.

- We use Apache 2.0.39 for SPARC/Solaris 9 configured to use pthread locks and minimal logging at the web server
- We use the Scalable URL Request Generator (SURGE) as the client.

Apache

- SURGE generates a sequence of static URL requests which exhibit representative distributions for document popularity, document sizes, request sizes, temporal and spatial locality, and embedded document count
- We use a repository of 20,000 files (totaling ~500 MB)
- Clients have zero think time
- We compiled both Apache and Surge using Sun's WorkShop C 6.1 with aggressive optimization