Using Compression to Improve
Chip Multiprocessor Performance

Alaa R. Alameldeen

Dissertation Defense

Wisconsin Multifacet Project
University of Wisconsin-Madison
http://www.cs.wisc.edu/multifacet

Motivation

= Architectural trends

— Multi-threaded workloads
— Memory wall
— Pin bandwidth bottleneck

= CMP design trade-offs

— Number of Cores
— Cache Size
— Pin Bandwidth

= Are these trade-offs zero-sum?
— No, compression helps cache size and pin bandwidth

<2 However, hardware compression raises a few questions




Thesis Contributions

Question: Is compression’s overhead too high for
caches?
Contribution #1: Simple compressed cache design

— Compression Scheme: Frequent Pattern Compression
— Cache Design: Decoupled Variable-Segment Cache

Question: Can cache compression hurt performance?

+ Reduces miss rate
- Increases hit latency

Contribution #2: Adaptive compression

— Adapt to program behavior
— Cache compression only when it helps

Thesis Contributions (Cont.)

Question: Does compression help CMP performance?
Contribution #3: Evaluate CMP cache and link
compression

— Cache compression improves CMP throughput
— Link compression reduces pin bandwidth demand

Question: How does compression and prefetching
interact?

Contribution #4: Compression interacts positively with
prefetching

— Speedup (Compr, Pref) > Speedup (Compr) x Speedup (Pref)
Question: How do we balance CMP cores and caches?

Contribution #5: Model CMP cache and link compression

— Compression improves optimal CMP configuration .




Outline

= Background

— Technology and Software Trends
— Compression Addresses CMP Design Challenges

= Compressed Cache Design

= Adaptive Compression

= CMP Cache and Link Compression

» Interactions with Hardware Prefetching
= Balanced CMP Design

= Conclusions

Technology and Software Trends

= Technology trends:
— Memory Wall: Increasing gap between processor and
memory speeds
— Pin Bottleneck: Bandwidth demand > Bandwidth
Supply




Pin Bottleneck: ITRS 04 Roadmap

Transistors and Pins Per Chip

100000

10000 -

=== f#Transistors
millions)
e=fl=#Pins

1000 -

100

2004 2007 2010 2013 2016 2019

» Annual Rates of Increase: Transistors 26%, Pins 10%

Technology and Software Trends

» Technology trends:
— Memory Wall: Increasing gap between processor and
memory speeds
— Pin Bottleneck: Bandwidth demand > Bandwidth
Supply
= Favor bigger cache

= Software application trends:

— Higher throughput requirements
= Favor more cores/threads
= Demand higher pin bandwidt

Contradictory
Goals




Using Compression

= On-chip Compression

— Cache Compression: Increases effective cache size

— Link Compression: Increases effective pin
bandwidth

= Compression Requirements

— Lossless

— Low decompression (compression) overhead
— Efficient for small block sizes

— Minimal additional complexity

S Thesis addresses CMP design with
compression support

Outline

= Background

= Compressed Cache Design

— Compressed Cache Hierarchy
— Compression Scheme: FPC
— Decoupled Variable-Segment Cache

= Adaptive Compression

» CMP Cache and Link Compression

= Interactions with Hardware Prefetching
= Balanced CMP Design

= Conclusions




Compressed Cache Hierarchy
(Uniprocessor)

Instruction Load-Store
Fetcher Queue
L1 I-Cache L1 D-Cache
(Uncompressed) (Uncompressed)
Uncompressed
Line ’L1 Victim Cache‘
Bypass Decompression ¥
Pipeline :
Compression
Pipeline
From Memory
L2 Cache (Compressed)

Frequent Pattern Compression
(FPC)

» A significance-based compression algorithm

— Compresses each 32-bit word separately
— Suitable for short (32-256 byte) cache lines

— Compressible Patterns: zeros, sign-ext. 4,8,16-bits,
zero-padded half-word, two SE half-words, repeated
byte

— Pattern detected = Store pattern prefix + significant
bits

— A 64-byte line is decompressed in a five-stage
pipeline

To Memory




Decoupled Variable-Segment Cache

= Each set contains twice as many tags as
uncompressed lines

» Data area divided into 8-byte segments

» Each tag is composed of:

— Address tag Same as
. uncompressed
— Permissions cache

— CStatus : 1 if the line is compressed, 0 otherwise
— CSize: Size of compressed line in segments
— LRU/replacement bits

Decoupled Variable-Segment Cache

= Example cache set

Tag Area Data Area

N T

Tag is present
but line isn’t

Compression Status Compressed Size




Outline

= Background
= Compressed Cache Design

= Adaptive Compression

— Key Insight
— Classification of Cache Accesses
— Performance Evaluation

= CMP Cache and Link Compression
» Interactions with Hardware Prefetching
= Balanced CMP Design

= Conclusions

Adaptive Compression

» Use past to predict future

Yes Benefit(Compression) No
> Cost(Compression

Compress Do not compress
future lines future lines

= Key Insight:

- LRU Stack [Mattson, et al., 1970] indicates for each
reference whether compression helps or hurts




Cost/Benefit Classification

Tag Area Data Area

Uncompressed

Addr B compressed 2

) k

compressed

= Classify each cache reference

» Four-way SA cache with space for two 64-byte lines
— Total of 16 available segments

An Unpenalized Hit

Tag Area Data Area

Uncompresseac

= Read/Write Address A
— LRU Stack order = 1 <2 = Hit regardless of compression
— Uncompressed Line = No decompression penalty
— Neither cost nor benefit




A Penalized Hit

Tag Area Data Area

uncompressed 3 ||| [ [

Addr B compressed 2

= Read/Write Address B

— LRU Stack order = 2 < 2 = Hit regardless of compression
— Compressed Line = Decompression penalty incurred
— Compression cost

An Avoided Miss

Tag Area Data Area

= Read/Write Address C

— LRU Stack order = 3 > 2 = Hit only because of compression
— Compression benefit: Eliminated off-chip miss

20

10



An Avoidable Miss

Tag Area Data Area

AddrC compressed

P S R Ay A R 2 rrerrrs
Addr D" ‘compressed i i
el et el Sy s rrrrrrs

= Read/Write Address D

— Line is not in the cache but tag exists at LRU stack order = 4
— Missed only because some lines are not compressed
— Potential compression benefit

21

An Unavoidable Miss

Tag Area Data Area

= Read/Write Address E

— LRU stack order > 4 = Compression wouldn’t have helped
— Line is not in the cache and tag does not exist
— Neither cost nor benefit

22

11



Compression Predictor

Estimate: Benefit(Compression) — Cost(Compression)

Single counter : Global Compression Predictor (GCP)
— Saturating up/down 19-bit counter

GCP updated on each cache access

— Benefit: Increment by memory latency
— Cost: Decrement by decompression latency
— Optimization: Normalize to memory_lat / decompression_lat, 1

Cache Allocation

— Allocate compressed line if GCP >0
— Allocate uncompressed lines if GCP < 0

23

Simulation Setup

= Workloads:

— Commercial workloads [Computer'03, CAECW’02] :
« OLTP: IBM DB2 running a TPC-C like workload
« SPECJBB
+ Static Web serving: Apache and Zeus
— SPEC2000 benchmarks:
» SPECint: bzip, gcc, mcf, twolf
« SPECfp: ammp, applu, equake, swim

= Simulator:

— Simics full system simulator; augmented with:

— Multifacet General Execution-driven Multiprocessor Simulator
(GEMS) [Martin, et al., 2005, http://www.cs.wisc.edu/gems/]

24

12



System configuration

= Configuration parameters:

L1 Cache Split 1&D, 64KB each, 4-way SA, 64B line, 3-
cycles/access

L2 Cache Unified 4MB, 8-way SA, 64B line, access latency
15 cycles + 5-cycle decompression latency (if
needed)

Memory 4GB DRAM, 400-cycle access time, 16

outstanding requests

Processor Dynamically scheduled SPARC V9, 4-wide
superscalar, 64-entry Instruction Window, 128-
entry reorder buffer

25

Simulated Cache Configurations
= Always: All compressible lines are stored in
compressed format

— Decompression penalty for all compressed lines

= Never: All cache lines are stored in
uncompressed format

— Cache is 8-way set associative with half the number
of sets

— Does not incur decompression penalty

= Adaptive: Adaptive compression scheme

26

13



Performance

14

g
z
O
aal N - [ [ [ ] qqf
H dyjo .m 7 7 7 7 H dyjo
snaz Ym I 7 7 7 7 snaz
L o i
m:uﬁL o ) 7 7 7 7 dyoede
\ & [ [ [ [ |
WIMS ~ (v WIMS
| Jyenbyl Q- m 7 7 7 7 | ayenba
| Y_._c., — i
nydde %lu. r.m 7 7 7 7 ‘ npdde
H QEEn\ aru 7 7 7 7 ] dwwe
Jiomy 3 DI 7 7 7 7 ] Jiomy
[ [ [ [ [
| 23 walv. 7 7 7 7 208
| dizq 7 7 7 7 I dizq
N = © Vv T AN © N - o,o ,,o 4,_. .,z o
- S © o o - S 6 o o
dwijuny pazijew.lonN awniuny pazijewJaoN

28




Performance

34% 16%

1.2 \\&y‘m/_up/ Slowdown
v 1
E
whed
£0.8
[~ ONever
EOG-- I Always
§0.4
o
Z 0.2
o__
£ g T % =2 2 E 2 8 &2 2
2 =8 § Egz =z :f % g i
IR S
29
Performance
1.2
o 1
E
d
£ 0.8 1
[~ O Never
§06- @ Always
= B Adaptive
§0.4'
o
Z 0.2
0' (=7 (=% = =
= 8 - = o g @ 2B Y
5 %8 $ ET:z: S EEA
< Adaptive performs similar to the best of Always and Never

30

15



Normalized Runtime

Cache Miss Rates

1.0
&
<
~
2 INever
> 0.5 Al
= 054 -
g ways
= |:|Adaptive
:
Z
0.0 - —
13 29 399 50 02 157 111 416 157 153 36 39
bzip gecc  mef twolf ammp applu equake swim apache zeus oltp  jbb
31
1.0
INever
[l Always
0.5 [] Adaptive
[l Optimal
bzip gecc  mef twolf ammp applu equake swim apache zeus oltp  jbb
» Optimal: Always with no decompression penalty
32

16



Normalized Runtime

Normalized Runtime

Adapting to L2 Size

ammp
1.0 —
== Never
0.5 | == Always
= Adaptive
0.0 256K/8 512K/8 IM/8 2M/8 4M/8 SM/8 16M/8
0.9 1.1 5.8 9.0 8252 164923 1722811
mcf \
1.0
== Never
05 |\ == Always
= Adaptive
0.0 --350K/8 —512K78 M/S M/ M/ g ToM/

5.9 5.8 33 2.9 10.8 80.7 6631841 \

Penalized Hits

Per Avoided Miss
33

Adaptive Compression: Summary

= Cache compression increases cache capacity
but slows down cache hit time

— Helps some benchmarks (e.g., apache, mcf)
— Hurts other benchmarks (e.g., gcc, ammp)

= Adaptive compression

— Uses (LRU) replacement stack to determine whether
compression helps or hurts

— Updates a single global saturating counter on cache
accesses

» Adaptive compression performs similar to the
better of Always Compress and Never
Compress

34

17



Outline

= Background

= Compressed Cache Design

= Adaptive Compression

= CMP Cache and Link Compression

» Interactions with Hardware Prefetching
= Balanced CMP Design

= Conclusions

35

Compressed Cache Hierarchy
(CMP)

Processor 1 Processor n
L1 cache ------------------------ L1 cache
Uncompressed Uncompressed
[ ]

Uncompresséd
Line )
Bypass Compression
Decompression

Shared L2 Cache (Compressed)
1y

L3 / Memory Controller (Could compress/decompress)

I To/From other chips/memory
36




Link Compression

* On-chip L3/Memory
Controller transfers
compressed messages

CMP

Processors / L1 Caches

» Data Messages

— 1-8 sub-messages (flits), 8- L2 Cache
bytes each
= Off-chip memory )
controller combines flits L3/Memory Controller

and stores to memory

'

v

Memory Controller

I To/From Memory
37

Hardware Stride-Based Prefetching

= L2 Prefetching

+ Hides memory latency

= Increases pin bandwidth demand
= L1 Prefetching

+ Hides L2 latency
= Increases L2 contention and on-chip bandwidth demand
= Triggers L2 fill requests = Increases pin bandwidth demand

= Questions:

— Does compression interfere positively or negatively with
hardware prefetching?

— How does a system with both compare to a system with only
compression or only prefetching?

38

19



Interactions Terminology

= Assume a base system S with two architectural
enhancements A and B, All systems run
program P

Speedup(A) = Runtime(P, S) / Runtime(P, A)

Speedup(B) = Runtime(P, S) / Runtime (P, B)

Speedup(A, B) = Speedup(A) x Speedup(B)
X (1 + Interaction(A,B) )

39

Compression and Prefetching
Interactions

= Positive Interactions:

+ L1 prefetching hides part of decompression overhead

+ Link compression reduces increased bandwidth
demand because of prefetching

+ Cache compression increases effective L2 size, L2
prefetching increases working set size

» Negative Interactions:

— L2 prefetching and L2 compression can eliminate the
same misses

< ls Interaction(Compression, Prefetching) positive
or negative?

40

20



Evaluation

8-core CMP

Cores: single-threaded, out-of-order superscalar with a 64-entry IW,
128-entry ROB, 5 GHz clock frequency

L1 Caches: 64K instruction, 64K data, 4-way SA, 320 GB/sec total
on-chip bandwidth (to/from L1), 3-cycle latency

Shared L2 Cache: 4 MB, 8-way SA (uncompressed), 15-cycle
uncompressed latency, 128 outstanding misses

Memory: 400 cycles access latency, 20 GB/sec memory bandwidth

Prefetching:

— Similar to prefetching in IBM’s Power4 and Power5

— 8 unit/negative/non-unit stride streams for L1 and L2 for each processor
— lIssue 6 L1 prefetches on L1 miss

— Issue 25 L2 prefetches on L2 miss

41

Performance

1.6
14
1.2

0.8
0.6
0.4
0.2

Speedup

apache zeus oltp jbb art apsi fma3d mgrid
\ 7 \ 7

Comr?ngrcial SPI;Eomp

42

21



Performance

1.2 @ No Compression or

1 Prefetching
o
3
§m8-
0.6 -

0.4 -

0.2 -

0 - . . . . . . .

apache zeus oltp jbb art apsi fma3d mgrid

43

Performance

1.2 @ No Compression or
Prefetching

17 | |ocache Compression

0 - . . . . . . e
apache zeus oltp jbb art apsi fma3d mgrid

< Cache Compression provides speedups of up to 18%
44

22



Performance

1.2 @ No Compression or
Prefetching

O Cache Compression

O Link Compression

0 - ‘ ‘ ‘ ‘ ‘ ‘ L
apache zeus oltp jbb art apsi fma3d mgrid

2 Link compression speeds up bandwidth-limited applications

45
Performance
1.6
14
1.2 @ No Compression or
1- Prefetching
> 0O Cache Compression
0.8 -
Q O Link Compression
“ 0.6 -
) B Cache and_ Link
0.4 - Compression
0.2 -
o .

apache zeus oltp jbb art apsi fma3d mgrid

< Cache&Link compression provide speedups up to 22%
46

23



Performance

@ No Compression or
Prefetching

B Compression

apache zeus oltp jbb art apsi fma3d mgrid

47

Performance

@ No Compression or
Prefetching

B Compression

O Prefetching

apache zeus oltp jbb art apsi fma3d mgrid

< Prefetching speeds up all except jbb (up to 21%)
48

24



Performance

1.6
14 — |
1.2 _ _ M [ | |m No Compression or
1 - || Prefetching
S M B Compression
-
§0 8 I Prefetching
m 1 —
0:6 O Compression and
0.4 - || | Prefetching
0.2 _
o u | | | | | | | | | | | | | L]

apache zeus oltp jbb art apsi fma3d mgrid
2 Compression&Prefetching have up to 51% speedups
49

Interactions Between Prefetching
and Compression

25
20
o
2 15 -
o
2
£ 10
©
E
2
g 5]
JE N m N
) apache zeus oltp jbb art apsi fma3d mgrid

< Interaction is positive for seven benchmarks
50




Positive Interaction: Pin Bandwidth

°
€35
g 3
F=l @ No Compression or
k=) 2.5 Prefetching
.E 2 B L1 and L2 Prefetching
[
[-4] 1.5 - O Cache and Link Compression
£
z 1 O Both Prefetching and
2 Compression
E 0.5 -
'™
6 0
=
3 Q) %) & o > O
& » K S 0 o) Q
3 & N § * K S N
QQ'D 4 ‘\& (‘\Q

Pin Bandwidth (GB/sec) for
8.8 73 5.0 6.6 7.6 21.5 27.7 144 no Compression or prefetchmg

< Compression saves bandwidth consumed by prefetching
51

Negative Interaction: Avoided
Misses

W Extra Avoidable
Prefetches

B Extra Unavoidable
Prefetches

O Avoided by Both

%o Misses

E Avoided by Pref.
Only

O Avoided by Compr.
Only

B Unavoidable Misses

< Small fraction of misses (<9%) avoided by both
52

26



Sensitivity to #Cores

Zeus

[32]
© >
o
o
('S
[-%
-]
[-% o
] ]
wn
o) |
L D n
®)
& @) &
+* i
L " L
e g
o e 1=
< > N <
fd
= I
I > i
=
)}
& - &
mw ]
o Q
i (]
(=] (=] (=] o o o o (=] [=] (=] o (=] o o
o -] (-] < (o] (o] o -] O < (o] o
= ! ] !
(%) Juawanoidw] aduew.i04idd (%) juawanoidw] aduLW.I0LDd

54

27



Sensitivity to #Cores

Zeus
~ 100
X
£ 80
[
£
2 60 - ® PF Only
g = Compr Only
g 40 -
(]
e 20 -
(5]
: I
° 0 1 T T T T
T 1p 2p 4p 8p 16p
& .20
55
Sensitivity to #Cores
Zeus
~100
X
£ 80 —
g
g 60 - ] B PF Only
o = Compr Only
g 40 - ] O PF+Compr
Q
& 201 [
(4]
£
g 0
o ip 2p 4p 8p 16p
e .20

56

28



Sensitivity to #Cores

Zeus
~100
X
= 80 B
[
£
g 60 ® PF Only
g m Compr Only
g 40 - @ PF+Compr
" B PF+2x BW
e 20
(5]
£ 0
5 4
= 1p 2 ap 8p 16p
& .20
57
Sensitivity to #Cores
Zeus
~ 100
X
= 80
[}
£
g 60 - m PF Only
g = Compr Only
g 40 - O PF+Compr
'; ® PF+2x BW
Qg 20 - B PF+2x L2
(4]
£
g 07
o 1p 2p 4p 8p 16p
e .20

58

29



Sensitivity to #Cores

jbb
€ 10 3
[} =
IS ]
0 E
5 03 B PF Only
g 3 B Compr Only
© 3 PF+Compr
8-10 3 . P
S ] Bl PF+2x BW
£ 0 PF+2x L2
£-20 3
[ =
o ]
-30 3
p 2p #Prcﬁ%ssors 8p 16p
59
Sensitivity to Pin Bandwidth
s 20
g . 10 GB/sec.
; Il 20 GBsec.
. [ 40 GB/sec.
g 107 [l 80 GBIsec.
£
0]
) apache zeus oltp jbb art apsi fma3d mgrid
2 Positive interactions for most configurations
60

30



Compression and Prefetching:
Summary

More cores on a CMP increase demand for:

— On-chip (shared) caches
— Off-chip pin bandwidth

Prefetching further increases demand on both
resources

Cache and link compression alleviate such
demand

Compression interacts positively with hardware
prefetching

61

Outline
Background

Compressed Cache Design

Adaptive Compression

CMP Cache and Link Compression
Interactions with Hardware Prefetching

Balanced CMP Design

— Analytical Model
— Simulation

Conclusions .

31



Balanced CMP Design

L2 Cache L2 Cache

CMP CMP

L2 Cache L2 Cache

= Compression can shift this balance
— Increases effective cache size (small area overhead)
— Increases effective pin bandwidth
— Can we have more cores in a CMP?

= Explore by analytical model & simulation
63

Simple Analytical Model
= Provides intuition on core vs. cache trade-off

» Model simplifying assumptions:

— Pin bandwidth demand follows an M/D/1 model

— Miss rate decreases with square root of increase in
cache size

— Blocking in-order processor

— Some parameters are fixed with change in
#processors

— Uses IPC instead of a work-related metric

64

32



Throughput (IPC)

N
- ,;=;:_.t_-.l; :t;'lr BN

S 0.4 el e SR -
& # Sge D) Cache+Link Compr
= AN \
& // \‘\\ k Cache compr
en
g // \\‘ Link compr
£ 024

No compr

0.0 T T T T T T T
2 4 6 8 10 12 14

#Processors

2 Cache compression provides speedups of up to 26% (29%
when combined with link compression

2 Higher speedup for optimal configuration
65

Throughput (Tr/1B cycles)

Simulation (20 GB/sec bandwidth)

ZEUS

——=No PF or Compr.
--9-- PF Only

= & = Compr Only
—&— Both

#processors

< Compression and prefetching combine to significantly
improve throughput

66

33



Compression & Prefetching Interaction

Interaction (PF, Compr) %

30

20

STl g ~< —— apache
---®-- zeus
— -A—- oltp

10 ~o —a— jbb

-

#Processors

< Interaction is positive for most configurations (and all
“optimal” configurations)

67

Balanced CMP Design: Summary

= Analytical model can qualitatively predict throughput

— Can provide intuition into trade-off
— Quickly analyzes sensitivity to CMP parameters
— Not accurate enough to estimate throughput

= Compression improves throughput across all
configurations

— Larger improvement for “optimal” configuration

= Compression can shift balance towards more cores

= Compression interacts positively with prefetching for
most configurations

68

34



Related Work (1/2)

= Memory Compression

— IBM MXT technology
— Compression schemes: X-Match, X-RL
— Significance-based compression: Ekman and Stenstrom

= Virtual Memory Compression
— Wilson et al.: varying compression cache size
= Cache Compression

— Selective compressed cache: compress blocks to half size
— Frequent value cache: frequent L1 values stored in cache

— Hallnor and Reinhardt: Use indirect indexed cache for
compression

69

Related Work (2/2)

= Link Compression

— Farrens and Park: address compaction
— Citron and Rudolph: table-based approach for address & data

= Prefetching in CMPs

— IBM’s Power4 and Power5 stride-based prefetching
— Beckmann and Wood: prefetching improves 8-core performance
— Gunasov and Burtscher: One CMP core dedicated to prefetching

= Balanced CMP Design

— Huh et al.: Pin bandwidth a first-order constraint

— Dauvis et al.: Simple Chip multi-threaded cores maximize
throughput

70

35



Conclusions

CMPs increase demand on caches and pin bandwidth
— Prefetching further increases such demand

Cache Compression

+ Increases effective cache size - Increases cache access time
Link Compression decreases bandwidth demand

Adaptive Compression

— Helps programs that benefit from compression
— Does not hurt programs that are hurt by compression

CMP Cache and Link Compression

— Improve CMP throughput

— Interact positively with hardware prefetching
Compression improves CMP performance

71

Backu

Moore’s Law: CPU vs. Memory Speed
Moore’s Law (1965

Software Trends

Decoupled Variable-Segment Cache

Classification of L2 Accesses

Compression Ratios

Seg. Compr. Ratios SPECint SPECfp Commercial
Frequent Pattern Histogram

Segment Histogram

(LRU) Stack Replacement

Cache Bits Read or Written

Sensitivity to L2 Associativity

Sensitivity to Memory Latency

Sensitivity to Decompression Latency
Sensitivity to Cache Line Size

Phase Behavior

Commercial CMP Designs

CMP Compression — Miss Rates

CMP Compression: Pin Bandwidth Demand
CMP Compression: Sensitivity to L2 Size

CMP Compression: Sensitivity to Memory Latency

CMP Compression: Sensitivity to Pin Bandwidth

Slides

Prefetching Properties (8,
Sensitivity to #Cores — OLTP
Sensitivity to #Cores — Apache
Analytical Model: IPC

Model Parameters

Model - Sensitivity to Memory Latency
Model - Sensitivity to Pin Bandwidth

Model - Sensitivity to L2 Miss rate
Model-Sensitivity to Compression Ratio

Model - Sensitivity to Decompression Penalty
Model - Sensitivity to Perfect CPI
Simulation (20 GB/sec bandwidth) —
Simulation (20 GB/sec bandwidth) — oltp
Simulation (20 GB/sec bandwidth) — jbb
Simulation (10 GB/sec bandwidth) — zeus

( )

( )

apache

10 GB/sec bandwidth
Simulation (10 GB/sec bandwidth) — oltp
Simulation (10 GB/sec bandwidth) — jbb

Compression & Prefetching Interaction — 10 GB/sec
pin bandwidth

Model Error apache. zeus oltp. jbb

Online Transaction Processing (OLTP

Java Server Workload (SPECjbb)

Static Web Content Serving: Apache 72

Simulation apache

36



Moore’s Law: CPU vs. Memory

Speed

1000
100 *.__——-\"".‘————I-—l——l——ibl——ihl——l
B
:: 10 - ——CPU Cycle Time
£ ——- DRAM latency
=
1 -
0.1
PSSR N, PR S I K S, R )
FFFFESE S S S
Year
> CPU cycle time: 500 times faster since 1982
» DRAM Latency: Only ~5 times faster since 1982 73
M 's L 1
oore’s Law (1965)
#Transistors Per Chip (Intel)
10,000,000,000 -
1,000,000,000 -
100,000,000 - Almost 75%
10,000,000 - increase per
1,000,000 - year
100,000 -
10,000 -
1,000 -

\Q&\Q)\Q)\Q)\Q)\Q)\Q)\Q)\Q)\Q)(LQQ/Q

Year

74

37



Software Trends

3500 -
3000 -
2500 -
2000 -
1500 +
1000 +

500 - ]

0 ‘ :

tpmC (thousands)

S > F F o
A K T R4

= Software trends favor more cores and higher off-chip

bandwidth

N

g
S
Q N
F ¥

>

&Q&@'

R

75

Decoupled Variable-Segment Cache

Tag Area Data Area
LRU| g 0|7 = ize(
g (| Tag | Tag7 segment_offset(k) = Sum (actual_size(i))
State Lk-1
2 I 3 segment_offset 16 Even segment_offset 160dd
—_— ]
Segments Segments
Permissions | Cstatus ‘ CSize | Address segment_offset+1 segment_offset+1
(Compresgion Tag) | Tag
8-byte 8-byte
segment segment
Permissions: States M (modified), S (shared), I (invalid), NP (not present) ¢ + ¢

CStatus: 1 if line is compressed, 0 otherwise
CSize: Size of compressed line (in segments) if compressed

CStatus and CSize are used to determine the actual size
(in segments) of the cache line :

CStatus | CSize |Actual Size

16-byte-wide 2-input multiplexor

16 bytes

0
1

N

N

8

N

76

38



Classification of L2 Accesses

Cache hits:

+ Unpenalized hit: Hit to an uncompressed line that would have
hit without compression

= Penalized hit: Hit to a compressed line that would have hit
without compression

+ Avoided miss: Hit to a line that would NOT have hit without
compression

Cache misses:
+ Avoidable miss: Miss to a line that would have hit with
compression

* Unavoidable miss: Miss to a line that would have missed
even with compression

77

Comprssion Ratio

Compression Ratios

ll FeC

ES

\S]
|

I XrL
[0 BrCU
B gzip

78

39



Comprssion Ratio

Comprssion Ratio

Seg. Compression Ratios - SPECint

[l FPC
M Segmented FPC
—  OXRL
[ Segmented XRL
@ BRCL
—— [ Segmented BRCL

bzip gcc mef twolf

79

Seg. Compression Ratios - SPECfp

W FPC

B Segmented FPC
] XRL

B Segmented XRL
— [ BRCL

[] Segmented BRCL

ammp applu equake swim

80

40



Pattern %

Seg. Compression Ratios - Commercial

[l FPC

I Segmented FPC
O XRL

[ Segmented XRL
- mBRCL

[J Segmented BRCL

Comprssion Ratio

apache zeus oltp jbb

81

Frequent Pattern Histogram

B Uncompressible
B Compr. 16-bits
[ Compr. 8-bits
B Compr. 4-bits
[] Zeros

bzip gec mef twolf ammp appluequake swim apache zeus oltp  jbb

82

41



Pattern %

Segment Histogram

I 8 Segments
B 7 Segments
[ 6 Segments
B 5 Segments
[] 4 Segments
I 3 Segments
I 2 Segments
[ 1 Segments

bzip gec mef twolf ammp applu equake swim apache zeus oltp  jbb

83

(LRU) Stack Replacement

= Differentiate penalized hits and avoided misses?
— Only hits to top half of the tags in the LRU stack are penalized hits
» Differentiate avoidable and unavoidable misses?

LRU (i)=LRU (k)
LRU (i)=1

Avoidable_Miss(k) < ) CSize(i) <16

= |s not dependent on LRU replacement

— Any replacement algorithm for top half of tags
— Any stack algorithm for the remaining tags

84

42



Normalized Bits Read/Written

Normalized Runtime

[y o]

,_.
P

Cache Bits Read or Written

0.0-

Il Never
I Always
|:| Adaptive

bzip gecc  mcf twolf ammp applu equake swim apache zeus oltp jbb_

85

Sensitivity to L2 Associativity

apache

[ Never
— B Always
[0 Adaptive-

Normalized Runtime

RS
6.1 55 49 4.5

—_
(=)
PR

=
w
PR

0.0-

mcf

[l Never
W Always
[0 Adaptive

86

43



Normalized Runtime

Normalized Runtime

Normalized Runtime

Sensitivity to Memory Latency

10 apache

== Never
0.5 == Always

= Adaptive
0.0 55500 300 400 500 600 700 800
10 mcf

== Never
0.5 == Always

= Adaptive
0.05300 300 400 500 600 700 300

87

Sensitivity to Decompression

[9)
5 1.0 =% —x—% pncf —— e X
1 [ S
g PP P T S Sy S B L t never
E 0.5 -- @ - always
'Té — 4 — adapt
§ 00t———— T T T 1
Z 0 5 10 15 20 25
Decompression Latency (Cycles)
ammp °
15 @ e
' e---- o ---@--ceTTT . A —X- never
IR E E 3 & S TV TEY ek i - X e always
05 — 4 — adapt
0.0 - T 1T
0 5 10 15 20 25
Decompression Latency (Cycles)
88

44



Sensitivity to Cache Line Size

Q
g 10 zZeus
E
a7 === Never
T 05 = Always
XN .
-g = Adaptive
5 00 16
2 036 057 098 157 255
[}
E
*g 1.0
a7 == Never
3 05 = Always
é Adaptive
5 00
z 3.05 8.34 16.75 dwidth
Demand
89
Predictor Value (K)
T ' h
200 4 ,'Il‘ ’,' \\ / \‘
= 1004 ,' l| 'l ‘\ ,’ \q\
\2’3 0 T " ‘i " T T \ J" T ;
) [ 11 |' 2 3 4
© -100—\\ ,’ || ,'
I
200 4 \\ ,' | I‘
L 4 ‘-—--'
Cache Size (MB)
8 4 P O \\ p—o—o-o
g /l/ V’\v/
= 64
3 /
j;‘; 44 -./,.-.—.—‘
% el
% . -/'
g8 |~
/
0 T T T T
0 1 2 3 4
Time (Billion Cycles)
90

45



Commercial CMP Designs

= |IBM Power5 Chip:

— Two processor cores, each 2-way multi-threaded

— ~1.9 MB on-chip L2 cache
* < 0.5 MB per thread with no sharing
» Compare with 0.75 MB per thread in Power4+

— Est. ~16GB/sec. max. pin bandwidth
= Sun’s Niagara Chip:

— Eight processor cores, each 4-way multi-threaded

— 3 MB L2 cache
* < 0.4 MB per core, < 0.1 MB per thread with no sharing

— Est. ~22 GB/sec. pin bandwidth

91

Normalized Missrate

CMP Compression — Miss Rates
1.0~ il

[B No Compression
[l L2 Compression

=]
W
|

0.0 -
152 113 33 35 752 9.3 175 5.1

apache  zeus oltp jbb art apsi  fma3d  mgrid

92

46



Bandwidth (GB/sec)

Normalized Runtime

Normalized Runtime

CMP Compression: Pin Bandwidth
Demand

25

20

apache

Zeus

art

fma3d

mgrid

l No Compression
l L2 Compression
|:| Link Compression
[l Both

93

CMP Compression: Sensitivity to
L2 Size

K

L

256K/8

24.4

512K/8

14.9

1M/8

9.8

apache

2M/8

7.4

jbb

4M/8

5.3

8M/8

5.7

16M/8

11.1

TN T

256K/8

3.8

512K/8

2.6

1M/8

3.4

4.3

4M/8

7.1

16.0

30.8

= No Compression
mm .2 Compression
3 Link Compression
= Both

m No Compression
mm .2 Compression
= Link Compression
= Both

94

47



Normalized Runtime

Normalized Runtime

Normalized Runtime

Normalized Runtime

CMP Compression: Sensitivity to
Memory Latency

apache

400 500 600

Memory Latency (cycles)
fma3d

400 500 600
Memory Latency (cycles)

= No Compression
m [.2 Compression
O Link Compression
m Both

= No Compression
m [.2 Compression
O Link Compression
m Both

95

CMP Compression: Sensitivity to

1.0
0.5

0.0 -

0.5

Pin Bandwidth

apache

0.0 -

20

40

Pin Bandwidth (GB/sec)
fma3d

20

40
Pin Bandwidth (GB/sec)

mm No Compression
mmm |2 Compression
3 Link Compression
mm Both

mm No Compression
mmm |2 Compression
= Link Compression
Em Both

96

48



Prefetching Properties (8p)

Benc L1 | Cache L1 D Cache L2 Cache
hmark
PF rate coverage | accuracy | PF rate coverage | accuracy | PF rate coverage | accuracy
apache | 4.9 16.4 42.0 6.1 8.8 555 10.5 37.7 57.9
zeus 71 14.5 38.9 5.5 17.7 79.2 8.2 44.4 56.0
oltp 13.5 20.9 44.8 2.0 6.6 58.0 2.4 26.4 415
jbb 1.8 24.6 49.6 4.2 23.1 60.3 5.5 34.2 324
art 0.05 9.4 241 56.3 30.9 81.3 49.7 56.0 85.0
apsi 0.04 15.7 30.7 8.5 255 96.9 4.6 95.8 97.6
fma3d 0.06 7.5 14.4 7.3 275 80.9 8.8 44.6 73.5
mgrid 0.06 15.5 26.6 8.4 80.2 94.2 6.2 89.9 81.9
97
oltp
30 —
< 20
= =
~— -
g -
= 3
q>) 3
o 10 —
a -
R=! =
5 E
= (O
-10 4
1 2 4 8 16
p p #ProcPessors p p
98

49



Sensitivity to #Cores - Apache

apache

80

Perf. Improvement (%)

1p 2p 4p 8p 16p
#Processors
99

Analytical Model: IPC

N

IPC(N)=
N —sharers, (N)+1

c.(m—k,.N)

CPl,, jperr +dp+ MissPenalty, , .o. \/

MissLatency,, = MemoryLatency + LinkLatency

—2
— IPC(N).Missrate(S,, ).X
LinkLatency = X + () (512 —
2.(1- IPC(N).Missrate(Ssz ).X)

100

50



Model Parameters

= Divide chip area between cores and caches

— Area of one (in-order) core = 0.5 MB L2 cache
— Total chip area = 16 cores, or 8 MB cache

— Core frequency = 5 GHz

— Available bandwidth = 20 GB/sec.

» Model Parameters (hypothetical benchmark)

— Compression Ratio = 1.75
— Decompression penalty = 0.4 cycles per instruction

— Miss rate = 10 misses per 1000 instructions for 1proc,
8 MB Cache

— IPC for one processor, perfect cache = 1
— Average #sharers per block = 1.3 (for #proc > 1)

101

Model - Sensitivity to Memory Latency

1.0 I ARt W

—@— 200 cycle mem. lat..- no compr
---@-- 200 cycle mem. lat..- cache + link compr
——d— 300 cycle mem. lat..- no compr
--<-k-- 300 cycle mem. lat..- cache + link compr
—— 400 cycle mem. lat..- no compr
--4-- 400 cycle mem. lat..- cache + link compr
—&— 600 cycle mem. lat..- no compr
---¢-- 600 cycle mem. lat..- cache + link compr
== 800 cycle mem. lat..- no compr
==¢=-- 800 cycle mem. lat..- cache + link compr

Throughput (IPC)

#Processors

2 Compression’s impact similar on both extremes

> Compression can shift optimal configuration towards more

cores (though not significantly) 102

51



Throughput (IPC)

Throughput (IPC)

0.6

0.4 1

0.2 1

0.0

Model - Sensitivity to Pin Bandwidth

Y o SO
"%'?"""01\}

‘e

—=o— 10 GB/sec.- no compr

--®-- 10 GB/sec.- cache + link compr
—— 20 GB/sec.- no compr

==k - - 20 GB/sec.- cache + link compr
—&— 40 GB/sec.- no compr

- -4 -- 40 GB/sec.- cache + link compr
—— 80 GB/sec.- no compr

--<-- 80 GB/sec.- cache + link compr
—— 10000 GB/sec.- no compr

== == 10000 GB/sec.- cache + link compr

0 2 4 6 8 10 12 14

#Processors

Model - S itivity to L2 Mi t
.-
.. .-
e .
3 g e
— .
= ~
= 2 i no compr
ES cache + link compr
<, e no compr
2 54 -=--A--- 5 misses/1K inst.- cache + link compr
=
= 3 Zd P
& JUEY s S
i s ta
Y T T T T T T T
(0] 2 4 6 8 10 12 14
#Processo;
‘Processols .,
.. ...
K e,
e Y
0.4 —eo— 10 misses/1K inst.- no compr
---®--- 10 misses/1K inst.- cache + link compr
——#&—— 20 misses/1K inst.- no compr
---A--- 20 misses/1K inst.- cache + link compr
—®— 40 misses/1K inst.- no compr
---B--- 40 misses/1K inst.- cache + link compr
0.2 —— 100 misses/1K inst.- no compr
N ==-#--- 100 misses/1K inst.- cache + link compr
el m .y
m- -
- R
cegeeee =
P TIET Sl L < "‘?'"9"'!~--~Q-..‘
0.0 T T T T T T T
[ 2 4 6 8 10 12 14
#Processors

52



Model-Sensitivity to Compression Ratio

oot

Throughput (IPC)

4 +e.
.01 . ~+
06 -+ AN S
-".-0""-.‘_. X:'
—8— 10 compr.
===+ .1 compr. ratio- cache + link compr
== & -- 1.25 compr. ratio- cache + link compr
==4--- 1.5 compr. ratio- cache + link compr
== -- 1.75 compr. ratio- cache + link compr
= === =+ 2.0 compr. ratio- cache + link compr
0.0 T T T T T T T
0 2 4 6 8 10 12 14
#Processors
105
064 AR
AR
X — =
6 -+ ~+ \\K\
*
\
Ra
—&— dp 0.0 cycles/inst - no compr
=== dp 0.0 cycles/inst - cache + link compr
- - & -- dp0.2 cycles/inst - cache + link compr
= < = dp 0.4 cycles/inst - cache + link compr
— == dp 0.8 cycles/inst - cache + link compr
— =+ = dp 2.0 cycles/inst - cache + link compr

Throughput (IPC)

T T 1 T
0 2 4 6 8 10 12 14

#Processors

106

53



Throughput (IPC)

Throughput (Tr/1B cycles)

Model - Sensitivity to Perfect CPI

T T T T T T T
0 2 4 6 8 10 12 14

#Processors

—0— (.25 perfect CPL- no compr

- - @ -- (.25 perfect CPL- cache + link compr
——d— (0.5 perfect CPL-
== == 0.5 perfect CPL-
—#— 1.0 perfect CPL-
-- & -- 1.0 perfect CPL-
—— 2.0 perfect CPI.-
- -4 -- 2.0 perfect CPL-
—— 3.0 perfect CPL-
== -- 3.0 perfect CPL-

no compr
cache + link compr
no compr
cache + link compr
no compr
cache + link compr
no compr
cache + link compr

107

Simulation (20 GB/sec bandwidth) -

apache

apache

fiprocessors

== No PF or Compr.
--0-- PF Only

= & - Compr Only
—8— Both

108

54



Throughput (Tr/1B cycles)

Simulation (20 GB/sec bandwidth) -
oltp

oltp

—==No PF or Compr.
--0-- PF Only

= & = Compr Only
—&— Both

04 | | | | | | |
0 2 4 6 8 10 12 14

#processors

109

Simulation (20 GB/sec bandwidth) - jbb

ibb
-k

100000 — =
80000

] ¥ —%— NoPF or Compr.
60000 1 “t.g --0--PFOnly

1 = & - Compr Only
40000 ] —a— Both
20000

0

Throughput (Tr/1B cycles)

#iprocessors

110

55



Simulation (10 GB/sec bandwidth) -
zeus

ZEus

—==No PF or Compr.
--0-- PFOnly

= & = Compr Only
—&— Both

Throughput (Tr/1B cycles)

#processors

2 Prefetching can degrade throughput for many systems

2> Compression alleviates this performance degradation
111

Simulation (10 GB/sec bandwidth) -
apache

apache
) 10000 .

8000
1 ——-No PF or Compr.
6000 poT T --0-- PF Only
4000_' ) -9 =& - Compr Only
] —&— Both
2000 1

Throughput (Tr/1B cycles)

0 2 4 6 8 10 12 14
#processors

112

56



Throughput (Tr/1B cycles)

Throughput (Tr/1B cycles)

[
o —
o~
=

Si

Simulation (10 GB/sec bandwidth) -
oltp

—h~
- S~

\ AN « —%=NoPForCompr.
O\ ¥ --e-- PFOnly
.. \X = & = Compr Only

—&— Both

§ 10 12 14
#processors

113

mulation (10 GB/sec bandwidth) - jbb

itb

-
-~

. —¥%— NoPF or Compr.
"x. --0- PFOnly

= &= - Compr Only

—a—Both

fprocessors

114

57



Compression & Prefetching Interaction
— 10 GB/sec pin bandwidth

Interaction (PF, Compr) % x
2 g
. o7 e\
Y
" Jp . \
== \
oo\
% \\
7
. /// _\\
. 7/ A== A R \( —— apache

= —.x/ e \ B ---@-- zeus

7 X -, \ "
// o ,,’ \ — -A—- oltp
s A \ e —8—jbb

// . , \ ° J
X ,/' \\
o , \
. ’ .
/s \
&«
T T__--— 1 T T T 3
S~ o---- * 6 8 10 12 14
#Processors

< Interaction is positive for most configurations (and all
“optimal” configurations)

115

Model Error — apache, zeus

apache

& 10000

Q

>

G 8000 —&— Model_no compr

8 6000 ---&-- Model_cache&link compr.
5 — @~ Simulation_no compr.

Q;; 4000 —— Simulation_cache&link compr.
g 2000

-

=

0 T T T T T T 1
0 2 4 6 8 10 12 14
#Processors
zeus

8

2, 10000
@) —&— Model_no compr
[ ---&-- Model_cache&link compr.
E 5000 -a- S%mulal?on_no comp.rA

4 —— Simulation_cache&link compr.
g

F

#Processors

116

58



Trans. Per 1B Cycles

Model Error — oltp, jbb

oltp
o,
E 2500 e ’,,0-"’"" o XY 2 &
B} re
&' 2000 ¢ —e-— Model_no compr
2 1500 -- -+ Model_cache&link compr.
&‘3 - @~- Simulation_no compr.
” 1000 —— Simulation_cache&link compr.
§
H
0+ T T T T T T 1
0 2 4 6 8 10 12 14
#Processors
BB
R TTCICE -
'/_‘;’ _— “a
100000 — i —4—_- & * —*— Model_no compr
——-8-" N8 --#-- Model_cache&link compr.
2= — - Simulation_no compr.
50000 - —— Simulation_cache&link compr.
T T T T T 1

#Processors

117

Online Transaction Processing
(OLTP)

DB2 with a TPC-C-like workload.

— Based on the TPC-C v3.0 benchmark.

— We use IBM’s DB2 V7.2 EEE database management system and an

IBM benchmark kit to build the database and emulate users.

— 5 GB 25000-warehouse database on eight raw disks and an additional

dedicated database log disk.

— We scaled down the sizes of each warehouse by maintaining the

reduced ratios of 3 sales districts per warehouse, 30 customers per
district, and 100 items per warehouse (compared to 10, 30,000 and
100,000 required by the TPC-C specification).

— Think and keying times for users are set to zero.
— 16 users per processor
— Warmup interval: 100,000 transactions

118

59



Java Server Workload (SPECjbb)

= SpecJBB.
— We used Sun’s HotSpot 1.4.0 Server JVM and Solaris’s
native thread implementation

— The benchmark includes driver threads to generate
transactions

— System heap size to 1.8 GB and the new object heap size to
256 MB to reduce the frequency of garbage collection

— 24 warehouses, with a data size of approximately 500 MB.

119

Static Web Content Serving:
Apache

= Apache.

— We use Apache 2.0.39 for SPARC/Solaris 9 configured to use pthread
locks and minimal logging at the web server

— We use the Scalable URL Request Generator (SURGE) as the client.

— SURGE generates a sequence of static URL requests which exhibit
representative distributions for document popularity, document sizes,
request sizes, temporal and spatial locality, and embedded document
count

— We use a repository of 20,000 files (totaling ~500 MB)

— Clients have zero think time

— We compiled both Apache and Surge using Sun’s WorkShop C 6.1
with aggressive optimization

120

60



