
USING CONCEPT HIERARCHIES TO ENHANCE USER

QUERIES IN WEB-BASED INFORMATION RETRIEVAL

Ahu Sieg, Bamshad Mobasher, Steve Lytinen, Robin Burke
{asieg, mobasher, lytinen, rburke}@cs.depaul.edu

School of Computer Science, Telecommunication and Information Systems
DePaul University

243 South Wabash Avenue, Chicago, Illinois, 60604, USA

ABSTRACT
The effectiveness of Internet search engines is often ham-
pered by the ambiguity of user queries and the reluctance
or inability of users to build less ambiguous multi-word
queries. Our system, ARCH, is a client-side Web agent,
which incorporates domain-specific concept hierarchies to-
gether with interactive query formulation in order to au-
tomatically produce a richer and therefore less ambigu-
ous query. Unlike traditional relevance feedback meth-
ods, ARCH assists users in query modification prior to
the search task. ARCH uses the domain knowledge inher-
ent in Web-based classification hierarchies such as Yahoo,
combined with a user’s profile information, to add just
those terms likely to improve the match with the user’s
intent. The goal of the system is therefore to meet the
user’s information needs by closing the gap between the
user’s stated query and the actual intent of the search. We
present a detailed evaluation of the query enhancement
in ARCH, comparing enhanced and non-enhanced queries
over a range of topics. Our results show that concept-based
query enhancement in ARCH leads to significantly higher
precision for ambiguous queries without sacrificing recall.

KEY WORDS
Intelligent agents, concept hierarchies, query enhancement,
information retrieval

1 Introduction

Despite dramatic advances in Web information retrieval
leading to sophisticated Web search engines, typical
users continue to find it difficult to formulate effective
queries which represent their true search intent. As a
result, the user experience is often unsatisfactory. The
divide between the users’ intent and search queries
emanates from a number of factors including the users’
lack of knowledge about the problem domain, their
reluctance or inability to formulate more sophisticated
multi-word queries, and the inability of search engines to
resolve query ambiguity based on the users’ search context.

Research confirms that the queries submitted to search
engines by Web users are relatively short and are usually
limited to less than three keywords [17]. The key to
improving search, therefore, may not be to tweak search
engine technology, but rather to improve the input to

such systems: to help users formulate queries that better
reflect their search intent, and have a higher likelihood
of returning good results. In this paper, we present our
client-side Web agent ARCH (Adaptive Retrieval based on
Concept Hierarchies), which uses domain specific concept
hierarchies together with user profiles to assist users in
formulating effective search queries. We provide a detailed
evaluation of the query enhancement mechanism in ARCH
and show that concept-based query enhancement leads to
significant improvement in search results.

Our previous work has discussed the architecture of
the overall system [12] and implementation of the se-
mantic aspect of the system [16]. The system’s query
enhancement uses two mutually-supporting techniques:
semantic and behavioral. The behavioral aspect requires
observing the users’ browsing behavior for user profiling
and automatic query enhancement, while the semantic
aspect supports the use of a modular concept hierarchy
for interactive query enhancement.

Recent work in the area of information retrieval has
involved the design of intelligent tools, such as intelligent
Web agents [2, 3, 6, 9, 10]. Research has also been
performed in designing mechanisms to incrementally
refine user queries [1, 7] and query expansion based
on lexical variants such as synonyms [11]. The rapidly
growing amount of information on the Web has brought
new challenges and has uncovered the need for stan-
dard information retrieval work to be extended to deal
effectively with the Web. As an attempt to cope with
these challenges, enhanced indexing methods such as the
PageRank algorithm [4], which makes use of the linkage
structure of the Web to calculate a quality ranking for
each Web page, have been proven to be successful in
prioritizing the results of Web keyword searches.

Neither query expansion techniques nor enhanced
indexing mechanisms consider the user context or knowl-
edge of the problem domain. Traditional approaches
to query formulation expand the initial query based
on relevance feedback from the search results [5]. In
contrast, ARCH assists users in the creation of an effective
query prior to the initial search task. ARCH modifies a
user’s initial query based on the user’s interaction with a
modular concept hierarchy. Since the concept hierarchy

Retrieve Relevant Portions of the

Concept Classification Hierarchy

Enhanced Query Generation

User Interaction

Display Concept Hierarchy

Concept
Classification

Hierarchy

User Profile Module

User Enters Keyword

Query

User Selects

and/or Deselects Concepts

Figure 1. Query Enhancement Mechanism in ARCH

is domain-specific, the query enhancement in ARCH
integrates the apriori knowledge in the problem domain
which may be unfamiliar to the user.

Furthermore, the behavioral aspect of ARCH aims
at learning a user profile by using text mining techniques
to capture behavioral patterns and profiles of users. Using
these techniques enables the extraction of information
implicitly contained in collections of user profiles. The
learned user profiles can be utilized to provide additional
context to the user’s original keyword query. The goal
of the system is to meet the user’s information needs by
closing the gap between the user’s initial query and the
actual intent and motivation for the search.

ARCH uses the domain knowledge inherent in a concept
hierarchy, combined with a user’s profile information, to
add just those terms likely to improve the match with the
user’s intent.

The evaluation discussed in this paper focuses on
the experimental results of query enhancement based on
concept hierarchies. These results do not take into account
the behavioral aspect which involves query enhancement
based on user profiles. Our evaluation results show
that concept-based query enhancement in ARCH leads
to significantly higher precision for ambiguous queries
without sacrificing recall.

2 Query Enhancement Mechanism

ARCH has an interactive approach for assisting the user
in formulating an effective search query. The query en-
hancement mechanism is displayed in Figure 1. The user’s
initial query is modified based on the user’s interaction
with a concept hierarchy. In addition, ARCH passively
learns a user profile by observing the user’s past brows-
ing behavior. The profile information is used to provide
additional context to the user’s initial query.

2.1 Query Enhancement Based on Con-
cept Hierarchies

The most critical element of query enhancement in the
system is the concept classification hierarchy. ARCH

Figure 2. Portion of the Yahoo hierarchy corresponding to the
node Languages

includes an offline component which allows the system
to learn a concept classification hierarchy which is then
maintained in the system in aggregate form. Since
ARCH can learn various concept hierarchies, the user is
allowed to switch among the representations of different
domain-specific hierarchies depending on the goals of the
search. The current implementation of the system uses
the Yahoo concept hierarchy.

The system maintains an aggregate representation of
the concept hierarchy by pre-computing a weighted term
vector for each node in the hierarchy which represents
the centroid of all documents and subcategories indexed
under that node.

Let’s consider a specific node n in the concept hier-
archy and assume this node contains Dn, which is a
collection of individual documents. This node also con-
tains Sn, which is a set of subconcepts. The term vector
for the node n is computed as follows:

Tn =

[(∑
d∈Dn

Td

)
/|Dn| +

∑
s∈Sn

Ts

]
/ (|Sn| + 1)

In the above formula, Td is the weighted term vector which
represents an individual document d indexed under node n
and Ts is the term vector which represents the subconcept
s of node n. Note that a term vector is calculated for each
indexed document under a concept. The term vectors for
the indexed documents are added to get a single term
vector which represents the average. This term vector is
added to the term vectors for the subconcepts to calculate
the final average for the concept.

A global dictionary of terms is created by perform-
ing standard information retrieval text preprocessing
methods. A stop list is used to remove high frequency, but
semantically non-relevant terms from the content. Porter
stemming [13] is utilized to reduce words to their stems.
For computing the term weights extracted from content,
the system employs a standard function of the term
frequency and inverse document frequency (tf.idf) [15, 8].
As an example, Figure 2 displays a portion of the Yahoo
hierarchy corresponding to the node Languages. The term
vector which represents the node Languages is computed
from a combination of the documents indexed under
this node as well as the term vectors representing its
subconcepts such as C#, Python, and Java. The partial
term vector for this node is displayed in Figure 3.

languag:1
python:0.452
program:0.38
object:0.364

code:0.364
interpret:0.316
implement:0.315
exampl:0.298

java:0.297
compil:0.283
document:0.266
file:0.264

librari:0.256
user:0.251

Figure 3. Partial term vector which provides an aggregate
representation of the node Languages

To initiate the query generation process, the user
enters a keyword query. Based on the user’s interaction
with the system, the system responds by displaying
the appropriate portions of the hierarchy. The user
interface allows the user to select those categories which
are relevant to the intended query and to deselect those
categories which are not relevant. We employ a variant of
Rocchio’s method [14] for relevance feedback to generate
the enhanced query. The pre-computed term vectors
associated with each node in the hierarchy are used to
enhance the original query as follows:

Q2 = α.Q1 + β.
∑

Tsel − γ.
∑

Tdesel.

In the above formula, Tsel is a term vector for one of the
nodes selected by the user. On the other hand, Tdesel is
a term vector for one of the nodes which is deselected by
the user. The factors α, β, and γ are respectively the rela-
tive weight associated with the original query, the relative
weight associated with the selected concepts, and the rel-
ative weight associated with the deselected concepts.

3 Experimental Evaluation

The purpose of our system is to assist users in formulating
an effective search query. Since the queries of average
Web users tend to be short and ambiguous [17], the
search keywords we use in our evaluation are intentionally
chosen to be ambiguous. In the worst case scenario,
the user will enter an extremely ambiguous search query
which contains only one keyword. Our evaluation results
demonstrate what an outstanding job ARCH does in
solving the problem of query disambiguation even with
the worst case scenario.

We measure the effectiveness of query enhancement
in terms of precision and recall. Our goal is to show
that concept-based query enhancement in ARCH leads
to significantly higher precision for ambiguous queries
without sacrificing recall.

3.1 Evaluation Methodology and Experi-
mental Data Sets

For our experiments, we use categories from the Yahoo
concept hierarchy, a real-world domain. A one-time learn-
ing of certain portions of the Yahoo hierarchy is necessary
in order to represent the concept hierarchy in our our
system. Also for evaluation purposes, 10 documents
are collected for each word sense of our predetermined
keywords which are intentionally chosen to be ambiguous.

As an example, for the keyword query python, a to-
tal of 30 documents are collected where 10 documents
relate to the snake sense of the word python, 10 documents
provide information about Python as a programming lan-
guage, and the rest of the documents discuss the comedy
group Monty Python. For each of our keyword queries,
several search scenarios are created with the intention
of solving the problem of query disambiguation. Our
keyword queries and search scenarios are displayed in
Table 1. Depending on the search scenario, each document

of
Term(s) Query Signal Noise

1 bat buying a baseball
bat

information on bat
mammal

1 bug information on
surveillance equip-
ment

insects and soft-
ware programming
bugs

1 python python as a snake Monty Python and
Python program-
ming language

2 baseball bat buying a baseball
bat

information on bat
mammal

2 bug spy information on
surveillance equip-
ment

insects and soft-
ware programming
bugs

2 python snake python as a snake Monty Python and
Python program-
ming language

3 baseball equip-
ment bat

buying a baseball
bat

information on bat
mammal

3 bug spy security information on
surveillance equip-
ment

insects and soft-
ware programming
bugs

3 python snake rep-
tile

python as a snake Monty Python and
Python program-
ming language

Table 1. Example Keyword Queries and Corresponding
Search Scenarios

in our collection can be treated as a signal or a noise
document. The signal documents are those documents
that should be ranked high in the search results. The
noise documents are those documents that should be
ranked low or excluded from the search results. In order
to create an index for the signal and noise documents, a
term frequency and inverse document frequency (tf.idf)
weight is computed for each term in the document col-
lection using the global dictionary of the concept hierarchy.

As depicted in Table 1, our keyword queries are used to
run a number of search scenarios. The first set of keyword
queries contain only one term and include the following:
bat, bug, hardware, mouse, and python. For example,
in order to evaluate the search results when the single
keyword bat is typed by the user as the search query, one
scenario assumes that the user is interested in buying a
baseball bat. Therefore, in this scenario, the documents
that are relevant to the baseball sense of the word bat
are treated as signal documents whereas the documents
that are related to the bat mammal are treated as noise
documents.

The second set of queries contain two terms and in-
clude the following: baseball bat, bat mammal, bug spy,
hardware computer, hardware tools, hardware upgrade,

mouse computer, and python snake. For example, in the
case of a user typing bug spy as the search query, our
search scenario assumes the user’s intent for the query is
to find information about the surveillance sense of the
word bug as opposed to the software programming or the
insect senses.

The third set of queries contain three terms and in-
clude the following: baseball equipment bat, bat mammal
fly, bug spy security, computer hardware upgrade, computer
hardware mouse, home hardware tools, and python snake
reptile. As the number of keywords in a query increase,
the search query becomes less ambiguous.

Our evaluation methodology is as follows. We use
the system to perform a simple query search and an
enhanced query search for each of our keyword queries.
In the case of simple query search, a term vector is built
using the original keyword(s) in the query text. Removal
of stop words and stemming is utilized. Each term in the
original query is assigned a weight of 1.0.

In the case of enhanced query search, we use the
query that is generated by ARCH. Based on our search
scenarios, we select and/or deselect certain concepts in
the hierarchy for the generation of the enhanced query.
The search results are retrieved from the signal and noise
document collection by using a cosine similarity measure
for matching. The similarity scores are normalized so that
the best matching document always has a score of a 100%.
This allows us to apply certain thresholds to the similarity
scores. For each of our search scenarios, we calculate the
precision and recall at each 10 point interval between a
similarity threshold of 0% and a similarity threshold of
100%.

As an example for the generation of the enhanced
query, consider the scenario in which we start with a
single keyword query python. The system will respond to
our query by displaying the relevant portions of the Yahoo
hierarchy including the parents, children, and siblings of
the nodes corresponding to the initial keyword query. We
can now interact with the concept hierarchy by selecting
and/or deselecting various nodes.

In this case, our ambiguous keyword causes the sys-
tem to display several different portions of the hierarchy.
Our specific search scenario aims at finding information
about python as a snake. Therefore, we select the concept
Pythons under Reptiles and Amphibians in the hierarchy.
Figure 4 displays the portions of the Yahoo hierarchy
that corresponds to this scenario. In this case, we
are definitely not interested in gathering information
about programming languages. Therefore, we deselect the
node Programming and Development. We are also not
interested in finding out about the comedy group Monty
Python, thus deselect Monty Python. Using the selected
and deselected nodes, the system generates an enhanced
query as depicted in Figure 5.

Figure 4. Portions of the Yahoo hierarchy corresponding to
the query python. The user has selected the node Pythons and
deselected the nodes Programming and Development and Monty
Python

burmes: 1
python:0.937
snake:0.733
reptil:0.499

infect:0.494
vet:0.472
lizard:0.472
egg:0.43

constrictor:0.42
pet:0.41

Figure 5. Enhanced Query for the keyword python based on
the selected and deselected nodes in the hierarchy

As mentioned above, each search scenario assumes
that the user has a specific goal for the search. Based on
the user’s intent for the query and the search results, we
calculate the precision and recall metrics for our keyword
searches. For each of our search scenarios, the precision
and recall metrics are calculated at each 10 point interval
between a similarity threshold of 0% and a similarity
threshold of 100%.

3.2 Evaluation Results

In order to compare the simple query search results
with the enhanced query search results, we have created
separate precision and recall graphs for each of our search
scenarios. In the case of the simple query search, precision
is expected to improve as more terms are added to the
query. Our evaluation results verify that precision is
higher for the simple query search when using multiple
keywords than performing a simple query search using a
single keyword.

As displayed in Figure 6, our evaluation results also
show significant improvement in precision when using the
enhanced query for searching. As we can see in Figure
7, recall has also improved. Figure 8 depicts a scatter

Figure 6. Average Precision for Enhanced Query versus Simple
Query Search

Figure 7. Average Recall for Enhanced Query versus Simple
Query Search

plot, namely Recall/Precision curve, which demonstrates
the advantage of the enhanced query. Even when using
three keywords, the simple query still performs fairly poor
compared to our enhanced query.

These results show that the query enhancement in
ARCH significantly improves the effectiveness of the
search query. We see two types of improvement in the
search results using the enhanced query. From the user’s
perspective, precision is improved since ambiguous query
terms are disambiguated by the enhanced query. In
addition, when comparing single keyword queries to the
enhanced query, we see better recall in the search results
since additional query terms retrieve documents that
would not be retrieved by using only the original keyword
query.

Figure 8. Average Recall/Precision Curve for Enhanced Query
versus Simple Query Search

Figure 9. Average Recall/Precision Curve for Enhanced Query
with Negative Feedback versus Enhanced Query without Neg-
ative Feedback

3.3 Impact of Negative Feedback on the
Enhanced Query

We have experimented with variations of selection and/or
deselection of concepts in the hierarchy in order to find
trends that might contribute to improving the enhanced
query. We have discovered that the deselection of the
concepts that are not relevant to the search query has a
significant impact on the quality of the enhanced query. In
other words, as part of the interactive query formulation,
providing negative feedback improves the quality of
the query that is generated by ARCH. Our evaluation
methodology is used to compare the search results that
are generated by the enhanced query with negative
feedback and the enhanced query results without negative
feedback. As an example, consider the scenario in which
we start with a single keyword query hardware. Again, our
ambiguous keyword causes the system to display several
different portions of the hierarchy including the parent
nodes Computers and Internet and Home Improvement.
Our specific search scenario aims at finding information

about computer hardware. Therefore, we select the
concept Hardware under Computers and Internet in the
hierarchy. However, we intentionally do not deselect the
concept Hardware under Home Improvement.

Since the negative feedback in our system is based
on domain specific information, the enhanced query with
negative feedback results in higher precision and lower
recall. Figure 9 depicts the Recall/Precision curve, which
clearly illustrates the advantage of the enhanced query
with negative feedback.

As a result, lack of negative feedback in the enhanced
query has a negative impact on search results. In other
words, the queries that are generated without deselection
of concepts seem to be less effective in retrieval than the
enhanced queries that are generated after proper selection
and/or deselection of concepts.

4 Conclusions and Outlook

We have presented a detailed evaluation of query en-
hancement in ARCH based on the user’s interaction with
a concept hierarchy. Our evaluation results have shown
that concept-based query enhancement in ARCH leads
to significantly higher precision for ambiguous queries
without sacrificing recall. For future work, our immediate
focus will be on the evaluation of query enhancement
based on user profiles.

Our future work will also involve integrating the system
with a specific search engine of the World Wide Web such
as Google or AltaVista. This will require the translation
of the enhanced query that is generated by ARCH into
a Boolean query which can be submitted to the search
engine.

We are also planning on expanding the idea of query
generation based on concept hierarchies to query gen-
eration based on ontologies. This will allow our system
to take advantage of other semantic relationships in a
domain-specific ontology in addition to the hierarchical
relationship in the concept hierarchy.

References

[1] J. Allan. Incremental relevance feedback for informa-
tion filtering. In Proceedings of the ACM SIGIR 1996,
1996.

[2] D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Document categorization and query generation on the
world wide web using webace. Artificial Intelligence
Review, 13(5-6):365–391, 1999.

[3] K. Bollacker, S. Lawrence, and C. Lee Giles. Cite-
seer: An autonomous web agent for automatic re-
trieval and identification of interesting publications.

In Proceeding of the 2nd International Conference on
Autonomous Agents, Minneapolis, MN, 1998.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[5] C. Buckley, G. Salton, and J. Allan. The effect of
adding relevance information in a relevance feedback
environment. In Proceedings of the ACM SIGIR1994,
1994.

[6] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to
construct knowledge bases from the world wide web.
Artificial Intelligence, 118(1-2):69–113, 2000.

[7] K. Eguchi. Incremental query expansion using lo-
cal information of clusters. In Proceedings of the 4th
World Multiconference on Systemics, Cybernetics and
Informatics (SCI 2000), 2000.

[8] W. B. Frakes and R. Baeza-Yates. Information Re-
trieval: Data Structures and Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1992.

[9] T. Joachims, D. Freitag, and T. Mitchell. Web-
watcher: A tour guide for the world wide web. In Pro-
ceedings of the Fifteenth International Joint Confer-
ence on Artificial Intelligence, Nagoya, Japan, 1997.

[10] H. Lieberman. Autonomous interface agents. In Pro-
ceedings of the ACM Conference on Computers and
Human Interface (CHI-97), Atlanta, GA, 1997.

[11] G. Miller. Wordnet: An online lexical database. In-
ternational Journal of Lexicography, 3(4), 1997.

[12] S. Parent, B. Mobasher, and S. Lytinen. An adaptive
agent for web exploration based on concept hierar-
chies. In Proceedings of the Ninth International Con-
ference on Human Computer Interaction, New Or-
leans, LA, 2001.

[13] M. F. Porter. An algorithm for suffix stripping. Pro-
gram, 14(3):130–137, 1980.

[14] J. Rocchio. Relevance feedback in information re-
trieval. In G. Salton, editor, The SMART Re-
trieval System: Experiments in Automatic Document
Processing, pages 313–323. Prentice Hall, 1971.

[15] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, NY,
1983.

[16] A. Sieg, B. Mobasher, S. Lytinen, and R. Burke.
Concept based query enhancement in the arch search
agent. In Proceedings of the 4th International Confer-
ence on Internet Computing, Las Vegas, NV, 2003.

[17] A. Spink, H.C. Ozmutlu, S. Ozmutlu, and B.J.
Jansen. U.s. versus european web searching trends.
In Proceedings of the ACM SIGIR Fall 2002, 2002.

