

VOLUME XX, 2017 1

Using Conceptual Models in Agile
Software Development: A Possible
Solution to Requirements
Engineering Challenges in Agile
Projects

Abhimanyu Gupta1, Geert Poels1,2, and Palash Bera3
1 Department of Business Informatics and Operations Management, Faculty of Economics and Business Administration, Ghent University, Ghent,

Belgium
2 FlandersMake@UGent – core lab CVAMO, Ghent, Belgium
3 Operations and ITM Department, Chaifetz School of Business, Saint Louis University, Saint Louis, 63108, MO, USA

Corresponding author: Abhimanyu Gupta (abhimanyu.gupta@ugent.be)

This work was supported by the Fund for Scientific Research – Flanders (FWO) (Research Project Grant

G.0101.16N-39515)

ABSTRACT Studies on requirements engineering with Agile methods for software development have

shown difficulties in managing the quality of the requirements and communicating with users. Some of these

studies have proposed conceptual modeling as a solution to these problems. However, the effort that is

required to create conceptual models conflicts with Agile values. In this paper, we propose an approach for

using conceptual models in projects while adhering to Agile principles. This approach focuses on projects in

which requirements are expressed as user stories that are the main artifacts of the requirements used for

software development with Agile methods. First, the paper presents a literature review in which we have

systematically searched for the challenges to requirements engineering with Agile methods. Next, we report

on a survey study in which we interviewed 16 experts in the Agile methodology to confirm the identified

challenges and find new ones that are not covered in the literature. Based on a thematic analysis of the

challenges, we argue that most of them map to the two main purposes of using conceptual models in software

development: improving communication and understanding requirements. To effectively use conceptual

models in projects that use the Agile methodology, several conditions must be met, which we make explicit

in the paper. The paper ends by illustrating how these conditions can be met demonstrating the models that

can be automatically generated from a given set of user stories. This demonstration was subsequently used

to obtain feedback from the experts on the perceived benefits of conceptual models in addressing the

challenges of requirements engineering.

INDEX TERMS Agile Software Development, User Stories, Conceptual Models

I. INTRODUCTION

The purpose of the manifesto for Agile Software

Development [1] was to uncover better ways of

developing software. The manifesto proposed the

following values: individuals and interactions over

processes and tools; working software over

comprehensive documentation; customer

collaboration over contract negotiation; and

responding to change over following a plan.

Based on these values, Agile methods like

Extreme Programming, Scrum, Kanban, and SAFe,

prescribe shorter and more incremental development

iterations than other methodologies for software

development do. After each iteration the

requirements can be modified [2]. Therefore,

developers have adopted Agile methods in practice

for their ability to embrace change rather than to

avoid it and to respond efficiently and effectively to

changing requirements [3].

The main artifact of requirements in the Agile

methodology is the user story [4]. A user story is a

simple textual description of a desired feature of the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

working software that is written from the user’s

perspective and is typically formulated using a

standardized text template [5, 6] (see Table 6 in

Section 7 for examples). In the Agile methodology,

developers most often use user stories to describe

functional requirements [7] (as in Table 6) but they

can also use them to describe nonfunctional

requirements. Although user stories provide an easy-

to-use mechanism for documenting and

communicating the desired system features, user

stories as used in practice are prone to ambiguity that

leads to risks of the imprecision, inconsistency,

incompleteness, and redundancy of the requirements

[8].

Other software development methodologies, for

instance the rational unified process (RUP) or that

follow an object-oriented methodology to software

development, use conceptual models such as use case

diagrams in the unified modeling language (UML),

activity diagrams, state machine diagrams, and class

diagrams (see Figures 1 and 2 in Section 7 for

examples) to conceptualize the domain that the

system supports and to visually represent the

functionality expected from the system. Conceptual

models support requirements analysis and system

design [9]. As visual representations, they facilitate

communication among the project team members

and help create a shared understanding of how a

system should support a domain [10].

In the Agile methodology, the use of conceptual

models is not common as the effort required to create

the models conflicts with Agile values. Instead, the

focus of requirements engineering in the Agile

methodology is to efficiently and flexibly transfer

ideas from the customer to the development team but

without creating excessive documentation of the

requirements [11].

In practice, however, requirements engineering in

the Agile methodology is challenging, as many

surveys and literature reviews have reported [11-14].

So, while visual models have proven their

effectiveness in supporting requirements

engineering, their use is not advocated by Agile

proponents. Therefore, we explore in the following

question: how can conceptual models address the

challenges of requirements engineering in the Agile

methodology for software development without

conflicting with its values? Recently, studies have

suggested that the use of conceptual models to

understand and analyze requirements that developers

have formulated as a set of related user stories (e.g.,

a theme or epic in Scrum) is a research opportunity

[8]. We not only investigate this broad research

opportunity but also explore a more focused one: how

can conceptual models address the challenges of

requirements engineering in the Agile methodology

for software development that are related to user

stories?

To investigate these research questions, we first

reviewed the recent literature and conducted expert

interviews to identify these challenges. In doing so,

we have updated existing surveys and review studies

(e.g., [11-14]) as the Agile methodology for software

development is a rapidly changing area [15] that has

become more complex with projects involving

multiple team members in multiple locations (e.g.,

offshore premises) [16]. In our investigation, we

focus specifically on the challenges related to the

documentation of user stories as an artifact for

requirements.

Next, through a thematic analysis of the identified

challenges, we show that most challenges can be

mapped to the main purposes for using conceptual

models: improving communication among project

stakeholders and improving the understanding of the

requirements.

Subsequently, to further explore how conceptual

models can be used without conflicting with Agile

values, we identify the conditions that need to be met

for the use of conceptual models in projects that

document user stories for requirements. We also

demonstrate an example in which we are able to meet

these conditions when models can be automatically

generated from the information captured by the user

stories.

Finally, to evaluate the usefulness of conceptual

models in addressing the challenges to requirements

engineering in the Agile methodology for software

development, we demonstrate a set of models to

experts that we interviewed to seek their opinion on

how these models could benefit requirements

analysis in the Agile methodology. We also map

these benefits to the challenges of requirements

engineering that we identified.

To summarize, this paper contributes to the state-

of-the-art by providing an up-to-date overview of the

challenges to requirements engineering that are

observed in the current practice of the Agile

methodology for software development: we identify

those challenges that can potentially be addressed by

using conceptual models; identify the conditions that

need to be met for adopting conceptual models in the

practices of the Agile methodology; and we

demonstrate that it is possible to meet these

conditions in projects that use user stories to

document requirements. With these novel

contributions, our explorative research provides a

basis from which researchers can further investigate

the use of conceptual models in the Agile

methodology to support requirements engineering.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

In Section 2, we provide a background on

requirements engineering in the Agile methodology

for software development. In Section 3, we describe

the methodology of our explorative study. Section 4

presents the literature review of the challenges to

requirements engineering for the Agile methodology.

Section 5 presents the results of interviews with 16

experts in the Agile methodology for software

development. In Section 6, we synthesize the results

of the literature review and the interviews. In this

section, we also map the identified challenges to the

purposes of using conceptual models to explore how

the use of conceptual models can address them.

Following this mapping, in Section 7 we identify

conditions for using conceptual models without

compromising adherence to Agile values. We also

demonstrate in this section how these conditions can

be met for projects using user stories, and we report

on the perceived benefits of models generated from

user stories after being shown to our experts. Section

8 presents our conclusion and suggestions for further

research.

II. REQUIREMENTS ENGINEERING IN THE
AGILE METHODOLOGY

One of the most difficult tasks in developing software

is requirements engineering [16]. As a result,

software development has used the Agile

methodology as a management tool. The Agile

methodology comprises a set of principles that values

individuals and interactions over processes and

similarly, prefers working software over

documentation [1]. The Agile methodology

prescribes an iterative and incremental development

process in which the Agile team works closely with

the customer [16]. The Agile methodology focuses

on continuous and iterative improvement of the

software development as driven by the actual

experience of using the software [17]. Each iteration

has phases of design, implementation, and testing as

well as an requirements analysis [17].

To organize the Agile process, the team uses

several methods such as Extreme Programming,

Kanban, SAFe, and Scrum; Scrum is generally

recognized as the most adopted method [16]. Scrum

defines three roles for project teams: product owner,

developer, and scrum master [16] . The scrum master

guides and coaches the team to the proper

understanding and use of Scrum. The product owner

is responsible for managing the requirements and

identifying the features to be implemented in the

iterative development phases, also known as sprints

[16, 18]. The implementation of the features is the

responsibility of the developer.

In combination with methods such as Scrum,

teams use several techniques such as behavior-driven

development (BDD) and test-driven development

(TDD) in the Agile methodology to organize the

activities in requirements engineering. BDD

comprises the use of user stories and acceptance

criteria to specify a system’s requirements [19]. In the

TDD, the team writes tests before the developers

produce the actual code, and this test writing is

considered as part of the requirements engineering

[4].

Using conceptual models in the Agile

methodology is by itself not a novel idea. Recker and

Green [20] have pointed out that although the Agile

methodology has gained popularity recently, the use

of conceptual models has not disappeared from

software development. Some researchers suggest

using even more documentation (including visual

models) and tools in the Agile methodology. For

instance, contrary to Agile practices, researchers

have found that tacit knowledge is not sufficient and

formal documentation is therefore necessary [21].

Vithana [16] argues that since formal documentation

is missing, verification of requirements might not be

adequately addressed. To alleviate the

communication problems in Agile projects,

Sundararajan et al. [21] suggest the creation of design

documents for the overall architecture of the systems,

the design of the database, and the interfacing needs

of the systems. Daneva et al. [22] conduct a survey

and find that the sharing of domain knowledge is an

important characteristic for prioritizing requirements

in Agile projects. Consequently, they suggest the

introduction of the role of domain owner to the Agile

team that is responsible for acquiring knowledge of

the business processes. This knowledge is usually

reflected in business process models.

Related to user stories, Kannan et al. [23] have

proposed the use of use case diagrams in the UML

that are obtained from user stories where each user

story is represented as a use case. Based on a survey

of the use of models, Schön et al. [15] finds that some

organizations that use the Agile methodology are

using use case diagrams, story cards (i.e. details of

user stories), and mind maps to create shared

understanding and getting potential users involved in

the development process. Along a similar vein,

Helmy et al. [24] argue that developing high-level

domain models as part of the initial efforts at

architectural modeling can guide both the design of

the physical data model and class design. Trkman et

al. [25] suggest that using business process models

leads to a better understanding of the dependencies

among user stories. In their systematic literature

review, Amna and Poels [8] find 13 studies that

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

propose the use of models for tackling problems

related to the ambiguity in user stories. They also find

that the literature has only validated a few of these

proposed solutions. Further, the question of how to

develop and use the models within an Agile project

is still an open one.

III. METHODOLOGY

We conducted an exploratory study to investigate our

research questions. Our study consisted of three

steps. First, we conducted a literature review to

identify current challenges to requirements

engineering in Agile projects. The literature reviews

and surveys [11-14] indicated that in spite of the

popularity of applying the Agile methodology to

software development, there were key challenges in

eliciting, documenting, analyzing, verifying, and

validating requirements in these projects. Some of

these studies reviewed research papers published in

the early development of Agile when its use was not

yet common. As of today, the Agile methodology is

used extensively in software development which is

an area that has increased in complexity (e.g., global

software development) [16]. Therefore, the

verification of whether the challenges to

requirements engineering that these past reviews and

surveys have identified are still relevant and whether

studies or practitioners have found new challenges in

the development of Agile.

As a second step we conducted semi-structured

interviews with experienced practitioners of the

Agile methodology to validate the challenges

identified by the literature and to identify new ones it

had not uncovered. In these interviews we also

focused specifically on the practice of describing

requirements with user stories. The synthesized list

of literature-based and interview-based challenges

was then mapped for the purpose of using conceptual

models to provide some initial insights into the

answers to the research questions.

As a third and last step, we reflected on the

conditions that needed to be met for using conceptual

models in the Agile methodology. To further explore

the answers to our research questions, we then

demonstrated how the information captured in user

stories could be used to generate conceptual models,

and how these models could then be useful for

addressing the identified challenges. To evaluate

whether expert practitioners of the Agile

methodology would also perceive this process as

useful, we continued some of the interviews of the

second step by showing the example set of related

user stories and the models generated from them and

asking the participants how they thought these

models could benefit the analysis of requirements.

A. LITERATURE REVIEW

To update the current knowledge of the challenges

that Agile faces in requirements engineering, we

performed a systematic search of papers published in

the academic journals in the Elsevier and Science

Direct libraries. These libraries include numerous

field journals that frequently publish peer-reviewed

papers related to software development (e.g., Journal

of Systems and Software, Information and Software

Technology, IEEE Software, and Software Quality

Journal). They also contain the flagship journals of

the broader field of software engineering and

information systems (e.g., MIS Quarterly and

Information Systems Research).

To manage the scope of the literature review and

effort required to analyze papers, we searched for

those that explicitly discussed the challenges to

requirements engineering for the Agile methodology.

In other words, we did not intend to review all

published work on the Agile but to look ourselves for

elements that could be interpreted as challenges to

engineering and managing requirements that could

also introduce a certain degree of subjectivity. To

search for papers, we built search strings that

contained the words “agile”, “requirement(s)”, and

“challenge(s)”. The “challenges” searches used three

synonyms “difficulties”, “obstacles”, and

“hindrances” (and the singular version of these plural

words) as alternates. As agile is a term also used in

other domains, we added “software” or “information

systems” to these search strings to focus exclusively

on papers related to the development of software or

information systems.

Our searches were performed at the end of 2020

and were limited to the most recent 11 full years from

2009-2019. The automated search returned 865

papers. Our inclusion criteria for the review were

“peer-reviewed papers” (e.g., excluding book

reviews and editorials) and “relevancy”. The latter

criterion was evaluated by reading the papers’

abstracts and verifying whether the term “agile”

referred to software development and its challenges

(or difficulties, obstacles, etc.) while also referring to

requirements engineering related activities or

concerns. The exclusion criteria used language (only

papers in English) and when the full text of the paper

was not available. After verifying these criteria, 57

papers were selected for further analysis (see Table

A2 in the Appendix for the full references of these

papers).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

The analysis itself involved extracting the

challenges to requirements engineering discussed in

the papers. Next, a unified list of these challenges was

compiled. As we ended up with a list of 22

challenges, much longer than the 8 challenges in each

of the previously mentioned reviews [11-14], we

decided to group challenges into several themes in

our analysis. The thematic analysis [26] is a

qualitative data method that relies on coding

techniques to make sense of the data and discover

underlying themes. Although these coding

techniques are like those used in the grounded theory

method [27], the thematic analysis does not aim at

constructing hypotheses about phenomena observed

in the data. We took a reflexive and inductive

approach to the thematic analysis by using the open

coding technique that has no a priori theoretical

definition of the themes to guide the coding and

summarization process.

B. INTERVIEWS

Practitioners of the Agile methodology were

interviewed to validate the identified challenges to

requirements engineering found in the literature and

to identify any new ones not mentioned in the papers

that were reviewed. We looked for practitioners that

should be knowledgeable about these challenges due

to their expertise and experience. To get access to

these practitioners, we used a convenience sampling

method. We searched for members of the Agile

community on LinkedIn and based on their profiles,

selected members that had at least five years of

experience working with Agile, described

themselves as a senior business analyst or a

technologist, and that had served on Agile teams in

different roles.

Interviews were conducted using a semi-structured

interview protocol. The first guiding question was:

“What challenges do you face with requirements in

terms of using Agile for software development?”

Based on our second research question, as the use of

user stories is the most popular requirements artifact

in the Agile methodology, we introduced a second

question on user stories: “What challenges do you

face with the development and management of user

stories in the Agile methodology?” Finally, we

demonstrated a set of models generated from an

example set of user stories to 11 of the interview

participants (F1 to F11) – we did not consider doing

this in the five first interviews which was the reason

why we only got 11 expert opinions. We then asked

them to comment on the benefits such models would

add to the requirements analysis in Agile if they were

available. In total we recruited 16 participants to

interview (Table 1). The first five interviewees (who

were not shown the models generated for the

demonstration) were coded with IDs E1 to E5, and

the later 11 interviewees were coded with IDs F1 to

F11.

TABLE 1. Participant Profiles.

The average length of for the first half of the

interviews was 20 minutes (i.e., Agile challenges)

and 22 minutes for the second half of the interviews

(i.e., model benefits). All interviews were recorded,

and transcripts were generated. For each statement,

words or phrases related to what could be identified

as challenges or benefits were identified.

IV. RESULTS OF THE LITERATURE REVIEW

Table A1 in the appendix contains the list of 22

challenges to requirements engineering and the

papers that mention them. Some challenges were

found in just one or a few papers but often there were

several papers mentioning the same challenge, up to

a maximum of 11. The thematic analysis resulted in

five overarching themes: project team, customer

involvement, requirements quality, user stories, and

testing.

Participan
t ID

Year
s in
IT

Years in
Agile
Experienc
e

Current Job Title

E1 19.5 7 Product Manager,
Business Technologist

E2 10 6 Lead Business
Systems Consultant

E3 24 11 Senior Business
Analyst

E4 17 9 Business Analyst

E5 17 8 Sr. Business Systems
Analyst

F1 12 10 Senior Manager-
Technology
Transformation

F2 20 8 Application and Scrum
Master

F3 21 11 Delivery Manager

F4 24 12 Delivery Lead

F5 24 12 Deputy Chief Microsoft
Technology Associate

F6 20 18 Senior Manager- QA
Delivery

F7 12 8 Delivery Lead

F8 16 10 Senior Project Manager

F9 30 14 Agile Transformation
Coach

F10 15 11 Project Manager

F11 21 8 AVP Project Manager

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

If a challenge was associated with requirements

engineering or management issues that related to

project teams, their management, or any specific role

within the team (e.g., Scrum master, product owner);

then this challenge was categorized in the project

team theme. There were five challenges identified in

this theme (1-5).

If a challenge related to the involvement of

customers in requirements processes, then it was

categorized in the customer theme. We found two

challenges under this theme (6-7).

Challenges related to analyzing or verifying

requirements were categorized in the requirements

quality theme. These challenges (8-15) referred to the

specific problems of managing requirements in Agile

projects or using them for purposes like estimation or

prioritization.

The fourth theme was user stories and contained

those challenges that referred specifically to this

requirements artifact (16-18).

The final theme was about the role of requirements

during testing in Agile projects (19-20).

Two challenges, (21) external visibility on project

tasks, and (22) inadequate or inappropriate

architecture and interfaces could not be categorized

in these themes as they seemed to be stand-alone

challenges that were not related to the other

challenges. All the challenges are summarized in

Table 2.

TABLE 2. Thematic analysis of challenges to requirements in the
reviewed papers.

Challenge IDs Theme Challenges

1-5 Project Team Team's lack of involvement and
motivation, breakdown of team
communication and coordination,
difficulty in managing dispersed
teams, sharing of knowledge, and
lack of management involvement

6-7 Customer
Involvement

Difficulty in customer interaction,
customer inability and disagreement

8-15 Requirements
Quality

Difficulty in estimating time and costs,
minimal documentation, incomplete
nonfunctional requirements,
incomplete and missing requirements,
ambiguous requirements,
requirements volatility, prioritizing
requirements, and inadequate
requirements verification

16-18 User Stories Detailed user stories not created, user
stories are not integrated, difficulty in
decomposing user stories

19-20 Testing Availability of testing resources,
reducing testing and test coverage

21

Inadequate or inappropriate
architectures and interfaces

22 External visibility on project tasks

The 22 challenges presented here are neither

mutually exclusive nor independent from each other.

One challenge might be the effect or a cause of

another challenge.

A. CHALLENGES RELATED TO THE PROJECT
TEAM

1. Team’s lack of involvement and motivation

Project management needs to motivate team

members to respond reasonably quickly to changes in

requirements and with enough detail and

understanding of the situation [28]. This motivation

is reflected by team members’ willingness to commit

to a decision [29, 30] and take risks [31]; therefore,

the members rely on the Scrum master’s decisions

[32]. Developers are less likely to adopt the Agile

methodology if it is not made mandatory [33].

Tessem [34] shows that empowering and rewarding

developers in decision-making drives the success of

projects. McHugh et al. [35] find that the trust

between developers and product owners is important

for project success. Schön et al. [15] find that

involving end users is crucial to the success of Agile

for software development.

2. Breakdown of team communication and

coordination

The lack of open communication is the root cause for

many project failures [36]. A lack of detailed

documentation can also lead to communication

issues. Ramesh et al. [11] point out that when there is

a breakdown in communication (e.g., turnover of

personnel) then lack of documentation leads to the

inability to scale the software, evolve the application

over time, and to add new members to the

development team. As Agile projects do not scale

well, it requires much more effort in team

coordination [37, 38]. This coordination is

particularly difficult when the developer uses the

outsourcing model [21, 39] or disperses the project

team [4, 40, 41]. Heck and Zaidman [42] argue that

using collaborative tools facilitates team

coordination.

3. Difficulty in managing dispersed teams

Due to the globalization of software-intensive, high-

technology businesses, developers are building Agile

projects that involve teams in different geographic

locations and time zones [43]. In a survey, Misra et

al. [44] find that the use of dispersed teams creates

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

problems for project success. Communication and

team coordination among the members is particularly

challenging in these teams [45, 46]. Iqbal et al. [41]

use a Delphi study to understand the challenges to

requirements engineering in outsourced software

development projects and find that the most common

challenge is related to the communication among

project teams, stakeholders, and customers. An

example of such challenges is when stakeholders are

unable to express the requirements clearly among

themselves and to the team. Llyod et al. [47] argue

that communication between the onshore and

offshore sites is a key challenge to Agile projects for

software development.

4. Sharing of knowledge

Spreading the knowledge across the project team is a

challenge [48]. Drury et al. [32] find that decisions

are made on the incomplete understanding of

functionality by the team. Minimal documentation

often reduces effective knowledge transfer [3, 48],

and the team members often lack motivation to share

their knowledge [49]. The use of short iterations,

daily stand-up meetings, and the presence of

customers onsite reduces the amount of time for

sharing ideas outside the team [48]. In this context,

Serrador and Pinto [50] show that having a clear goal

of the project helps in successful project

implementations. Yang et al. [51] argue that project

teams often depend on tacit architectural knowledge,

which is a challenge.

5. Lack of management involvement

Identifying and engaging managers in projects is a

challenge [48, 52]. Dikert et al. [53] argue that due to

a lack of management involvement, high-level

requirements are often missing. Gregory et al. [54]

find that project teams struggle to communicate the

progress of development to the management team.

On the other hand, support from top management

improves the team’s acceptance of the Agile

methodology [33, 55], particularly if the

management team promotes the perceived benefits of

using that methodology [56].

B. CHALLENGES RELATED TO CUSTOMER

INVOLVEMENT

6. Difficulty in customer interaction

Interaction with the customer in each iteration of the

Agile methodology for software development is

difficult [13]. This is because customers are busy and

are typically not available in each iteration [11, 57].

Moreover, it takes more effort to negotiate the

requirements with multiple representatives of the

customer as it is challenging to unify the perspectives

of these representatives [58], and at times customers

are unaware of their own requirements [43, 59]. Also

a very high level of customer interaction can cause

conflicts [60].

7. Customer inability and disagreement

Customer inability refers to the incompetence of

customers in terms of decision-making and complete

domain knowledge, and customer disagreement is

about the lack of consensus among more than one

customer group involved in a project [12, 13, 16]. In

this respect, Drury et al. [32] find that customers

cannot always communicate accurately what they

want to the project team. As Hess et al. [57] point out,

the communication gap happens due to a lack of

documentation. The disagreement between customer

groups affects the team performance [11].

C. CHALLENGES RELATED TO

REQUIREMENTS QUALITY

8. Difficulty in estimating time and costs

It is often difficult to estimate an accurate cost at the

beginning of the project [11, 13, 59]. Several

researchers [13, 61, 62] have shown that costs,

resources, and time estimations are key challenges to

Agile projects. A primary reason for these challenges

is that the initial estimation is based on the set of user

stories known at that time [13]. However, over time

the team adds new user stories that affect the

resources, costs, and time required for the project.

McHugh et al. [35] find that teams have difficulties

in accurately estimating unknown tasks.

9. Minimal documentation

Creating documentation is a challenge that many

projects face [15, 54]. Ramesh et al. [11] mention that

minimal documentation is a vital challenge that the

Agile methodology poses to project teams. Lack of

documentation raises communication gaps, and the

gaps are exacerbated by large and global projects

[22]. This is particularly acute in situations such as

dispersed teams, large teams, and complex projects

[12]. Because of incomplete, inaccurate, or non-

existing documentation, teams often make decisions

based on poor intelligence [32, 57]. Drury-Grogan et.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

al [63] find that the lack of documentation results in

poor decisions as teams have an incomplete

understanding of the system’s functionalities.

Similarly, using case studies, Saito et al. [64] suggest

that undocumented knowledge in Agile projects for

software development is an important long-term

challenge.

10. Incomplete nonfunctional requirements

Capturing nonfunctional requirements (NFRs) is a

key challenge to the use of the Agile methodology for

software development [12-14] [24, 45]. Inayat et al.

[12] argue that user stories generally focus on system

or product features that ignore NFRs such as security

and scalability. Ramesh et al. [11] also mention this

as a key challenge to producing requirements.

11. Incomplete and missing requirements

When the iterations are in large numbers, there is the

possibility of missing important requirements [14].

High-level requirements are generally missing in

Agile projects [53]. This omission usually happens

because of a lack of access to all stakeholders and

stakeholders’ inability to communicate the

requirements clearly [41].

12. Ambiguous requirements

Dikert, Paasivaara, and Lassenius [53] argue that

Agile projects for software development are

especially complicated because of ambiguous

requirements. They also find that the tester often

struggles to breakdown ambiguous requirements for

testing. Torrecilla-Salinas et al. [65] show that the

uncertainty in definitions of requirements is a

hindrance to projects.

13. Requirements volatility

Although changes in requirements are an inherent

part of the Agile methodology, frequent changes can

cause trouble for the development team [12, 14].

These changes can increase costs that thus lead to

failure [22]. The teams generally struggle to adapt to

changes as there is a lack of tracking mechanisms for

change management [32]. Any documents that the

team produces in the initial stages can quickly

become irrelevant because the Agile principles

encourage changes in requirements [66]. Hess et al.

[57] find that a sudden change in requirements results

in communication lapses. Inayat et al. [12] find that

increased communication and clear specifications of

requirements can resolve this issue. When a new

change affects the existing design, the user stories

and unit tests should be sufficient to address the

change [67]. But Knauss [67] claims that as user

stories represent a delta of the requirements,

collapsing all the deltas is insufficient for

understanding the overall features of the system. He

also argues that this lack of understanding has a

negative effect on testing. In dispersed global

software development projects, management of

changes in requirements is particularly challenging

[47, 68].

14. Prioritizing requirements

In Agile projects, priorities change very fast, and

these changes affect software development [69, 70].

Prioritizing the list of requirements is challenging as

the list itself has to be flexible to reflect changing

customer needs [37].

15. Inadequate requirements verification

Consistency checking or formal inspections are

seldom performed during requirements engineering

in Agile projects, which makes software

development based on requirements lacking

verification risky [11].

D. CHALLENGES RELATED TO USER

STORIES

16. Detailed user stories not created

Teams usually do not describe user stories in much

detail. User stories may not be detailed enough to

capture vulnerabilities, bugs, unexpected

termination, and undefined behavior [62]. This is

especially a problem when new members join the

project team [16].

17. User stories are not integrated

Managing user stories is a challenge when their

number is large. Drury-Grogan et al. [63] find that

linkages between user stories are difficult to

maintain. Trkman et al. [25] suggest using business

process models to better understand the dependencies

among user stories as the models can provide the

missing context to better understanding those

dependencies.

18. Difficulty in decomposing user stories

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

Teams often struggle to break down user stories to a

size that facilitates estimation [53, 65]. Those studies

also show that such a task is especially complicated

with ambiguous requirements.

E. CHALLENGES RELATED TO TESTING

19. Availability of testing resources

The Agile methodology assumes that there is plenty

of fast testing resources available in each iteration but

this is generally not true [62]. Although many

projects have adopted TDD methods [71], the testing

team often struggles to breakdown ambiguous

requirements for testing [53].

20. Reducing testing and test coverage

Getting the developers and testers to verify and to

validate the code is difficult. In this respect, Petersen

and Wohlin [37] find that the lack of independent

verification affects the test coverage. They provide an

example where designers can influence testers to

only focus on parts of the system by arguing that the

other parts do not need to be tested as they did not

touch those parts.

F. OTHER CHALLENGES

21. Inadequate or inappropriate architecture and

interfaces

Architecture receives little attention in the Agile

methodology for software development that leads to

bad design decisions [37]. Architectural decisions by

the project team in the early cycles often becomes

redundant as they identify new requirements and thus

reworking the architecture increases the project cost

significantly [11, 16]. Also, the overall architecture is

hard to envision as understanding the dependencies

of the parts of the system is difficult [37]. Because

eliciting the complete requirements upfront is a

problem, then it becomes a considerable rework to

design the interfaces of the application at the later

stages of development [24].

22. External visibility on project tasks

McHugh et al. [35] find that making the project’s

progress visible to organizational members is

difficult if they are not part of the Agile team. The

non-team members lack visibility of the statuses of

the project tasks, and thus non-team members are

unaware of the reasons for their delays. Fagerholm et

al. [30] show that having clear communication with

non-team members is important for project success.

V. RESULTS OF THE INTERVIEWS

TABLE 3. Samples of the coding of the challenges to

requirements engineering in the Agile methodology for software

engineering.3 gives examples of the coding done on the

interview transcripts to identify the challenges to

requirements engineering.

TABLE 3. Samples of the coding of the challenges to
requirements engineering in the Agile methodology for software
engineering.

Participant
ID (time in
interview)

Coded fragment Challenge
ID

Challenge

E1 (2:00) …transforming from
Waterfall to Agile is a
big challenge…

25 Waterfall
mindset in Agile

E1 (3:18) …external input coming
continuously in their
[developer's] way… is
telling them that this is
not the right thing to
do… think about it in a
different way...

13 Requirements
volatility

E1 (3:30) …there is, I think, this
continuous friction
between
product/business [team]
and the development
[team]…

2 Breakdown of
team
communication
and
coordination

In Table 4, the theme column categorizes each

challenge. The practitioner reference column

identifies the interviewee that made a statement

related to that challenge – statements are identified by

the time passed since the start of the interview (e.g.,

E1 (6:56)). Note that several challenges were alluded

to by more than one expert.

If a statement by an interviewee indicated a

challenge that was not already identified in the

literature review, then that new challenge was added

to the list of 22. In this analysis, the interviewed

practitioners identified three new challenges that

were not discussed in the literature review. They

were lack of vision in planning sprints, lack of

domain and application knowledge, and waterfall

mindset in Agile. Thus, we ended up with 25

challenges in total. The interviews also confirmed the

presence of 20 challenges (out of 22) that were

identified in our literature review. For challenges 4

and 22, we did not find support for in the interviews.

The theme column for challenges 21, 22, and 25 was

empty as these challenges could not be grouped or

categorized under a theme. The newly identified

challenges 23 and 24 were categorized in the project

team theme.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

TABLE 4. Final list of challenges to requirements engineering in
the Agile methodology for software engineering.

Challen
ge ID

Theme Participa
nt ID
(time in
interview
)

Challenge

1 Project
Team

E1:
(13:25),
F11
(2:21)

Team's lack of
involvement and
motivation

2 Project
Team

E1
(15:46),
F2 (7:55)

Breakdown of team
communication and
coordination

3 Project
Team

E1
(17:36),
E3 (9:06,
16:45),
F2 (8:20)

Difficulty in
managing dispersed
teams

4 Project
Team

 Sharing of
knowledge

5 Project
Team

E2
(12:43),
F4 (3:25)

Lack of management
involvement

6 Customer
Involvement

E1 (4:34),
E5 (4:25,
4:57)

Difficulty in customer
interaction

7 Customer
Involvement

E1 (3:30),
E2
(11:26,
20:12),
F8 (2:09)

Customer inability
and disagreement

8 Requirement
s Quality

E2 (7:41),
E4 (5:14),
E5 (2:31),
F1 (7.37),
F2 (1:26),
F3 (1:21),
F4 (2:13),
F10
(4:39)

Difficulty in
estimating time and
costs

9 Requiremen
ts Quality

E1 (6:56,
9:57),
E3 (0:50),
E4 (8:31,
10:48),
F2
(11:00)

Minimal
documentation

10 Requirement
s Quality

F1
(10:11)

Incomplete non-
functional
requirements

11 Requirement
s Quality

E1 (3:18),
E3 (2:04),
F1 (3:08),
F3 (1:03),
F4 (5:01),
F7 (4:45),
F9 (1:30)

Incomplete and
missing
requirements

12 Requirement
s Quality

E1 (6:14),
E3 (3:22),
F1 (0:31),
F3
(13:11),
F5 (2:02),
F6 (0.23),
F7 (0.19),

Ambiguous
requirements

F9 (1:57),
F10
(2:45)

13 Requirement
s Quality

E1 (6:03,
8:03),
F2 (2:03),
F3 (1:12),
F4 (6:02),
F11
(0:11)

Requirements
volatility

14 Requirement
s Quality

E2
(15:28),
E3
(14:02),
F1 (1:23),
F2 (2:40),
F3 (5:45),
F11
(3:10)

Prioritizing
requirements

15 Requirement
s Quality

E2
(19:28),
E5 (3:16)

Inadequate
requirements
verification

16 User Stories E1 (4:44),
E3 (3:50),
F1 (6:15),
F3 (3:29),
F5 (5:56),
F6 (1.10),
F7 (2:10),
F9 (0:24),
F10
(0:51,
4:16),
F11
(3:46,
5:49)

Detailed user stories
not created

17 User Stories E2
(13:40),
E3
(11:11),
F3 (2:02),
F4 (0:25),
F5 (8:30),
F7 (3:55),
F9 (2:45)

User stories are not
integrated

18 User Stories E1 (4:18),
E3
(12:13),
E5 (1:42),
F2 (1:13),
 F8 (5:32)

Difficulty in
decomposing user
stories

19 Testing E1
(10:14),
F2 (5:00)

Availability of testing
resources

20 Testing E1 (9:25,
9:43,
11:53),
E2 (3:00),
E5 (3:50),
F1 (8:46),
F2 (4:02),
F4 (5:42),
F9 (1:41)

Reducing testing
and test coverage

21 E3 (2:45) Inadequate or
inappropriate
architecture and
interfaces

22 External visibility on
project tasks

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

23 Project
Team

F7 (5:13),
F8 (0:30,
1:03),
F9 (5:17)

Lack of vision in
planning sprints

24 Project
Team

F1 (7:00),
F4 (7:01),
F5 (6:15),
F9 (4:06)

Lack of domain and
application
knowledge

25 E1 (2:00),
E2 (1:37),
E3 (4:13,
5:11),
E4 (5:02),
E5 (1:19),
F8 (1:30)

Waterfall mindset in
Agile

VI. DISCUSSION

The previously mentioned literature review and

survey studies [11-13] were published between 2010

and 2017. All these studies identified challenges

related to our themes of customer involvement and

requirements quality.

To investigate our general research question (i.e.,

How can conceptual models address the challenges

of requirements engineering in the Agile

methodology for software development without

conflicting with its values?), we further categorized

the five themes that we had identified in the literature

review and confirmed through the interviews into

two broad high-level themes: challenges to

requirements engineering related to human

communication and collaboration and challenges

related to understanding and clarifying the

requirements.

Challenges 1 to 5 and 23 to 24 are related to the

project team theme, and challenges 6 and 7 are

related to the customer involvement theme. These

challenges refer to obstacles to effective

requirements engineering that can be traced back to

problems in human communication and

collaboration that were observed in Agile projects.

Challenges 8 to 15 are related to the requirements

quality theme, and challenges 16 to 18 are related to

the user stories theme. These challenges are different

as they refer directly to problems with the

requirements or their analysis or the user story

technique as an artifact. We broadly categorized

these challenges as related to understanding and

clarifying the requirements. Further, we recognized

the challenges related to testing (i.e., 19 and 20) and

the challenges not categorized by a theme (i.e., 21, 22

and 25) as referring to other problems or obstacles

than those categorized by the two broad themes.

These two broad themes are also explicitly

discussed in the literature on the Agile methodology

for software development. Based on a qualitative

survey, Schön et al. [15] find that enhancing

collaboration between the stakeholders, developers,

and end users is important, while building a shared

understanding of requirements from the users’

perspective is not very well established in Agile

projects. Collaboration [4] and shared understanding

[15] are essential to developing Agile projects. Too

much collaboration is harmful while too little is

insufficient [4, 36]. The issue of collaboration

becomes more critical when stakeholders including

potential users are actively involved in developing

Agile projects [15]. A lack of collaborative tools was

observed to be a hindrance for sustained use of the

Agile methodology [55].

In a case study on the Agile methodology, Moe et

al. [72] find that the project team lacked a shared

mental model on what the outcome of the project

should be. Knowledge of the big picture from project

goals could be wrongly understood by the

stakeholders and the development teams [49]. As a

system consists of components which in turn change

rapidly, understanding the state of the system at any

point of time can be difficult [67]. Thus a deep

understanding of the domain and sharing that

knowledge are crucial factors for the success of Agile

projects [22]. Managing requirements for inter-

dependent project teams is a challenge as it relates to

the overall understanding and dependencies of the

requirements [67]. When the domain knowledge is

tacit and therefore difficult to articulate and share

with others, requirements may appear unanalyzable

and unstable [39]. Drury-Grogan et al. [63] find that

in Agile projects, poor decisions are made because of

an incomplete understanding of functionality. They

argue that these poor decisions happen because the

necessary data is lost, and decisions are forgotten

because of the lack of documentation. Insufficient

and inappropriate understanding of the requirements

and quick changes in requirements are the leading

reasons for the failure of global Agile projects for

software development [41].

Coming back to the research question, conceptual

models facilitate communication between users and

analysts and support the analysts’ understanding of

the domain [73]. These two model purposes directly

refer to the two higher level themes that we identified

in our analysis of the challenges to requirements

engineering in the Agile methodology for software

development, that is, human communication and

collaboration and understanding and clarifying the

requirements. Table 5 shows that potentially, 20 of

the identified challenges (i.e., those related to the

project team (1 – 5, 23, 24) customer involvement (6

- 7), requirements quality (8 – 15), and user stories

(16 – 18) themes) can be addressed using conceptual

models.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

TABLE 5. Linking the purpose of using conceptual models to the
identified challenges to requirements engineering in the Agile
methodology for software development.

Purpose of using
conceptual models
(according to [74])

Challenges to requirements
engineering in the Agile
methodology for software
development

Communication – as a
point of reference for
requirements and clear
understanding to various
stakeholders

(1) Team's lack of involvement
and motivation

(2) Breakdown of team
communication and coordination

(3) Difficulty in managing
dispersed teams

(4) Sharing of knowledge

(5) Lack of management
involvement

(6) Difficulty in customer
interaction

(7) Customer inability and
disagreement

(23) Lack of vision in planning
sprints

(24) Lack of domain and
application knowledge

Understanding – high level
of understanding of the
system and purpose

(8) Difficulty in estimating time
and costs

(9) Minimal documentation

(10) Incomplete nonfunctional
requirements

(11) Incomplete and missing
requirements

(12) Ambiguous requirements

(13) Requirements volatility

(14) Prioritizing requirements

(15) Inadequate requirements
verification

(16) Detailed user stories not
created

(17) User stories are not
integrated

(18) Difficulty in decomposing
user stories

VII. HOW TO USE CONCEPTUAL MODELS IN
THE AGILE METHODOLOGY?

The above discussion points out that although the

research has recognized the opportunities that

conceptual models offer to address the challenges

related to communication and domain understanding,

the recommendations of how to incorporate

conceptual modeling in Agile practices are quite

varied and inconsistent (e.g., ranging from informal

models like mind maps to more formal models like

the use case diagrams in UML). The literature review

and the expert interviews did not indicate that

conceptual models were widely practiced in Agile.

Despite little priority in documenting the Agile

methodology, studies have discovered that Agile

practitioners rate documentation as important and

that too little documentation is available in their own

projects [64]. Further, the software documentation

that is available is often incomplete, inconsistent,

difficult to maintain, and in practice out of date [75].

Williams [17] reports that overall not much

documentation is prepared in the Agile methodology.

Given that limited effort is spent on this

documentation, for project team members to develop,

maintain, and update conceptual models when sprints

last only about two weeks is unrealistic, despite the

potential benefits of using those models.

So, the question rises, how to use conceptual

models in the Agile methodology? In this section we

explore a vision on how to use conceptual models to

address the challenges related to requirements

engineering and management in the Agile

methodology without contradicting its values. In our

exploration, we focus on our more specific research

question (i.e., How can conceptual models address

the challenges to requirements engineering in the

Agile methodology for software development that are

related to user stories?) by developing a tentative

answer through a demonstration experiment. We

next present the feedback on this demonstration that

were given by interview participants F1 to F11. We

end the section by reflecting on what is needed to

provide more definite answers to the research

questions that we investigated in this explorative

study.

A. GENERATING CONCEPTUAL MODELS

FROM USER STORIES – A DEMONSTRATION

EXPERIMENT

We believe some conditions need to be fulfilled to

introduce the use of conceptual models to the Agile

methodology. This methodology prefers using

working software over documentation, if conceptual

models are created then they should be created within

the current framework of requirements engineering

and not as an additional activity requiring extra effort.

Simply, team members cannot be forced to create

conceptual models as an additional activity.

Therefore, the creation of conceptual models must be

automated to the largest possible extent. As the Agile

methodology promotes continuous development of

the software, the conceptual models should also be

continuously updated such that they always codify

the most current domain knowledge as reflected by

the requirements.

In what follows, we demonstrate an example of

the elements needed to construct conceptual models

already being present in user stories. We also

illustrate how conceptual models generated from

user stories could be of use in Agile projects. Also,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

other researchers have suggested that organizing

user stories and extracting information from them

can be useful: “As a succinct, readily

understandable description, a user story could

promote shared understanding of a newly proposed

CDS [Clinical Decision System] tool among diverse

clinical and nonclinical stakeholders, resolving a

common challenge” (pp. 1346) [23]. Daneva et al.

[22] find that understanding the dependencies of the

user stories is very important in the Agile

methodology. They suggest maintaining

traceability between user stories all the time that

facilitates the vision of how a high-level business

process translates into small chunks that are

represented as user stories.

User stories represent the bird’s eye view of how

everything fits together [63] in terms of requirements.

The standard user story template is “As a <role>, I

want <feature> so that <benefit>” [6]. We extend this

template with behavior-driven development (BDD)

scenarios that consist of a feature title, a user story,

and a scenario that is defined by three segments –

“Given <precondition>, when <triggering event>,

then <postcondition>” [19]. Using not just user

stories but also their associated BDD scenarios

facilitates the generation of a wider set of conceptual

models, as we will illustrate in what follows. We

focused on multiple types of conceptual models as a

recent survey by van der Linden et al. [74] has shown

that different types of UML diagrams and business

process model and notation (BPMN) diagrams are

the most common conceptual models used in

practice. Surveys also indicate that practitioners use

more than one conceptual model for different types

of tasks [20]. This is because information systems are

getting more complex and interrelated models can be

used to offer different perspectives of the system and

represent different aspects of it [76].

In our demonstration we focused on four types of

conceptual models whose information could be

identified in user stories and their associated BDD

scenarios. These four types of models were a use case

model, domain model, state machine, and a process

model. Using the concepts of actor and use case, a

use case model provides a description of the users’

possible interactions with the system [77]. These

interactions involve actions on objects that are

described in a domain model. The domain model thus

shows the concepts that a system needs to process

and store data on their relationships and properties

[78]. A state machine is a model that shows the

different states that a single object, as an instance of

a domain concept described in the domain model,

passes through during its life in response to events

[79]. A process model has a description of the

possible orderings of these events and how they

trigger actions on objects [80].

For our demonstration, we used the set of related

user stories in Table 6 as our example and consider

them as written for a software system that handles

service requests.

TABLE 6. An example set of related user stories.

User
story ID

User story and associated BDD scenario

1 As a customer1, I want to create4 a service
request3 so that I can have my problem solved.
Given that the customer is active, when they
decide to submit a service request3, then a
service request3 is submitted10.

2 As a support assistant2, I want to accept5 a
service request3 so that the team can start
working on the service request. Given a service
request is submitted10, when the team agrees
working on the service request, then the service
request is open11.

3 As a support assistant2, I want to resolve6 a
service request3 so that the customer’s problem
is solved. Given a service request3 is open11,
when the team solves the problem described in
the service request, then the service request is
fixed12.

4 As a customer1, I want to approve7 the service
request3 so that it can be closed. Given a service
request3 is fixed12, when I approve the solution to
my problem, then the service request3 is closed13.

5 As a customer1, I want to reject8 the service
request3 so that it can be reopened. Given a
service request3 is fixed12, when I reject the
solution to my problem, then the service request3
is open11.

6 As a customer1, I want to cancel9 a service
request3 so that the team can focus on other
active requests. Given a service request3 is
submitted10 or fixed12, when the customer decides
to cancel the service request, then the service
request will be canceled14.

Moreover, these segments of the user stories in Table

6 were annotated with numbers so that these numbers

could be used to trace the mapping from user stories

to conceptual models.

Figure 1 shows a use case model and a domain

model that are based only on the information

contained in the standard user story template. The use

case model shows that customer and support assistant

are the only two actors (i.e., roles in the user stories),

and the actions that these two actors perform (i.e., use

cases) are the features specified in the user stories.

Thus, a use case model provides an overview of the

roles and related features described in a related set of

user stories and allows a visual grouping of user

stories per role.

The domain model distinguishes among the

objects to which the actions of the use case model are

applied – in our case this is just the service request.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

The different roles are related via their actions to the

objects, clearly showing which role wants to perform

which action on which object. Like the use case

model, the domain model only relies on the

information captured by the role and features

segments of the user stories but provides a clear

visual overview of this information.

Like Figure 1, the models in Figure 2 can be traced

to the user stories in Table 6. For example, the state

machine shows that the “accept action” changes the

state of the service request from submitted to open,

and the “approve action” changes the state of the

service request from fixed to closed. Similarly, the

process model shows that the prerequisite of the

accept action is the “create action” (by the customer),

and the prerequisite of the approve action is the

“resolve action” (by the support assistant). To

generate these two models, we also need to document

the pre- and postconditions in the BDD scenarios of

the user stories.

How can these models now help in improving

communication and domain understanding? Let’s

consider the following situation. It might not be clear

to the project team when a customer is allowed to

cancel a service request (i.e., user story 6). The state

machine can provide a basis for discussion among the

team members and with the customer to clarify what

the actual expectation of the system is. The current

interpretation obtained from the understanding of the

state machine is that cancellation of a service request

is only allowed before the service request is

approved, however not in the state of “open”. So, in

a state of open, cancellation is not allowed, while it is

in states of “submitted” and “fixed”. Also, the

process model shows that once the service request is

accepted, it needs to be resolved and the customer

cannot cancel it before the support assistants have

done their work. Based on the use case model, a

further discussion can be held on which type of user

can cancel service requests. Is only the customer

allowed to cancel service requests or is a support

assistant also allowed to cancel based on certain

conditions (e.g., when a customer repeatedly rejects

the work performed to resolve the service request as

is clearly shown by the resolve-reject loop in the state

machine)?

Therefore, when the number of user stories

increases, such insights on the user expectations and

hence system requirements can be difficult to obtain

purely based on the textual user stories themselves.

Although the stakeholders might have developed

individual mental models of the domain to be

supported by the system, structured visual

representations (such as Figures 1 and 2) can help to

align these mental models consistently for all

stakeholders. Further, the models can also be used to

obtain an overall understanding of the requirements

for members of the Agile team who join the project

in later stages.

B. FEEDBACK FROM EXPERTS

In this subsection, we also evaluate whether the

usefulness of conceptual models is acknowledged

by expert practitioners of the Agile methodology.

To understand the perceived usefulness, interview

participants F1 to F11 were asked how the

conceptual models could benefit the project team

under the assumption that these models would be

made available without the team having to invest

effort in creating and updating them. Specifically,

we asked what benefits were available from which

type of conceptual model and whether a particular

role in the project team benefited more than the rest

of the team. The participants were shown the set of

models (Figures 1 and 2) and the user stories (Table

6) but without explaining to them how the models

were obtained from the user stories.

Table 7 shows the analysis of the perceived

benefits of the models as mentioned by the

participants. We mapped these benefits to the

challenges to requirements engineering that we

identified earlier in the literature review and

interviews. As most benefits could be mapped to

challenges for which we proposed that conceptual

models could help (i.e., challenges 3, 4, 9, 11, 15,

16, 17, 18, 24; see Table 5), the expert opinions

provided empirical support for our proposed

approach.

TABLE 7. Mapping of potential benefits of conceptual models.

Participant ID (time in
interview)

Model type Potential
user within
the team

Benefit (ID) Challenge

F1 (16:44, 32:39), F7 (27:44) Process Model Training (4) Sharing of
knowledge

(24) Lack of domain
and application
knowledge

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

F1 (32:56) Use Case Model Product
manager

To go back
and review
and relate the
existing stories

(17) User stories are
not integrated

F2 (18:01), F7 (09:30) Use Case Model Brings visibility (9) Minimal
documentation

F8 (17:32) Use Case Model To give visual
representation
of the solution.

(9) Minimal
documentation

F3 (13:52) Use Case Model Developers Gives you a
high level view
of the entire
solution

(9) Minimal
documentation

F8 (14:44) Process Model Can tell the
flow and
dependencies
of the user
stories

(17) User stories are
not integrated

F5 (14:32) Process Model Get full
understanding
of the end to
end process

(17) User stories are
not integrated

F4 (18:19) Use Case Model To identify the
number of user
stories

(18) Difficulty in
decomposing user
stories

F9 (23:48) Use Case Model Can help in
writing test
cases

(19) Availability of
testing resources

F4 (19:32) State Machine Can help to
write end to
end test
scenarios.

(19) Availability of
testing resources

F7 (10:02) State Machine Product
owner

To verify the
status of the
stories that
have been
implemented.
It can help to
visualize what
are the
missing stories
or the new
stories that
should be
added.

(11) Incomplete and
missing requirements

(16) Detailed user
stories not created

F4 (19:32) State Machine Testers and
developers

Can look at it
and see if
there are
scenarios that
they have to
cover for it
when they are
coding or
testing

(20) Reducing testing
and test coverage

F7 (12:32) Process Model Can help if it is
a new initiative

(4) Sharing of
knowledge

(24) Lack of domain
and application
knowledge

F7 (16:42) State Machine Helpful for
software
enhancements

F8 (14:44) Process Model Developme
nt and QA
team

Develop a kind
of navigational
flow properly

(24) Lack of domain
and application
knowledge

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

F8 (15:21) Use Case Model Can help in
defining the
scenarios. It's
a quick check
to see whether
all scenarios
are covered

(20) Reducing testing
and test coverage

F8 (6:30) Process Model Can help in
identifying
what role is
going to
perform what
activity

(3) Difficulty in
managing dispersed
teams

F5 (17:32) State Machine To identify the
validation
criteria and the
criteria for
exceptions

(15) Inadequate
requirements
verification

C. REFLECTION

User stories are more than just an artifact of

requirements. In the Agile methodology, teams plan

and allocate user stories for implementation (e.g., in

Scrum they are a key element in composing the

product/spring backlogs that detail the

implementation work to be performed). User stories

thus decompose the system design into units whose

implementation can be managed individually [8].

The conceptual models generated from user stories

do not focus on the individual user story but span a

set of related user stories. These models are not used

for managing the implementation of each desired

system feature individually but provide a visual

overview of dependencies and relationships between

individual user stories which is hard to obtain just

based on the text which user stories basically

comprise. The use case model and process model are

types of conceptual models useful for analyzing

requirements as we illustrated with the “cancel

service request” scenario that was sketched in the

demonstration experiment. Other types of conceptual

model, like the state machine and especially the

domain model, can also be useful for software design

[9]. For instance, the business logic captured by user

stories provides the basis for the domain model that

can, during software design activities, be further

extended to a class diagram. Here the advantage is

that software classes can be implemented with

functionality that relates to more than one user story

that ensures an adequate modularization of the

software. We did not explore this use of conceptual

models in the demonstration experiment but, for

instance, referred to [81] who proposed a mapping of

user stories into agent-oriented and object-oriented

software architectures.

Regarding the demonstration experiment, Figures

1 and 2 illustrate some things about the models. First,

these models are solely based on the information that

is present in the user stories and their associated BDD

scenarios. Therefore, some constructs that are usually

found in these types of conceptual models are absent

(e.g., attributes in the domain model, extends and

adds relationships between use cases in the use case

model). Second, to be an effective aid to

communication and domain understanding, the

conceptual models must be syntactically correct and

semantically accurate as well as provide a

pragmatically relevant and understandable

representation of the domain. As these conceptual

models are solely based on information captured in

the user stories and BDD scenarios, the

completeness and consistency of the user stories is

important. Quality problems with the user stories

will probably come to surface when the models are

generated, hence hidden quality problems might be

discovered when analyzing the models (e.g., when

the graph shown in the state machine is not

connected or when an end event in the process

model cannot be reached from a start event). Third,

we demonstrated that four types of conceptual

models can be constructed using the information

that is present in the user stories. We did not use

other types of conceptual models, but they could

certainly be explored in the future. For instance,

future studies could investigate if a goal model

could be constructed using the information in the

benefit segment of the user stories. Fourth, if we had

only used the original standard template of user

stories (without the BDD scenarios), then it would

not have been possible to construct the models that

show and allow analyzing dependencies between

user stories (i.e., the state machine and the process

model).

Regarding the example scenario for the

validation and possibly further elicitation of the

“cancel service request” user story, we note that this

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

scenario illustrates how visual conceptual models

like process models and use case models can help

address some of the challenges to requirements

engineering for the Agile methodology that were

mapped to the purposes of using conceptual models

in Table 5, like sharing of knowledge, incomplete

and missing requirements, and inadequate

requirements verification. Mapping the purposes

for using conceptual models to the high-level

themes of the challenges to requirements

engineering does not mean that the use of

conceptual models is equally useful for all

challenges that are categorized in these themes. The

benefits mentioned by the experts did not cover all

those challenges. For instance, for challenges like

lack of management involvement, difficulty in

estimating time and costs, and incomplete

nonfunctional requirements, it would be harder to

demonstrate the usefulness of conceptual models.

This usefulness also depends on the type of

conceptual model generated from the user stories.

For instance, in our demonstration experiment, all

six user stories articulated desired system features

that could be classified as functional requirements.

In the case of nonfunctional requirements (e.g., “As

a customer, I want to have 90% of my service

requests resolved within 2 working days.”), whether

the generation and use of other types of models are

possible could be explored (e.g., the NFR

Framework for goal modeling and goal-oriented

requirements engineering [82] may help address the

challenge incomplete nonfunctional requirements).

Considering the conditions for using conceptual

models in the Agile methodology for software

development that we mentioned before, and as we

now have demonstrated that the information

captured by a set of related user stories and BDD

scenarios is sufficient to create different types of

conceptual models that are used in other methods to

develop software (e.g., RUP), a natural direction for

future research is to recommend the automatic

extraction of the conceptual models from the set of

user stories. For this purpose, appropriate

algorithms and tools need to be developed. Natural

language processing (NLP) techniques could be a

good fit for this purpose. Using this support, any

time user stories change, the extraction and model

generation could easily be repeated to update the

conceptual models. This way, the members of the

team could focus on writing user stories, while the

conceptual models would be available to them to

support requirements engineering. The models

could not only provide a basic documentation of the

requirements to foster communication and shared

domain understanding but could also help improve

the completeness and consistency of the user stories

and help verifying them. An early elaboration of

these ideas to demonstrate their feasibility is found

in [83].

We note that some tools have already been

developed to generate conceptual models from

textual descriptions of requirements (e.g., [84]).

There are also a couple of tools that automatically

extract specific types of conceptual models from

user stories (e.g., the visual narrator shows the

concepts and relationships extracted from user

stories [85]). A recent systematic literature review

analyzed 38 different studies on the application of

NLP techniques to user stories, including research

on generating models from user stories [85, 86]. To

the best of our knowledge, current NLP-based

solutions for generating conceptual models from

user stories apply the original version of the user

story template and not the version with BDD

scenarios. We believe that the information provided

by the pre- and postconditions as captured in the

BDD scenarios is essential for identifying,

understanding, and analyzing the dependencies

between user stories, as we showed with our

demonstration. We have yet to come across research

on generating process models or state machines

from user stories.

VIII. CONCLUSION

In this paper, we have explored the use of conceptual

models to address the challenges to requirements

engineering and management in software

development. We started with a literature review to

update the current understanding of the challenges to

requirements engineering for the Agile

methodology. We also interviewed 16 seasoned

practitioners of this methodology to validate and

possibly extend the challenges documented in the

literature. In total, we identified 25 different

challenges, which we discussed in the paper. This

up-to-date overview is more extensive and detailed

than the challenges to requirements engineering

discussed in other studies [11-14], which is the first

contribution of our paper.

Next, to investigate our main research question,
how can conceptual models address the challenges

of requirements engineering in the Agile

methodology for software development without

conflicting with its values?, we performed a

thematic analysis of the challenges grouping 22 of

them first into 5 categories (i.e., project team,

customer involvement, requirements quality, user

stories, testing) and next in one of two higher order

themes: challenges related to human communication

and collaboration (i.e., project team and customer

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

involvement categories) and challenges related to

understanding and clarifying requirements (i.e.,

requirements quality and user stories categories) that

covered a total of 20 of the 25 identified challenges.

For both types of challenges, the literature suggests

that conceptual models can be helpful as they

promote both communication and collaboration, and

shared domain understanding.

The potential benefits of using conceptual models

in the Agile methodology are no guarantee that they

will be adopted by practitioners as the effort involved

in creating models may contradict Agile values and

principles. Therefore, we continued outlining the

conditions for adoption of models – the creation of

models should fit within current requirements

engineering and management related activities in

Agile projects, should be automated, and models

should be updated whenever requirements change.

To investigate how these conditions could be

fulfilled, we focused on a second research question,

how can conceptual models address the challenges of

requirements engineering in the Agile methodology

for software development that are related to user

stories?, considering that the user story is the main

artifact used in the Agile methodology and that the

literature has shown the problems with using and

managing user stories (i.e., our challenges in the user

stories category). By means of a demonstration

experiment, we showed that four types of conceptual

model (i.e., use case model, domain model, state

machine, process model) can be constructed solely

based on the information captured by a set of related

user stories (e.g., epic or theme in Scrum) provided

that the user stories are extended with BDD scenarios

that document pre- and postconditions for the actions

described in the user stories. This demonstration of

the feasibility of generating conceptual models from

user stories, particularly for models that allow

understanding and analyzing dependencies between

user stories, is another contribution of this paper. To

the best of our knowledge, the generation of models

using information of BDD scenarios is novel.

To automate now the generation of models, we

suggest relying on NLP techniques. The application

of NLP techniques to user stories is not new (see [86]

for a recently published exhaustive review), and we

experimented ourselves with the idea in [83]. We

suggest the further elaboration and exploration of that

approach that could be guided by the insights

provided in our paper as a valuable and viable avenue

for further research on requirements engineering

within the Agile context for software development.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

FIGURE 1. Use Case Model and Domain Model based on the user stories.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

FIGURE 2. State Machine and Process Model based on the user stories.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

REFERENCES

[1] W. Cunningham. (2001). Manifesto for Agile Software

Development. [Online] Available: http://agilemanifesto.org/
[2] L. Cao and I. Ramesh, "Agile Requirements. Engineering

Practices: An Empirical Study," IEEE Software, Article vol.

25, no. 1, pp. 60-67, 2008.
[3] K. Conboy, "Agility from First Principles: Reconstructing

the Concept of Agility in Information Systems

Development," Information Systems Research, Article vol.
20, no. 3, pp. 329-354, 2009.

[4] I. Inayat and S. S. Salim, "A framework to study

requirements-driven collaboration among agile teams:
Findings from two case studies," Computers in Human

Behavior, Article vol. 51, no. Part B, pp. 1367-1379,
10/1/October 2015 2015.

[5] D. Leffingwell, Agile Software Requirements: lean

requirements practices for teams, programs, and the

enterprise (Agile Software Development Series). Boston:

Addision-Wesley, 2011.

[6] M. Cohn, User Stories Applied: For Agile Software
Development. Boston: Addison-Wesley, 2004.

[7] M. Murtazina and T. V. Avdeenko, "An Ontology-based

Approach to Support for Requirements Traceability in
Agile Development " Procedia Computer Science vol. 50,

pp. 628-635, 2019.

[8] A. R. Amna and G. Poels, "Ambiguity in user stories: A
systematic literature review.," Information and Software

Technology, vol. 145, 2022.

[9] J. A. Hoffer, J. F. George, and J. S. Valacich, Modern
Systems analysis and design, 6 ed. Pearson, 2011.

[10] Y. Wand and R. Weber, "Information Systems and

Conceptual Modeling: A Research Agenda," Information
Systems Research, vol. 13, no. 4, pp. 363-376, 2002.

[11] B. Ramesh, C. Lan, and R. Baskerville, "Agile requirements

engineering practices and challenges: an empirical study,"

Information Systems Journal, Article vol. 20, no. 5, pp.

449-480, 2010.

[12] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S.
Shamshirband, "Review: A systematic literature review on

agile requirements engineering practices and challenges,"

Computers in Human Behavior, Review Article vol. 51, no.
Part B, pp. 915-929, 10/1/October 2015 2015.

[13] H. Elshandidy and S. Mazen, "Agile and Traditional

Requirements Engineering: A Survey," International
Journal of Scientific and Engineering Research, vol. 4, no.

9, pp. 473-482, 2013.

[14] S. Alam, S. A. Shah, S. N. Bhatti, and A. M. Jadi, "Impact
and Challenges of Requirement Engineering in Agile

Methodologies: A Systematic Review," International

Journal of Advanced Computer Science and Applications,
vol. 8, no. 4, pp. 411-420, 2017.

[15] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, "Agile

Requirements Engineering: A systematic literature review,"
Computer Standards & Interfaces, Article vol. 49, pp. 79-

91, 1/1/January 2017 2017.

[16] V. N. Vithana, "Scrum Requirements Engineering Practices
and Challenges in Offshore Software Development,"

International Journal of Computer Applications, vol. 116,

no. 22, pp. 43-49, 2015.
[17] L. Williams, " Agile Software Development Methodologies

and Practices," (Advances in Computers. Amsterdam,

Netherlands: Elsevier, 2010, p.^pp. Pages.
[18] F. Anwer, S. Aftab, S. M. Shah, and U. Waheed,

"Comparative analysis of two popular agile process models:
Extreme Programming and Scrum," International Journal

of Computer Science and Telecommunications, vol. 8, no. 2,

pp. 1-7, 2017.

[19] J. F. Smart, BDD in action: Behavior-Driven development
for the whole software lifecycle. New York: Manning

Publications Company, 2014.

[20] J. Recker and P. Green, "How do Individuals Interpret
Multiple Conceptual Models? A Theory of Combined

Ontological Completeness and Overlap " Journal of the

Association for Information Systems, vol. 20, no. 8, 2019.
[21] S. Sundararajan, M. Bhasi, and P. K. Vijayaraghavan, "Case

study on risk management practice in large offshore-

outsourced Agile software projects," IET Software, Article
vol. 8, no. 6, pp. 245-257, 2014.

[22] M. Daneva et al., "Agile requirements prioritization in

large-scale outsourced system projects: An empirical
study," The Journal of Systems & Software, Article vol. 86,

pp. 1333-1353, 5/1/May 2013 2013.

[23] V. Kannan et al., "User Stories as Lightweight
Requirements for Agile Clinical Decision Support

Development," Journal of the American Medical

Informatics Association, vol. 26, no. 11, pp. 1344–1354,

2019.

[24] W. Helmy, A. Kamel, and O. Hegazy, "Requirements

Engineering Methodology in Agile Environment,"
International Journal of Computer Science, vol. 9, no. 5,

pp. 293-300, 2012.

[25] M. Trkman, J. Mendling, and M. Krisper, "Using business
process models to better understand the dependencies

among user stories," Information and Software Technology,
Article vol. 71, pp. 58-76, 3/1/March 2016 2016.

[26] V. Braun and V. Clarke, "Using thematic analysis in

psychology," Qualitative Research in Psychology, vol. 3,
no. 2, pp. 77-101, 2006.

[27] A. L. Strauss and J. Corbin, Basics of qualitative research:

Grounded theory procedures and techniques. CA: Sage:
Thousand Oaks, 1990.

[28] J. Recker, R. Holten, M. Hummel, and C. Rosenkranz,

"How Agile Practices Impact Customer Responsiveness and
Development Success: A Field Study," Project

Management Journal, Article vol. 48, no. 2, pp. 99-121,

2017.
[29] K. Conboy, S. Coyle, W. Xiaofeng, and M. Pikkarainen,

"People over Process: Key Challenges in Agile

Development," IEEE Software, Article vol. 28, no. 4, pp.
48-57, 2011.

[30] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto,

and P. Abrahamsson, "Performance Alignment Work: How
software developers experience the continuous adaptation

of team performance in Lean and Agile environments,"

Information & Software Technology, Article vol. 64, pp.
132-147, 2015.

[31] G. Alaa and G. Fitzgerald, "Reconceptualizing Agile

Information Systems Development Using Complex
Adaptive Systems Theory," Emergence: Complexity &

Organization, Article vol. 15, no. 3, pp. 1-23, 2013.

[32] M. Drury, K. Conboy, and K. Power, "Obstacles to decision
making in Agile software development teams," The Journal

of Systems & Software, Article vol. 85, pp. 1239-1254,

6/1/June 2012 2012.
[33] F. K. Y. Chan and J. Y. L. Thong, "Acceptance of agile

methodologies: A critical review and conceptual

framework," Decision Support Systems, Article vol. 46, no.
4, pp. 803-814, 2009.

[34] B. Tessem, "Individual empowerment of agile and non-

agile software developers in small teams," Information and
Software Technology, Article vol. 56, pp. 873-889,

8/1/August 2014 2014.

[35] O. McHugh, Conboy, K., Lang, M., "Agile Practices: The
Impact on Trust in Software Project Teams," IEEE

Software, vol. 29, no. 3, pp. 71-76, 2012.

[36] S. Adolph, P. Kruchten, and W. Hall, "Reconciling
perspectives: A grounded theory of how people manage the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://agilemanifesto.org/

VOLUME XX, 2022 9

process of software development," The Journal of Systems
& Software, Article vol. 85, pp. 1269-1286, 6/1/June 2012

2012.

[37] K. Petersen and C. Wohlin, "A comparison of issues and
advantages in agile and incremental development between

state of the art and an industrial case," The Journal of

Systems & Software, Article vol. 82, pp. 1479-1490,
1/1/2009 2009.

[38] Y. Lindsjørn, D. I. K. Sjøberg, T. Dingsøyr, G. R.

Bergersen, and T. Dybå, "Teamwork quality and project
success in software development: A survey of agile

development teams," The Journal of Systems & Software,

Article vol. 122, pp. 274-286, 12/1/December 2016 2016.
[39] S. Kudaravalli, S. Faraj, and S. L. Johnson, "A Configural

Approach to Coordinating Expertise in Software

Development Teams," MIS Quarterly, Article vol. 41, no. 1,
pp. 43-64, 2017.

[40] S. Sarker and S. Sarker, "Exploring Agility in Distributed

Information Systems Development Teams: An Interpretive

Study in an Offshoring Context," Information Systems

Research, Article vol. 20, no. 3, pp. 440-461, 2009.

[41] J. Iqbal et al., "Requirements engineering issues causing
software development outsourcing failure," PloS one, vol.

15, no. 4, 2020.

[42] P. Heck and A. Zaidman, "A Systematic Literature Review
on Quality Criteria for Agile Requirements Specifications,"

Software Quality Journal, vol. 26, pp. 127-160, 2018.
[43] S. V. Shrivastava and U. Rathod, "Risks in Distributed

Agile Development: A Review," Procedia - Social and

Behavioral Sciences, Article vol. 133, pp. 417-424, 5/15/15
May 2014 2014.

[44] S. C. Misra, V. Kumar, and U. Kumar, "Identifying some

important success factors in adopting agile software
development practices," The Journal of Systems &

Software, Article vol. 82, pp. 1869-1890, 1/1/2009 2009.

[45] M. Brhel, H. Meth, A. Maedche, and K. Werder, "Exploring
principles of user-centered agile software development: A

literature review," Information and Software Technology,

Review Article vol. 61, pp. 163-181, 5/1/May 2015 2015.
[46] W. Alsaqaf, M. Daneva, and R. Wieringa, "Quality

requirements challenges in the context of large-scale

distributed agile: An empirical study," Information and
Software Technology, vol. 110, pp. 39-55, 2019.

[47] D. Llyod, R. Moawad, and M. Kadry, "A Supporting Tool

for Requirements Change Management in Distributed Agile
Development," Future Computing and Informatics Journal,

vol. 2, pp. 1-9, 2017.

[48] K. Conboy and L. Morgan, "Beyond the customer: Opening
the agile systems development process," Information and

Software Technology, Article vol. 53, pp. 535-542, 5/1/May

2011 2011.
[49] R. P. Ghozalia, H. Saputraa, M. A. Nuriawana, Suharjitoa,

D. N. Utamaa, and A. Nugrohoa, "Systematic Literature

Review on Decision-Making of Requirement Engineering
from Agile Software Development " Procedia Computer

Science, vol. 157 pp. 274–281, 2019.

[50] P. Serrador and J. K. Pinto, "Does Agile work? — A
quantitative analysis of agile project success," International

Journal of Project Management, Article vol. 33, pp. 1040-

1051, 7/1/July 2015 2015.
[51] C. Yang, P. Liang, and P. Avgeriou, "A Systematic

Mapping Study on the Combination of Software

Architecture and Agile Development," The Journal of
Systems and Software, vol. 11, pp. 157-184, 2016.

[52] G. K. Hanssen, "A longitudinal case study of an emerging

software ecosystem: Implications for practice and theory,"
Journal of Systems & Software, Article vol. 85, no. 7, pp.

1455-1466, 2012.

[53] K. Dikert, M. Paasivaara, and C. Lassenius, "Challenges
and success factors for large-scale agile transformations: A

systematic literature review," Journal of Systems &
Software, Article vol. 119, pp. 87-108, 2016.

[54] P. Gregory, L. Barroca, H. Sharp, A. Deshpande, and K.

Taylor, "The challenges that challenge: Engaging with agile
practitioners’ concern," Information and Software

Technology, vol. 77, pp. 92-104, 2016.

[55] M. Senapathi and M. L. Drury-Grogan, "Refining a model
for sustained usage of agile methodologies," The Journal of

Systems & Software, Article vol. 132, pp. 298-316,

10/1/October 2017 2017.
[56] L. Vijayasarathy and D. Turk, "Drivers of agile software

development use: Dialectic interplay between benefits and

hindrances," Information and Software Technology, Article
vol. 54, pp. 137-148, 1/1/2012 2012.

[57] A. Hess, P. Diebold, and N. Seyff, "Understanding

Information Needs of Agile Teams to Improve
Requirements Communication," Journal of Industrial

Information Integration, vol. 14, pp. 3-15, 2019.

[58] S. Jayatilleke and R. Lai, "A systematic review of

requirements change management," Information and

Software Technology, Review Article vol. 93, pp. 163-185,

1/1/January 2018 2018.
[59] D. Dönmez and G. Grote, "Two sides of the same coin –

how agile software development teams approach

uncertainty as threats and opportunities," Information and
Software Technology, Article vol. 93, pp. 94-111,

1/1/January 2018 2018.
[60] N. Ramasubbu, A. Bharadwaj, and G. Kumar Tayi,

"Software Process Diversity: Conceptualization,

Measurement, and Analysis of Impact on Project
Perfromance," MIS Quarterly, Article vol. 39, no. 4, pp.

787-807, 2015.

[61] A. S. Campanelli and F. S. Parreiras, "Agile methods
tailoring – A systematic literature review," The Journal of

Systems & Software, Article vol. 110, pp. 85-100,

12/1/December 2015 2015.
[62] R. Chapman, N. White, and J. Woodcock, "What Can Agile

Methods Bring to High-Integrity Software Development?

Considering the issues and opportunities raised by Agile
practices in the development of high-integrity software,"

Communications of the ACM, Article vol. 60, no. 10, pp.

38-41, 2017.
[63] M. L. Drury-Grogan, K. Conboy, and T. Acton, "Examining

decision characteristics & challenges for agile software

development," The Journal of Systems & Software, Article
vol. 131, pp. 248-265, 9/1/September 2017 2017.

[64] S. Saito, Y. Iimura, A. K. Massey, and A. Antón,

"Discovering Undocumented Knowledge
Through Visualization of Agile Software Development

Activities," Requirements Engineering, vol. 23, pp. 381–

399 2018.
[65] C. J. Torrecilla-Salinas, J. Sedeño, M. J. Escalona, and M.

Mejías, "Estimating, planning and managing Agile Web

development projects under a value-based perspective,"
Information and Software Technology, Article vol. 61, pp.

124-144, 5/1/May 2015 2015.

[66] A. De Lucia and A. Qusef, "Requirements Engineering in
Agile Software Development," Journal of Emerging

Technologies in Web Intelligence, vol. 2, no. 3, pp. 212-

220, 2010.
[67] E. Knauss, "The Missing Requirements Perspective in

Large-Scale Agile System Development," IEEE Software,

vol. 36, no. 3, pp. 9-13, 2019.
[68] T. Kamal, Q. Zhang, and M. Azeem, "Toward Successful

Agile Requirements Change Management Process in Global

Software Development: A Client–Vendor Analysis," IET
Software, vol. 14, no. 3, pp. 265-274, 2020.

[69] E. Bjarnason, K. Wnuk, and B. Regnell, "Are you biting off

more than you can chew? A case study on causes and
effects of overscoping in large-scale software engineering,"

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

Information and Software Technology, Article vol. 54, pp.
1107-1124, 10/1/October 2012 2012.

[70] A. Henriksen and S. A. R. Pedersen, "A qualitative case

study on Agile Practice and Project Success in agile
software projects," Journal of Modern Project

Management, Article pp. 62-73, 2017.

[71] I. Nurdiani, J. Börstler, and S. A. Fricker, "The impacts of
agile and lean practices on project constraints: A tertiary

study," Journal of Systems and Software, vol. 119, no.

Supplement C, pp. 162-183, 2016/09/01/ 2016.
[72] N. B. Moe, T. Dingsøyr, and T. Dybå, "A teamwork model

for understanding an agile team: A case study of a Scrum

project," Information & Software Technology, Article vol.
52, no. 5, pp. 480-491, 2010.

[73] C. H. Kung and A. Solvberg, "Activity modelling and

behavior modelling of information systems," in Information
Systems Design Methodologies: Improving the Practice, T.

W. Olle, H. G. Sol, and A. A. Verrijn-Stuart, Eds.

Amsterdam: North-Holland, 1986, pp. 145-171.

[74] D. v. d. Linden, I. Hadar, and A. Zamansky, "What

Practitioners Really Want: Requirements for Visual

Notations in Conceptual Modeling," Software and Systems
Modeling, vol. 18, pp. 1813-1831, 2019.

[75] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M.

Moussavi, and B. Smith, "Usage and usefulness of technical
software documentation: An industrial case study,"

Information and Software Technology, Article vol. 57, pp.
664-682, 1/1/January 2015 2015.

[76] S. Jabbari, A. Mohammad, and J. Recker, "Combined use of

conceptual models in practice: An exploratory study,"
Journal of Database Management, vol. 28, no. 2, pp. 56-88,

2017.

[77] K. E. Kendall and J. E. Kendall, Systems Analysis and
Design, 10 ed. Pearson, 2019.

[78] K. Markham, Mintzes, J., Jones, M., "The concept map as a

research and evaluation tool: Further evidence of validity,"
Journal of Research in Science & Teaching, vol. 31, no. 1,

pp. 91-101, 1994.

[79] A. Dennis, B. H. Wixom, and D. Tegarden, A. Dennis, Ed.
Systems Analysis and Design: An Object-Oriented

Approach with UML, 5 ed. Wiley, 2015.

[80] J. Mendling and J. Recker, "Towards systematic usage of
labels and icons in business process models," in 12th

International Workshop on Exploring Modeling Methods in

Systems Analysis and Design, CEUR, Montpellier, France,
2008, pp. 1-13.

[81] S. Heng, M. Snoeck, and K. Tsilionis, "Generating a

Software Architecture out of User Stories and BDD
Scenarios: Research Agenda," in 1st International

Workshop on Agile Methods for Information Systems

Engineering, 2022, Leuven, Belgium: CEUR.
[82] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-

functional Requirements in Software Engineering. Kluwer

Academic Publishing, 2000.
[83] A. Gupta, G. Poels, and P. Bera, "Creation of Multiple

Models from User Stories- A Natural Language Processing

Approach," in Entity Relationship (ER) Conference,
Salvador, Bahia, Brazil, 2019, pp. 47-57, vol. 11787:

Lecture Notes in Computer Science.

[84] R. Mesquita, A. Jacqueira, C. Agra, M. Lucena, and F.
Alencar, "US2StarTool: generation i* models from user

stories.," in International i* Workshop (iStar), 2015.

[85] G. Lucassen, F. Dalpiaz, M. van der Werf, and S.
Brinkkemper, "Visualizing User Story Requirements at

Multiple Granularity Levels via Semantic Relatedness," in

Conceptual Modeling ER, 2016, vol. 9974: Springer.
[86] I. K. Raharjana, D. Siahaan, and C. Fatichah, "User Stories

and Natural Language Processing: A Systematic Literature

Review," IEEE Access, vol. 9, pp. 53811–53826, 2021.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

APPENDIX

TABLE A1. List of requirements engineering challenges and the IDs of the papers in which they occur (see Table A2).

ID Category Challenge
Description

R
e
f1

R
e
f2

R
e
f3

R
e
f4

R
e
f5

R
e
f6

R
e
f7

R
e
f8

R
e
f9

R
e
f1

0

R
e
f1

1

1 Project Team Team's lack of
involvement and
motivation

6 29 35 26 45 14 9 16 2 31

2 Project Team Breakdown of
team
communication
and coordination

28 22 30 1 19 34 23 51 52

3 Project Team Difficulty in
managing
distributed teams

33 56 57 52 54

4 Project Team Sharing of
knowledge

15 10 47 49 8

5 Project Team Lack of
management
involvement

10 12 43 6 38 17 32

6 Customer Difficulty in
customer
interaction

40 28 25 46 21 33 27 13

7 Customer Customer inability
and disagreement

40 20 41 15 28 46

8 Requirements
Quality

Difficulty in
estimating time
and costs

40 28 5 7 45 13

9 Requirements
Quality

Minimal
documentation

28 11 43 15 15 46 31 20 55

10 Requirements
Quality

Incomplete non-
functional
requirements

39 28 40 44 4

11 Requirements
Quality

Incomplete and
missing
requirements

39 12 52

12 Requirements
Quality

Ambiguous
requirements

12 36

13 Requirements
Quality

Requirements
volatility

39 20 24 15 42 53 54 11 20 46 50

14 Requirements
Quality

Requirements
prioritization

25 18 43 3

15 Requirements
Quality

Inadequate
requirements
verification

28

16 User Stories Detailed user
stories not created

7 41

17 User Stories User stories are
not integrated

37 15

18 User Stories Difficulty in
decomposing user
stories

12 36

19 Testing Availability of
testing resources

7 12 48

20 Testing Reduction of
testing and
coverage

25

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

21 Inadequate or
inappropriate
architecture and
interfaces

28 25 41 44

22 External visibility
on project tasks

45 16

TABLE A2. List of references used in Table A1.

Paper ID Papers

1 Adolph, S., P. Kruchten and W. Hall (2012). "Reconciling perspectives: A grounded theory of how people manage the process of
software development." The Journal of Systems & Software 85: 1269-1286.

2 Alaa, G. and G. Fitzgerald (2013). "Re-conceptualizing agile information systems development using complex adaptive systems theory."
Emergence: Complexity & Organization 15(3): 1-23.

3 Bjarnason, E., K. Wnuk and B. Regnell (2012). "Are you biting off more than you can chew? A case study on causes and effects of
overscoping in large-scale software engineering." Information and Software Technology 54: 1107-1124.

4 Brhel, M., H. Meth, A. Maedche and K. Werder (2015). "Exploring principles of user-centered Agile software development: A literature
review." Information and Software Technology 61: 163-181.

5 Campanelli, A. S. and F. S. Parreiras (2015). "Agile methods tailoring – A systematic literature review." The Journal of Systems &
Software 110: 85-100.

6 Chan, F. K. Y. and J. Y. L. Thong (2009). "Acceptance of Agile methodologies: A critical review and conceptual framework." Decision
Support Systems 46(4): 803-814.

7 Chapman, R., N. White and J. Woodcock (2017). "What Can Agile Methods Bring to High-Integrity Software Development? Considering
the issues and opportunities raised by Agile practices in the development of high-integrity software." Communications of the ACM 60(10):
38-41.

8 Conboy, K. (2009). "Agility from First Principles: Reconstructing the Concept of Agility in Information Systems Development." Information
Systems Research 20(3): 329-354.

9 Conboy, K., S. Coyle, W. Xiaofeng and M. Pikkarainen (2011). "People over Process: Key Challenges in Agile Development." IEEE
Software 28(4): 48-57.

10 Conboy, K. and L. Morgan (2011). "Beyond the customer: Opening the Agile systems development process." Information and Software
Technology 53: 535-542.

11 Daneva, M., E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar, N. Ajmeri, U. Ramteerthkar and R. Wieringa (2013). "Agile
requirements prioritization in large-scale outsourced system projects: An empirical study." The Journal of Systems & Software 86: 1333-
1353.

12 Dikert, K., M. Paasivaara and C. Lassenius (2016). "Challenges and success factors for large-scale Agile transformations: A systematic
literature review." Journal of Systems & Software 119: 87-108.

13 Dönmez, D. and G. Grote (2018). "Two sides of the same coin – how Agile software development teams approach uncertainty as threats
and opportunities." Information and Software Technology 93: 94-111.

14 Drury, M., K. Conboy and K. Power (2012). "Obstacles to decision making in Agile software development teams." The Journal of
Systems & Software 85: 1239-1254.

15 Drury-Grogan, M. L., K. Conboy and T. Acton (2017). "Examining decision characteristics & challenges for Agile software development."
Journal of Systems & Software 131: 248-265.

16 Fagerholm, F., M. Ikonen, P. Kettunen, J. Münch, V. Roto and P. Abrahamsson (2015). "Performance Alignment Work: How software
developers experience the continuous adaptation of team performance in Lean and Agile environments." Information & Software
Technology 64: 132-147.

17 Hanssen, G. K. (2012). "A longitudinal case study of an emerging software ecosystem: Implications for practice and theory." Journal of
Systems & Software 85(7): 1455-1466.

18 Henriksen, A. and S. A. R. Pedersen (2017). "A qualitative case study on agile practices and project success in Agile software projects."
Journal of Modern Project Management: 62-73.

19 Inayat, I. and S. S. Salim (2015). "A framework to study requirements-driven collaboration among Agile teams: Findings from two case
studies." Computers in Human Behavior 51(Part B): 1367-1379.

20 Inayat, I., S. S. Salim, S. Marczak, M. Daneva and S. Shamshirband (2015). "Review: A systematic literature review on Agile
requirements engineering practices and challenges." Computers in Human Behavior 51(Part B): 915-929.

21 Jayatilleke, S. and R. Lai (2018). "A systematic review of requirements change management." Information and Software Technology 93:
163-185.

22 Kudaravalli, S., S. Faraj and S. L. Johnson (2017). "A configural approach to coordinating expertise in software development teams." MIS
Quarterly 41(1): 43-64.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

23 Lindsjørn, Y., D. I. K. Sjøberg, T. Dingsøyr, G. R. Bergersen and T. Dybå (2016). "Teamwork quality and project success in software
development: A survey of Agile development teams." The Journal of Systems & Software 122: 274-286.

24 Maruping, L. M., V. Venkatesh and R. Agarwal (2009). "A Control Theory Perspective on Agile Methodology Use and Changing User
Requirements." Information Systems Research 20(3): 377-399.

25 Petersen, K. and C. Wohlin (2009). "A comparison of issues and advantages in Agile and incremental development between state of the
art and an industrial case." The Journal of Systems & Software 82: 1479-1490.

26 Qumer, A. and B. Henderson-Sellers (2008). "A framework to support the evaluation, adoption and improvement of Agile methods in
practice." The Journal of Systems & Software 81: 1899-1919.

27 Ramasubbu, N., A. Bharadwaj and G. Kumar Tayi (2015). "Software process diversity: conceptualization, measurement, and analysis of
impact on project performance." MIS Quarterly 39(4): 787-807.

28 Ramesh, B., C. Lan and R. Baskerville (2010). "Agile requirements engineering practices and challenges: an empirical study."
Information Systems Journal 20(5): 449-480.

29 Recker, J., R. Holten, M. Hummel and C. Rosenkranz (2017). "How Agile Practices Impact Customer Responsiveness and Development
Success: A Field Study." Project Management Journal 48(2): 99-121.

30 Sarker, S. and S. Sarker (2009). "Exploring Agility in Distributed Information Systems Development Teams: An Interpretive Study in an
Offshoring Context." Information Systems Research 20(3): 440-461.

31 Schön, E.-M., J. Thomaschewski and M. J. Escalona (2017). "Agile Requirements Engineering: A systematic literature review." Computer
Standards & Interfaces 49: 79-91.

32 Senapathi, M. and M. L. Drury-Grogan (2017). "Refining a model for sustained usage of Agile methodologies." The Journal of Systems &
Software 132: 298-316.

33 Shrivastava, S. V. and U. Rathod (2014). "Risks in Distributed Agile Development: A Review." Procedia - Social and Behavioral Sciences
133: 417-424.

34 Sundararajan, S., M. Bhasi and P. K. Vijayaraghavan (2014). "Case study on risk management practice in large offshore-outsourced
Agile software projects." IET Software 8(6): 245-257.

35 Tessem, B. (2014). "Individual empowerment of Agile and non-Agile software developers in small teams." Information and Software
Technology 56: 873-889.

36 Torrecilla-Salinas, C. J., J. Sedeño, M. J. Escalona and M. Mejías (2015). "Estimating, planning and managing Agile Web development
projects under a value-based perspective." Information and Software Technology 61: 124-144.

37 Trkman, M., J. Mendling and M. Krisper (2016). "Using business process models to better understand the dependencies among user
stories." Information and Software Technology 71: 58-76.

38 Vijayasarathy, L. and D. Turk (2012). "Drivers of Agile software development use: Dialectic interplay between benefits and hindrances."
Information and Software Technology 54: 137-148.

39 Alam, S., Shah, S. A., Bhatti, S. N., & Jadi, A. M. (2017). Impact and Challenges of Requirement Engineering in Agile Methodologies: A
Systematic Review. International Journal of Advanced Computer Science and Applications, 8(4), 411-420

40 Elshandidy, H., & Mazen, S. (2013). Agile and Traditional Requirements Engineering: A Survey. International Journal of Scientific and
Engineering Research, 4(9), 473-482.

41 Vithana, V. N. (2015). Scrum Requirements Engineering Practices and Challenges in Offshore Software Development. International
Journal of Computer Applications, 116(22), 43-49.

42 De Lucia, A., & Qusef, A. (2010). Requirements Engineering in Agile Software Development. Journal of Emerging Technologies in Web
Intelligence, 2(3), 212-220.

43 Gregory, P., Barroca, L., Sharp, H., Deshpande, A., & Taylor, K. (2016). The challenges that challenge: Engaging with Agile practitioners’
concern. Information and Software Technology, 77, 92-104.

44 Helmy, W., Kamel, A., & Hegazy, O. (2012). Requirements Engineering Methodology in Agile Environment. International Journal of
Computer Science, 9(5), 293-300.

45 McHugh, O., Conboy, K., Lang, M. (2012). Agile Practices: The Impact on Trust in Software Project Teams. IEEE Software, 29(3), 71-76.

46 Hess, A., Diebold, P., & Seyff, N. (2019). Understanding Information Needs of Agile Teams to Improve Requirements Communication.
Journal of Industrial Information Integration, 14, 3-15

47 Yang, C., Liang, P., & Avgeriou, P. (2016). A Systematic Mapping Study on the Combination of Software Architecture and Agile
Development. The Journal of Systems and Software, 11, 157-184.

48 Nurdiani, I., Börstler, J., & Fricker, S. A. (2016). The impacts of Agile and lean practices on project constraints: A tertiary study. Journal of
Systems and Software, 119(Supplement C), 162-183

49 Ghozalia, R. P., Saputraa, H., Nuriawana, M. A., Suharjitoa, Utamaa, D. N., & Nugrohoa, A. (2019). Systematic Literature Review on
Decision-Making of Requirement Engineering from Agile Software Development Procedia Computer Science, 157 274–281.

50 Knauss, E. (2019). The Missing Requirements Perspective in Large-Scale Agile System Development. IEEE Software, 36(3), 9-13.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2022 9

51 Heck, P., & Zaidman, A. (2018). A Systematic Literature Review on Quality Criteria for Agile Requirements Specifications. Software
Quality Journal, 26, 127-160.

52 Iqbal, J., Ahmad, R. B., Khan, M., Fazal-E-Amin, A., S., N. N., M. H., A., & Shoaib, M. (2020). Requirements engineering issues causing
software development outsourcing failure. PloS one, 15(4). doi:https://doi.org/10.1371/journal.pone.0229785

53 Kamal, T., Zhang, Q., & Azeem, M. (2020). Toward Successful Agile Requirements Change Management Process in Global Software
Development: A Client–Vendor Analysis. IET Software, 14(3), 265-274.

54 Llyod, D., Moawad, R., & Kadry, M. (2017). A Supporting Tool for Requirements Change Management in Distributed Agile Development.
Future Computing and Informatics Journal, 2, 1-9.

55 Saito, S., Iimura, Y., Massey, A. K., & Antón, A. (2018). Discovering Undocumented Knowledge Through Visualization of Agile Software
Development Activities. Requirements Engineering, 23, 381–399

56 Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in adopting Agile software development
practices. The Journal of Systems & Software, 82, 1869-1890. doi:10.1016/j.jss.2009.05.052

57 Alsaqaf, W., Daneva, M., & Wieringa, R. (2019). Quality requirements challenges in the context of large-scale distributed Agile: An
empirical study. Information and Software Technology, 110, 39-55.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

