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USING CONFIDENCE INTERVALS TO OBTAIN A FAMILY 

OF ESTIMATORS OF THE INTRACLASS CORRELATION 

COEFFICIENT (OR HERITABILITY) 

Brent D. Burch and Ian R. Harris 

Department of Mathematics and Statistics, Northern Arizona University, 

Flagstaff, Arizona 86011, U.S.A. 

ABSTRACT 

A family of point estimators is presented for the intraclass correlation coefficient (or heritability) in 

the balanced one-way random effects model. The family is obtained by equating a pivotal quantity 

to different values of the pivoting distribution, and includes the familiar ML and REML estimators. 

In terms of mean-squared error, most members of the family of estimators are admissible within 

the family. A sire model is used to illustrate the estimation of heritability. The authors provide 

guidance concerning the choice of an individual member of the family for estimation purposes and 

indicate how the method can be extended to unbalanced designs. 

1 Introduction 

Pivotal quantities have a long history of use in inferential statistics. For the most part 

they have been employed to construct confidence intervals or conduct hypothesis tests for 

population parameters (see Lehmann (1986)). As shown in this paper, pivotal quantities 

can also be used to build a family of point estimators for a parameter. 

This paper illustrates the use of pivotal quantities to obtain estimates of the intraclass 

correlation coefficient, denoted by p, in a balanced one-way random effects model. This 

problem has received extensive study due to its numerous applications. For instance, the 

intraclass correlation coefficient is often used to measure the degree of familial resemblance. 

In plant and animal breeding studies, the intraclass correlation coefficient is related to 

heritability, the proportion of variation in a trait due to additive genetic effects. 

Olkin and Pratt (1958) derive the uniformly minimum variance unbiased estimator 

of the intraclass correlation coefficient. This estimator has a positive probability of taking 

negative values. Donner (1986) presents a comprehensive review of the intraclass correlation 

coefficient in one-way random effects models, and concludes that the maximum likelihood 

estimator of p is preferable to the analysis of variance estimator when p is small. Donner 

and Wells (1986) provide a comparison of confidence interval methods for the intraclass 

correlation coefficient focusing on the unbalanced one-way random effects model. 

On a closely related topic, Loh (1986), Das, Meneghini and Giri (1990), Das (1992), 

and Ye (1994) examine inferences of a ratio of variance components in a balanced one

way random effects model. In particular, Loh (1986) develops a point estimator that has 

uniformly smaller mean-squared error than the maximum likelihood, restricted maximum 
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110 Kansas State University 

likelihood, and Bayesian (using a non-informative prior) estimators. 

This paper is organized as follows. Section 2 introduces the pivotal method of equating 

a pivot quantity to a value from its pivoting distribution. It is shown that this inference 

technique generates a family of estimators. Members of the family may be thought of as 

point estimators obtained by letting the coverage probability of a confidence interval shrink 

to zero. The method is then applied to estimating the intraclass correlation coefficient in 

the balanced one-way random effects model. 

Section 3 investigates the performance of the estimators in the family by comparing 

their mean-squared errors. The results indicate there are a number of estimators of p that 

perform better than the maximum likelihood estimator for small values of the parameter. 

In addition, there are estimators that perform admirably for large values of p. The family 

members are indexed by a parameter F, and it is shown that in most cases there exists 

a value F_ such that all members with F 2:: F_ are admissible within the family. The 

mean squared-error of selected estimators from the family are displayed as a function of 

p. In doing so, one can identify estimators which perform well over specific regions of the 

parameter space. Suggestions are made concerning which members of the family should be 

used in a given application. 

In Section 4 an example concerning heritability is provided to help illustrate the use of 

the estimating procedures described in this paper. Section 5 provides some insight as to how 

the pivotal quantity may be applied to models that are more complex than the balanced 

one-way random effects model. Section 6 presents a short discussion and summary. 

2 Relationship between Confidence Intervals and Point 

Estimators 

Consider a situation in which a vector of statistics denoted by S is used to estimate a 

vector of parameters denoted bye. Suppose that one can transform S to a vector of 

pivots T = T(S,e), that is, T has density iT(t) that does not depend on e. The pivotal 

method then is to equate T with a value t from the domain of the pivoting distribution, and 

to solve for each element of e. For each parameter, this generates a family of estimators 

whose individual members depend on the value of t selected. 

Some motivation for using these estimators can be obtained by considering them as the 

limit points of confidence intervals (or more generally confidence regions) as the coverage 

probability is reduced to zero. Consider the case where a statistic S (an element of S) 

is a pivot for a parameter B (an element of e). Let FT(.) be the cumulative distribution 

function of T = T(S, B) and define p = FT(t) where 0 < p < 1. Construct a confidence 

interval with coverage probability 1 - a by inverting the statement 

P(tz < T(s, B) ::; tu) = 1 - a, 

where FT(tz) = pa and 1 - FT(tu) = (1 - p)a. Letting a approach one leads to a single 

point for the interval, denoted by t, and the estimator of B is 'Bt which satisfies T( s, Bt ) = t. 
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For example, selecting p = 0.5 means that the confidence intervals have equal probability 

in each tail, and shrinking the interval to a point is equivalent to equating the pivot with its 

median value. The limit of the shortest length interval corresponds to selecting t = tmode, 

where tmode is the modal value of the pivotal quantity. 

The following example illustrates the relationship between confidence intervals and point 

estimators. Let ll, ... , Yn i;:!; N(f-L, (]'2) where () = (f-L, (]'2). The sufficient statistics are Y and 

Q = L;("Yi - y)2. The corresponding pivots are Tl = nl/2(y - f-L)/(]' and T2 = Q/(]'2 which 

are independent and have N(O, 1) and X;-l distributions, respectively. Confidence intervals 

for f-L and (]'2 may be obtained from .;n=lTd -IT; '" t n - 1 and T2 '" X~-l' respectively. 

Because the i-distribution is symmetric, confidence intervals for f-L are symmetric and it 

is quite natural to think of these intervals as converging to Y. Sprott (1990) refers to Y as 

the convergence point of a nested set of confidence intervals. Confidence intervals for (]'2, 

however, are not symmetric and there is not a unique point of convergence as the coverage 

probability shrinks to zero. 

Figure 1 illustrates the shrinking of a confidence interval to obtain a family of estimators 

of (]'2. Let xi and xb denote quantiles of the X~-l distribution. A 100(1 - ex)% confidence 

interval for (]'2 is (Q / xb, Q / xi) where 

1 - ex = P [xi < ~ < x~] 

p [~ < (]'2 < ~]. 
xu XL 

As the coverage probability shrinks to zero, the confidence interval converges to a point. 

In this manner a family of estimators of (]'2 is obtained and is given by 

- Q (]'2 = __ 
2 

Xvalue 

where the value of X~alue depends on the formulation of the confidence interval. For in

stance, an equal-tailed confidence interval converges to the median value, X;alue ::::::; n - 5/3. 

The limit of the shortest length confidence interval corresponds to the modal value, X;alue = 
n - 3. As depicted in Figure 1, the family of estimators of (]'2 also contains the unbaised es

timator (X;alue = n -1), the maximum likelihood estimator (X~alue = n), and the minimum 

mean-squared error estimator (X;alue = n + 1). 

Harris and Burch (1998) show that an estimator which results from the maximization 

of a density function of a statistic S is a member of the family generated from a pivotal 

quantity based on that statistic S. If S is sufficient, then the family includes the MLE. In 

this case all members of the family converge to the MLE as sample size increases, and hence 

will be consistent, fully efficient, and asymptotically normally distributed under the usual 

regularity conditions. If the pivot is based on a non-sufficient statistic S, then typically the 

pivotal estimators will not be fully efficient (even asymptotically), although they could still 

be consistent and asymptotically normal. It is best to evaluate the asymptotic properties 

of estimators from such families on a case-by-case basis. 
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In this paper the authors will examine the estimates produced by the pivotal method 

applied to the balanced one-way random effects model given by 

(1) 

where i = 1, ... , a and j = 1, ... , b. Y£j is the ph observation associated with the ith class (or 

group) of Ui. The classes of Ui in the model are assumed to be a random sample from some 

large population of classes. eij is often referred to as random error. It is assumed that 

Ui ~ N(O, ern, eij ~ N(O, ern, and that Ui and eij are mutually independent. In addition, 

eri ~ 0 and er~ > O. 11 is a fixed but unknown quantity that represents the overall mean of 

Y£j. 

The intraclass correlation coefficient is defined as p = eril (eri + erD. This terminology 

is used since the correlation between two observations within the same class is p. That is, 

for j =I- j', Corr[Y£j, y£j'] = erU(eri + erD· In addition, since Var[Y£j] = eri + er~, p may be 

interpreted as the proportion of the total variation due to the random effect Ui. In most 

applications, 0 ~ p < l. 
In animal breeding applications, (1) is referred to as a sire model where Y£j is the trait 

(e.g., yearling weight) of the ph offspring of the ith sire, Ui is the effect of the ith sire, and 

eij is composed of environmental and other effects. The heritability of a trait, denoted 

by h2 , is the proportion of total variation due to additive genetic effects. In (1), note 

that eri respresents the sire's additive genetic variance as opposed to the additive genetic 

variance of the offspring of the sire. In theory, since an offspring receives half of its genetic 

material from the sire and half of its genetic material from the dam, it follows that one 

may equate the sire's additive genetic variance with one-fourth of the offspring's additive 

genetic variance. In other words, h2 = 4p and thus a family of point estimators of the 

intraclass correlation coefficient corresponds to a family of estimators of heritability. By 

definition, 0 ~ h2 < 1 so in this particular application 0 ~ p < 0.25. 

Using standard linear model results (see Graybill (1976)), the complete sufficient statis

tics associated with (1) are (Y., Q1, Q2) where 

~ t t Y£j rv N (11, ~~(1 + p(b - 1))) 
ab i=l i=l ab 1 - P 

a b 
~~ - 2 2 2 
L..; L..; (Y£j - Yd rv er2 Xa(b-1) (2) 
i=l j=l 

~~ - - 2 er~ 2 
Q2 = L..; L..; (Y i . - Y..) rv -1 _ (1 + p(b - 1))Xa-1· 

i=l j=l P 
(3) 

Since the authors are interested in estimating a function of the variance components, the 

focus of attention is on the quadratic forms Q1 and Q2. From (2) and (3), Q1 is the 

"within" sum of squares and Q2 is the "between" sum of squares in the standard analysis 

of variance table. The distributions of the quadratic forms involve the parameter of interest, 
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p, and a nuisance parameter, O"~. By considering a ratio involving Ql and Q2, the nuisance 

parameter is eliminated in the resulting distribution. 

The pivotal quantity for p using the above results is 

92 j(a 1) 
T(Q . Q . ) = l+p(b-l) - F 

L 2, P l~lpja(b _ 1) '" a-l,a(b-l)· (4) 

Thus the pivotal method generates a family of estimators of p which are obtained by solving 

where F is a value from the F-distribution mentioned above. Solving for p results in 

~ a(b - 1)Q2 - (a - l)FQl 
P = ~------------~--~~----

a(b - 1)Q2 + (a - l)(b - l)FQl' 
(5) 

If F in (5) is selected to be the median of the F -distribution, the estimator of p is included 

in every equal-tailed confidence interval of p as the confidence coverage approaches zero. 

By taking F in (5) to be the mode of the F-distribution, an estimator of p that corresponds 

to the confidence interval having minimum length as the coverage probability converges to 

zero is obtained. It is interesting to note that the REML estimator, which is the same as 

the ANOVA estimator in the balanced design when constrained to the parameter space, 

corresponds to F = 1. The MLE corresponds to F = a j (a - 1). 

Table 1 gives a selection of F-values corresponding to estimators that arise from the 

pivotal quantity approach. Note that the mode of the F-distribution is defined for a > 3 

and the F-values in Table 1 are increasing in order. That is, FMode < FMedian < FREML < 
F MLE · 

In this paper the authors are concerned with estimators that are restricted to the 

parameter space of p. In doing so, the estimators of p are defined as 

~ {a(b-l)Y-(a-l)F} 
p F = max O. ~---'----'-----'-------'-----

, a(b - l)Y + (a - l)(b - l)F 
(6) 

where Y = Q2/Ql' Using the relationship between the F-values in Table 1, note that 

PFMode 2: PFMed,an 2: PFREML 2: PFMLE · Section 3 investigates the properties of these partic

ular estimators as well as others in the family. 

The asymptotic properties of the family of estimators depend on whether a (the number 

groups) goes to infinity, or whether a remains fixed and b (the number of observations per 

group) goes to infinity. As a approaches infinity, F in (6) approaches 1, and the family 

of estimators collapses to a single estimator, namely, P FREM L' Since P FREM L is a maximum 

likelihood estimator, it exhibits the properties common to the maximum likelihood method. 

That is, consistency and asymptotic normality. However, if a is fixed as b approaches 

infinity, F in (6) is distributed as a scaled chi-squared variate. The result is a family of 

pivotal estimators indexed by F rv (a - 1 r 1 X~-l' In this case, no member of the family, 

including the MLE, is consistent. 
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3 Comparisons of Estimators 

This section investigates the estimators of p derived in Section 2 by using mean-squared 

error as the criterion for judging the estimators. Following a brief discussion about PF, some 

general results concerning mean-squared error are presented. The authors then proceed to 

compare some estimators selected from the family. 

The estimator in (6) may be rewritten as 

PF = 
a(b-1)Y - (a -l)F 

--;-:--'-:---,--:--~~---:-= I[ (r1 lj ) (Y) 
a(b - l)Y + (a - l)(b - l)F a b-I ,00 

where I denotes an indicator function. The expected value of pis 

~ Joo a(b-1)y-(a-1)F 
E[PF] = a(b _ l)y + (a - l)(b _ l)F fy (y)dy 

(a-I1F 
a(b-I) 

(7) 

where fy(y) is the probability density function of Y. From the equation for the pivotal 

quantity in (4) and using the fact that Y = Q2/ Ql, one can show that Y = k(p)X, where 

k(p) = (a - 1)(1 + p(b - 1)) 
a(b - 1)(1 - p) 

and X is an F-distributed variable with a-I and a(b - 1) degrees of freedom. 

A simple transformation of variables using the F-density shows that the density of Y 

evaluated at y is 

1 (1- p)(a-l)/2(1 + p(b - 1)t(b-l)/2y(a-3)/2 

fy(y) = B(a;l, a(b;l)) (1 + y + (b _ 1- y)p)(ab-l)/2 

where B is the beta function. The mean-squared error of PF can be computed in a manner 

similar to that of the expectation of PF. 

Of major interest is whether there is one choice of F, i.e., one particular member of the 

family of estimators, which is superior to all others in terms of mean-squared error over 

the entire parameter space. In fact, this is not the case, and it appears that all members of 

the family with F sufficiently large are admissible. The following theorem (stated without 

proof) establishes admissibility for all members with sufficiently large F for a > 5. 

Theorem: 

(i) If a > 5, 

MSE(PF) = (1 - p)2 (F2 (Var[U] + E[U]2) - 2FE[U] + 1) + 0 ((1- p)2) , 

where U = ((1 + p(b - l))(a - 1))/((1 - p)a(b - l)Y) is an F-distributed random variable 

with numerator and denominator degrees of freedom a(b - 1) and a-I, respectively. 
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(ii) For a > 5, define F_ = ((a - 5)a(b - l))/((a - l)(a(b - 1) + 2)). Then PF is 

admissible for all F 2:: F_. 

Further details concerning mean-squared error as well as bias may be found in Harris and 

Burch (1998). 

The authors now compare the mean-squared errors of estimators selected from the 

family of estimators. The FORTRAN routine DQDAGI from the IMSL (1991) collection of 

codes is used to determine integrals such as the one in (7). The F-values in Table 1 are used 

along with F_ from the Theorem and F+ = (a + l)/(a - 1). F+ is employed to point out 

the fact that for small values of p, there are members of the family that have smaller mean

squared error than the maximum likelihood estimator. In particular, since F+ > F MLE , 

PF+ :::; f5pMLE across the entire parameter space and MSE(PF+) < MSE(PFMLE) when pis 

small. 

Figure 2 displays the mean-squared errors of the selected estimators across the param

eter space for a = 10 and b = 5. Recall that FREML = 1 which does not depend on a and 

b. Also, F_ = 0.53, FMode = 0.74, FMedian = 0.94, FMLE = 1.11, and F+ = 1.22. As Figure 

2 confirms, the members of the family considered here are admissible. It is interesting to 

note that the estimators associated with large F-values perform well for small values of p 

and the estimators associated with small F-values perform well for large values of p. This 

certainly agrees with the results in the Theorem. 

Figure 3 displays the mean-squared errors of the estimators relative to the mean-squared 

error of PFREML' This figure indicates, for example, that the mean-squared error of PF+ 

is approximately 50% smaller than the mean-squared error of PFREML when p = 0 and 

about 50% larger than the mean-squared error of PFREML as p approaches one. The above 

results suggest that a sensible strategy that uses informal prior belief about p is to use 

F _ if one believes p is "large", F = 1 (which corresponds to the REML estimator) if p is 

"intermediate", and F+ if p is "small". Note that in heritability studies 0 :::; p < 0.25 so 

one may be inclined to select F +. 

4 Example 

To illustrate how one may apply the above results to compute estimators of p, consider 

a subset of data from Harville and Fenech (1985). The model employed is the balanced 

one-way random effects model for the birth weights (1bs) of lambs from six sires. The data 

is displayed in Table 2. The model used by Harville and Fenech (1985) also takes into 

account population lines and age of dam and is beyond the scope of this paper. 

In this example, a = 6, b = 4, and Y = Q2/Ql = 0.527. Table 3 lists a selection of 

F-values and the corresponding values of PF. The estimators given by (6) are in decreasing 

order since their corresponding F-values are in increasing order. In this heritability example 

PF- and PFmode are outside the parameter space. Although not directly comparable to the 

results in Table 3, Harville and Fenech (1985) provide an ANOVA estimate of p equal to 

0.217 based on the entire set of 62 birth weights and the more realistic model. 
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5 More Complex Models 

In this paper the pivotal method has been employed to obtain a family of estimators of p 

for the balanced one-way random effects model. The general methodology of using pivotal 

quantities to obtain estimators of parameters is comprehensive and can be used in a variety 

of applications. In the context of estimating functions of variance components, additional 

research is needed to determine the feasibility of employing the pivotal method in more 

elaborate models. 

For instance, consider the mixed linear model 

Y = XfJ+Zu+e, 

where Y is a n x 1 vector of observable random variables, fJ is a p x 1 vector of unknown 

parameters, and u and e are vectors of unobservable random variables of size m x 1 and 

n x 1, respectively. The matrices X and Z are known and without loss of generality, 

rank(X) = p. The random vectors u and e are taken to be independent with u '" 

MVN(O,aiA) and e '" MVN(O,a~In)' In animal breeding contexts, the known matrix 

A is referred to as the relationship matrix since it describes the degree to which the elements 

of u are related. 

From Burch and Iyer (1997), a collection of pivotal quantities used to construct confi

dence intervals for p are of the form 

(8) 

where Ql, ... , Qd are quadratic forms that make up a set of minimal sufficient statistics 

for the linear model void of the fixed effects. By construction, the quadratic forms are 

independent. Furthermore, 0 :::; .6.1 < ... < .6.d are the distinct eigenvalues of a covariance 

matrix related to a function of the observations. Each.6. i is repeated 'l'i times, where 

i = 1, ... , d. See Burch and Iyer (1997) for specific details. 

From (8) there are a total of d - 1 individual pivotal quantities since the index k = 
1, ... , d - 1 determines the number of quadratic forms in the denominator and hence the 

degrees of freedom of the associated F-distribution. For fixed k, the pivotal quantity may 

be set equal to a value from the corresponding F-distribution to obtain a point estimator 

of p. Except in simple cases, the estimator cannot be expressed in closed-form so numerical 

methods are required to find the actual estimate. Evaluating the performance of the esti

mators derived from various combinations of pivotal quantities and F-values is a subject 

of future work. 
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6 Discussion 

In this paper a family of estimators was derived by setting the pivotal quantity equal to 

different values of its pivoting distribution. Each member of the family can be thought of 

as the limit point of a confidence interval as its coverage shrinks to zero. The family of 

estimators also include the ML and REML estimators. In general, estimators associated 

with large F-values have small mean-squared errors for small values of p and estimators 

associated with small F-values have small mean-squared errors for large values of p. For 

investigators focusing on estimators when p is small (such as heritability studies), an F

value greater than FMLE results in an estimator that performs better than the MLE. As a 

guide the authors suggest the use of F = F+ if one believes p to be small, F = F_ if one 

believes p to be large, and F = FREML for other cases. 

This paper suggests using large F when p is small. However, increasing F leads to 

an increase in the probability that the estimator is zero. Since this may be of concern, an 

alternative criterion to mean-squared error is to examine the ratio of mean-squared error to 

the probability that the estimator is positive, and seek to minimize this quantity. Informal 

investigations suggest that the conclusions drawn from using this criterion are qualitatively 

the same as outlined in this paper, that is, large F is better for small p and vice versa. 

Although the authors have addressed admissibility concerns for the family of estimators, 

this does not preclude the possibility that an estimator derived from a different approach 

may have smaller mean-squared error for all p than any member of the family discussed 

in this paper. This suggests that even more work is warranted in this well-studied area of 

inferential statistics. 

Acknow ledgements 

The authors would like to acknowledge funding from the Northern Arizona University 

Organized Research Program. Conversations with Roy St. Laurent proved to be very 

helpful. Hariharan K. Iyer provided some initial motivation for studying this topic. 

References 

Burch, B. D. and Iyer, H. K. (1997). Exact confidence intervals for a variance ratio (or 

heritability) in a mixed linear model. Biometrics 53, 1318-1333. 

Das, K. (1992). Improved estimation of the ratio of variance components for a balanced 

one-way random effects model. Statistics and Probability Letters 13, 99-108. 

Das, K., Meneghini, Q. and Giri, N. (1990). Inadmissibility of an estimator for the ratio of 

variance components. Statistics and Probability Letters 10, 151-157. 

Conference on Applied Statistics in Agriculture

Kansas State University

New Prairie Press

https://newprairiepress.org/agstatconference/1998/proceedings/10



118 Kansas State University 

Donner, A. (1986). A review of inference procedures for the intraclass correlation coefficient 

in the one-way random effects model. International Statistical Review 54, 67-82. 

Donner, A. and Wells, G. (1986). A comparison of confidence interval methods for the 

intraclass correlation coefficient. Biometrics 42, 401-412. 

Graybill, F. A. (1976). Theory and Application of the Linear Model. Wadsworth, Belmont, 

CA. 

Harris, I. R. and Burch, B. D. (1998). Pivotal estimation with applications for the intraclass 

correlation coefficient in the balanced one-way random effects model. Submitted for 

publication. 

Harville, D. A. and Fenech, A. P. (1985). Confidence intervals for a variance ratio, or for 

heritability, in an unbalanced mixed linear model. Biometrics 41, 137-152. 

IMSL (1991). IMSL MATH/LIBRARY User's Manual, Version 2.0. IMSL, Houston, TX. 

Lehmann, E. 1. (1986). Testing Statistical Hypotheses. Wiley, New York. 

Loh, W. (1986). Improved estimators for ratios of variance components. Journal of the 

A merican Statistical Association 81, 699-702. 

Olkin, I. and Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. 

Annals of Mathematical Statistics 29, 202-211. 

Sprott, D. A. (1990). Inferential estimaton, likelihood, and linear pivotals. The Canadian 

Journal of Statistics 18, 1-15. 

Ye, K. (1994). Bayesian reference prior analysis on the ratio of variances for the balanced 

one-way random effect model. Journal of Statistical Planning and Inference 41, 267-

280. 

Conference on Applied Statistics in Agriculture

Kansas State University

New Prairie Press

https://newprairiepress.org/agstatconference/1998/proceedings/10



Applied Statistics in Agriculture 

Table 1: F-values 

Mode 

Median 

REML 

MLE 

F - a(b-l)[(a-l)-2) 
Mode - (a-l)[a(b-l)+2] 

FMedian = F O.5 ,a-l,a(b-l) 

FREML = 1 

FMLE = a~l 

Table 2: Birth weight (lbs) of lambs 

Sire 

1 2 3 4 5 6 

10.1 10.1 10.1 10.6 10.0 10.7 

11.8 11.0 11.7 7.7 12.7 12.5 

12.9 14.0 8.8 10.0 13.2 9.0 

13.1 15.5 11.0 11.2 13.3 10.2 

Table 3: Estimates of p in lamb data 

F-values PF 

F_ = 0.18 0.70 

FMode = 0.54 0.39 

FMedian = 0.90 0.21 

FREML = 1.00 0.18 

FMLE = 1.20 0.12 

F+ = lAO 0.08 
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A 

(J2 = Q / X2 value 

2 
X value = n - 3 (mode) 

n - 5/3 (median) 

n - 1 (mean) 

n (MLE) 

Kansas State University 

n + 1 (min MSE) 

1 - a 

2 
X value 

Figure 1: Family of estimators of 0-2 
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Figure 2: MSE of estimators for a = 10, b = 5 
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Figure 3: MSE of estimators relative to MSE of PFREML for a = 10, b = 5 
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