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Abstract: Ventricular arrhythmia (VA) is a leading cause of sudden death and health deterioration.
Recent advances in predictive analytics and wearable technology for behavior assessment show
promise but require further investigation. Yet, previous studies have only assessed other health
outcomes and monitored patients for short durations (7–14 days). This study explores how behaviors
reported by a consumer wearable can assist VA risk prediction. An exploratory observational study
was conducted with participants who had an implantable cardioverter-defibrillator (ICD) and wore a
Fitbit Alta HR consumer wearable. Fitbit reported behavioral markers for physical activity (light,
fair, vigorous), sleep, and heart rate. A case-crossover analysis using conditional logistic regression
assessed the effects of time-adjusted behaviors over 1–8 weeks on VA incidence. Twenty-seven
patients (25 males, median age 59 years) were included. Among the participants, ICDs recorded
262 VA events during 8093 days monitored by Fitbit (median follow-up period 960 days). Longer
light to fair activity durations and a higher heart rate increased the odds of a VA event (p < 0.001).
In contrast, lengthier fair to vigorous activity and sleep durations decreased the odds of a VA event
(p < 0.001). Future studies using consumer wearables in a larger population should prioritize these
outcomes to further assess VA risk.

Keywords: implantable cardioverter-defibrillator; ventricular arrhythmia; consumer-wearable
activity tracker; wearable; physical activity; sleep; heart rate; co-calibration; risk assessment;
early detection

1. Introduction

Heart arrhythmias constitute a growing challenge to healthcare systems worldwide,
and ventricular arrhythmias (VA) are an important and increasingly frequent cause of
sudden death and health deterioration. Implantable cardioverter-defibrillators (ICDs)
and remote monitoring have led to significant advances in reliably avoiding malignant
VAs [1,2], leading to reduced hospitalization rates and improved quality of care [3,4]. Still,
VAs are life-threatening and pose challenges for risk assessment, including prevention of
inappropriate therapy and detection of impending events in time for proactive clinical
intervention [5].
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During the last decade, there has been a significant increase in the availability and use
of health monitoring devices and mobile applications that provide users with personalized
health data. The reasons for the use of such tools are diverse and include the desire for
behavior change or health monitoring among healthy users as well as users with chronic
diseases, such as cardiovascular disease [6,7]. Consumer-wearable activity trackers enable
detailed monitoring of behavioral markers, including physical activity (intensity, frequency,
volume, and type), sleep behavior, and rest-activity patterns [8]. These devices are currently
spreading from the consumer market to the clinic, for example in cardiac rehabilitation [9]
and arrhythmia monitoring [10,11]. Most studies using consumer-wearable activity trackers
in cardiology have focused on heart failure or mortality [1,12–14]. Overall, studies have
found that physical activity measured with activity trackers is an effective predictor of
cardiovascular deterioration, with an inverse relationship between physical activity and
the prognosis regarding morbidity, the stage of heart failure disease, cognitive function,
intercurrent events such as hospitalization, and overall cardiovascular-related mortality [15].
However, previous studies using consumer-wearable activity trackers have not focused
on VA event outcomes and on average have collected only seven days of activity tracker
data [16].

This gap in the literature motivates further research into the usefulness of wearable
activity trackers for heart arrhythmia risk prediction, and there is a specific need to conduct
studies with prolonged periods of activity data collection. Based on prior studies, we hy-
pothesize that consumer-wearable activity trackers represent an opportunity for improving
early risk prediction of VAs and can potentially support early clinical intervention. We
specifically aim to examine general behaviors among a patient population with ICDs over
an extended period (from one week to several months) and thereby identify relationships
between daily behaviors and VA events.

2. Materials and Methods
2.1. Study Settings and Objectives

An exploratory observational study was conducted to understand how VAs among pa-
tients with ICDs may be associated with behavioral data preceding a VA event, as collected
from a consumer-wearable activity tracker. This study was part of a more extensive research
and development project, SCAUT (Self-, Collaborative- and AUTo-detection of signs and
symptoms of deterioration), conducted from 2014 to 2018, which aimed to improve early
detection of deterioration in patients with a cardiac device and communication between
such patients and health professionals [17–20]. The SCAUT project was completed at the
Department of Cardiology at Copenhagen University Hospital - Rigshospitalet, Denmark.

2.2. Recruitment of Participants and Ethical Considerations

This study comprised a sample of 27 patients with a secondary prevention ICD, a
device that is offered to individuals who have survived sudden cardiac arrest or who have
a history of VAs [5]. Patients were recruited from the SCAUT project through a mix of
purposive sampling and self-sign-up to ensure that participants were motivated to wear an
activity tracker for a minimum of two months. Wearing the activity tracker was unrelated
to patient treatment at the clinic. Patients were provided with and instructed to wear
the Fitbit Alta HR (Fitbit Inc., San Francisco, CA, USA), a wrist-worn consumer-wearable
activity tracker that reports daily measures of physical activity, sleep, and heart rate [21–30].
We further justify our choice of the Fitbit in Appendix A.1. Patients were asked to wear the
wearable activity tracker as much as possible, day and night, for a minimum of two months.

As part of the SCAUT research and development project, this study was conducted
according to the guidelines of the Declaration of Helsinki, approved by the Danish Data Pro-
tection Agency and reviewed by the Capital Region of Denmark’s Regional Committee for
Health Research Ethics (No. H-19029475). Informed consent was obtained from all subjects
involved in this study. Patients were informed that the Fitbit device is a consumer-wearable
activity tracker and not a clinical device, and that it reports data without diagnostic validity.
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2.3. Measured Outcomes
2.3.1. ICD-Reported Outcomes

The first data source was the ICDs, which provided data report files on remote heart
rhythm monitoring in XML format through Medtronic CareLink [31]. Three types of VA
events were reported by the ICDs (Table 1) and reflected in the MainspringTM Report
Export [31]: ventricular tachycardia (VT), ventricular tachycardia at two thresholds (VT1,
VT2), and ventricular fibrillation into ventricular tachycardia (VF-VT). The incidence of a
VA event (yes or no) during monitoring was used as the main outcome variable.

Table 1. VA event types reported by the implanted ICDs.

VA Event Type Description

VT
Ventricular tachycardia is a very fast heart rhythm that begins in the
ventricles. It is defined as a heart rate of more than 100 beats/min with at
least three irregular heartbeats in a row.

VT1

Ventricular Tachycardia Zone 1: Medtronic has an option to divide VTs into
heart-rate zones. This division allows physicians to program different
treatments for the different zones. For example, Zone 1 may range from
100 to 180 beats/min.

VT2 Ventricular Tachycardia Zone 2: Zone 2 is similar to VT1, but with a
different beat-per-minute interval.

VF-VT
Ventricular fibrillation into ventricular tachycardia: VT is
potentially lethal, VF even more so. In ventricular fibrillation, the
ventricular rates are higher than in VT.

2.3.2. Fitbit-Reported Data

The second data source was the Fitbit Alta HR (Fitbit Inc., San Francisco, CA, USA)
consumer wearable activity tracker. The Fitbit data were collected through an application
programming interface [32] that provided behavioral markers for physical activity, sleep,
and heart rate in the CSV format. A data format example is available in Listing S1: Data
Format Example. The markers reported by the Fitbit and used in this study were either
raw (steps, heart rate) or processed according to Fitbit’s proprietary activity recognition
algorithms (sedentary, physical activity, and sleep duration) [32].

The Fitbits counted participants’ steps and classified the physical intensity as seden-
tary, light, fair, or vigorous for each 15-min interval in a day (up to 96 intervals/day).
For time periods of assumed sleep, the Fitbits classified the sleep type as asleep, awake,
restless, or unknown for 1-min intervals (up to 1440 intervals/day). Fitbit did not provide
precise thresholds for its physical activity recognition algorithms [33]. Thus, in this analysis,
variables for cumulative adjacent intensities (e.g., light + fair) and variables for combina-
tions of sleep types (e.g., awake + asleep) were derived. Sleep was not measured for all
patients, and sedentary duration also included sleep. Therefore, all durations that included
sedentary duration were deemed unreliable and excluded from analysis. The Fitbits also
reported heart rate in 1-min intervals (up to 1,440 intervals/day). For the 15-min intervals,
minimum, mean, median, maximum, and standard deviation (SD) heart rate values were
derived from the 1-min heart rates. This additional step for the heart rate was necessary
to derive the aggregate variables feasibly in time, while maintaining a high measurement
frequency and aligning the heart rate intervals with those for the other behavioral markers.
Therefore, all variables were derived for the 15-min intervals (Table 2).

2.4. Data Analysis

The Fitbit variables were aggregated for analysis. The variables were first aggregated
over days, then weeks, then intervals of 1–8 consecutive weeks called periods. The reason
for deriving different periods was to explore the risk of VA events for the purposes of
timely clinical intervention (e.g., behaviors leading to events within one week vs. behaviors
leading to events within eight weeks). Inferential and descriptive analyses using the
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aggregations were then conducted. The data analysis was performed in Python [34] using
the Anaconda environment [35] (data aggregation and descriptive analysis) and in R [36]
using the RStudio environment [37] and the Survival library [38] (inferential analysis). The
data analysis code is available in Listing S2: Data Analysis Code. A similar approach,
leveraging the aggregation of data for different periods before the event, has been proposed
and evaluated as a co-calibration method [39].

Table 2. Fitbit measurements and derived variables with abbreviations and units.

Measurement Derived Variable

Name Unit Name Abbreviation Unit

Steps count Steps Steps count
Sedentary yes/no (Excluded from analysis)
Sedentary, Light yes/no (Excluded from analysis)
Light yes/no Light activity duration Light min

Light, Fair yes/no Cumulative light and fair activity
duration Light + Fair min

Fair yes/no Fair activity duration Fair min

Fair, Vigorous yes/no Cumulative fair and vigorous activity
duration Fair + Vig min

Vigorous yes/no Vigorous activity duration Vig min
Light, Fair,
Vigorous yes/no Cumulative active duration Active min

Asleep yes/no Asleep sleep duration Asleep min
Awake yes/no Awake sleep duration Awake min
Restless yes/no Restless sleep duration Restless min
Unknown yes/no (Excluded from analysis)

Asleep, Awake yes/no Cumulative asleep and awake sleep
duration Asleep + Awake min

Asleep, Restless yes/no Cumulative asleep and restless sleep
duration Asleep + Restless min

Awake, Restless yes/no Cumulative awake and restless sleep
duration Awake + Restless min

Asleep, Awake,
Restless, Unknown yes/no Cumulative sleep duration Sleep min

Heart rate bpm 1 Minimum heart rate MinHR bpm
Heart rate bpm 1 Mean heart rate MeanHR bpm
Heart rate bpm 1 Median heart rate MedianHR bpm
Heart rate bpm 1 Maximum heart rate MaxHR bpm
Heart rate bpm 1 Standard deviation of heart rate SDHR bpm

1 bpm denotes beats/min.

2.4.1. Data Quality Assurance and Data Aggregation

Fitbit measurements reported as “0” were excluded from analysis. Valid days, weeks,
and periods were then derived according to several scenarios. First, only days with at
least one, two, four, or eight hours of physical activity data available (i.e., classified as any
combination of sedentary, light, fair, or vigorous) between 8 a.m. and 8 p.m. were deemed
valid days and included in the analysis as four separate scenarios. Second, only weeks
with at least four, five, or seven valid days were included as valid weeks as three separate
scenarios. Third, only periods with sufficient valid weeks were deemed valid periods
according to three increasingly strict scenarios: minimum 50%, 75%, and 100% valid weeks
(Figure 1). This system totaled 36 combinations of scenarios based on the four scenarios for
valid days, three for valid weeks, and three for valid periods. We further elaborate on data
validation in Appendix A.2.

Data aggregation was conducted through accumulation of all variables from the
15-min intervals in valid Fitbit days. Steps, physical activity duration, and sleep duration
were summarized via daily aggregation to support the subsequent analysis. This approach
has also been implemented in other studies using Fitbit data [39–41]. Daily heart rates
were aggregated, and heart rates were reported by minimum, mean, median, maximum,
and SD across the 15-min intervals. For each valid week, the mean daily count of steps,
mean physical activity durations, mean sleep durations, and minimum heart rate were
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accumulated from the daily aggregations. The same aggregations were performed on valid
periods using the aggregations on valid weeks (Figure 2).
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Figure 1. Data validation for days, weeks, and periods for one combination of scenarios: at least four
hours of physical activity data between 8 a.m. and 8 p.m. for valid days, at least four valid days for
valid weeks, and at least 50% valid weeks for valid periods. Days (depicted in green in the top left)
contain physically active or inactive time (physically active time is depicted with solid blue, while
physically inactive time is depicted with pale blue). If at least 50% of the time between 8 a.m. and
8 p.m. is active, the day is valid. Weeks (depicted in yellow in the top center) contain seven days
(valid days are depicted with solid green, while invalid days are depicted with pale green). If the
week has at least four valid days, that week is valid. Periods (in orange in the top right) contain
1–8 weeks (valid weeks are depicted with solid yellow, while invalid weeks are depicted with pale
yellow). If at least 50% of the weeks of a period are valid, the period is valid. The figure then shows
examples of valid and invalid days (bottom left), weeks (bottom center), and periods (bottom right).
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Figure 2. Data aggregations over valid days, valid weeks, and valid periods. A day (depicted in
green in the top left) contains 96 15-min intervals (depicted in blue; the intervals with a value are
solid blue, while those without a value are pale blue). A daily aggregate (in green in the bottom left)
is constructed from the 15-min intervals with values. A week (depicted in yellow in the top center)
contains seven days (in green; the valid days are solid green, while those invalid are pale green). A
weekly aggregate (depicted in yellow in the bottom center) is constructed from the daily aggregates
of the valid days. A period (in orange in the top right) contains 1–8 weeks (depicted in yellow; the
valid weeks are solid yellow, while those invalid are pale yellow). A period aggregate (depicted in
orange in the bottom right) is constructed from the weekly aggregates of the valid weeks. The period
aggregate is then used for the inferential analysis.

2.4.2. Analytic Design

The descriptive analysis consisted of two parts. The first part concerned summary
statistics (median, mean, and SD) for data quality and behavioral markers. The second
part concerned changes in Fitbit wear in the temporal vicinity of VA events observed for
individual patients. For brevity, only the first part of the descriptive analysis is included in
this paper. The second part is detailed in Appendix B.1.3.

The inferential analysis assessed the extent to which the given behaviors affected the
odds of a VA event over time. This assessment was performed by means of a case-crossover
design using conditional logistic regression [42,43]. This approach was chosen because
it enabled meticulous analysis of cases of patients who had experienced a VA event; the
patients served as their own controls.

For each patient, all monitoring days were used to capture the outcome of VA or no
VA on any given day. Windows of valid Fitbit-measured periods of 1–8 weeks were used
to define the exposure immediately succeeding each day of VA (case periods) or no VA
(control periods). Figure 3 provides an example. In this way, the data were extended to
include several time periods, one for each day of monitoring for each patient [44], and
all patients with both VA events and Fitbit-measured behaviors contributed with cases,
controls, or both to the analysis.
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Figure 3. Case-crossover analysis: case and control periods for a combination of scenarios: an
arbitrary scenario for valid days, at least four valid days for valid weeks, and at least 50% valid weeks
for valid periods. Periods (depicted with orange contour) contain valid weeks (depicted with strong
yellow contour and fill) and invalid weeks (depicted with pale yellow contour only). Week validity
depends on having at least four valid days (depicted with strong green contour and fill) and at most
three invalid days (depicted with pale green contour only). Case periods are followed by an event
on the next day (depicted by a magenta vertical line). Events on the following day do not follow
control periods. Valid periods (depicted with strong orange contour and fill) are either case periods
(above the timeline of wearable monitoring) or control periods (below the timeline). Invalid periods
are neither case periods nor control periods. The analysis uses all patients’ case and control periods.

2.4.3. Conditional Logistic Regression

Conditional logistic regression was used to assess how a one-unit change in behaviors
(e.g., one extra minute of physical activity at a certain intensity or an extra beat per minute
for the heart rate) affected the change in probability of a VA event. The predictors in the
conditional logistic regression models were (a) behavior aggregate variables (continuous ex-
posure) and (b) time-specific variables for time-point adjustment: (i) season (spring, summer,
fall, winter), (ii) day of week (1–7), and (iii) weekday status (weekday, weekend day) of the
date immediately succeeding the period. A scenario defines a specific combination of pre-
dictors: (a) behavior aggregate variables and (b) time-specific variables. Three conditional
logistic regression formulae were derived. A total of 108 scenario-formula combinations
resulted from 36 scenario combinations and three formulae (Table 3).

For each of the 108 scenario-formula combinations, conditional logistic regression
models were created for periods of a fixed duration of 1–8 weeks (denoted as separate
models) and for periods of durations in weeks at most the fixed duration 1–8 weeks, falling
within the larger duration scope (denoted as combined models), as illustrated in Figure 4.
A total of 108 × (8 + 8) = 1728 models resulted.
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Table 3. Formulae, predictors, and outcome for conditional logistic regression.

Formula Predictors Defining the Scenarios VA Outcome

1 (a) behavior aggregate, (b) season, weekday status event (yes/no)
2 (a) behavior aggregate, (b) season, day of week event (yes/no)
3 (a) behavior aggregate, (b) season event (yes/no)
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Figure 4. Periods in separate and combined models for a fixed duration of four weeks. Periods
(depicted in orange) span across 1–8 weeks (depicted in yellow). For the separate models, only
periods of precisely four weeks are included. For the combined models, periods of up to 4 weeks
(precisely one week, and precisely two weeks, and precisely three weeks, and exactly four weeks)
are included.

As the objective was to explore patterns without focusing on individual results, any
odds ratio (OR) that exceeded the significance threshold α = 0.05 was reported, without
adjustments for multiple comparisons. However, highly significant ORs (e.g., p < 0.001)
were expected. If, for a given behavior, across all models, (1) there were no significant ORs
or (2) some significant ORs were sub-unit and some significant ORs were supra-unit, the
OR was reported as inconclusive.

3. Results
3.1. Participant Information

Of the 65 heart patients with an ICD or an ICD with cardiac resynchronization therapy
(CRT-D) who were invited to participate in the study, 27 participants provided written
informed consent. Of these, 25 were male (93%), and the median age among participants
was 59 years (mean 57.3 ± 11.1), as presented in Table 4.
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Table 4. Participant information.

Participant ID Gender Age VA Events 1 Fitbit Days 2 Device Type 3

1 Male 67 6 193 ICD
2 Male 61 0 966 Not specified
3 Male 41 0 120 Not specified
4 Male 55 1 960 ICD
5 Male 66 6 364 ICD
6 Male 67 0 79 Not specified
7 Male 28 1 65 ICD
8 Male 69 0 567 Not specified
9 Male 47 1 519 ICD
10 Male 61 0 261 Not specified
11 Male 59 5 60 ICD
12 Male 66 23 647 CRT-D
13 Male 58 5 357 CRT-D
14 Male 67 1 317 ICD
15 Male 56 6 332 ICD
16 Female 52 11 980 ICD
17 Female 61 0 99 Not specified
18 Male 47 20 326 ICD
19 Male 45 45 450 ICD
20 Male 67 127 801 ICD
21 Male 66 0 148 Not specified
22 Male 69 1 395 ICD
23 Male 38 0 98 Not specified
24 Male 59 0 136 Not specified
25 Male 51 3 842 ICD
26 Male 49 0 891 Not specified
27 Male 74 0 796 Not specified

1 Refers to the number of VA events recorded. 2 Refers to the number of days with Fitbit measurements. 3 Refers
to the use of an implantable cardiac-defibrillator (ICD) or ICD with cardiac resynchronization therapy (CRT-D).

3.2. Descriptive Analysis of Data Quality and Behavioral Markers

VA events were reported in 16 of the 27 participants. A total of 262 different types
of VA events were recorded, with a mean of 16.4 ± 31.7/patient over a mean duration
of 32.5 ± 28.9 months/person. Of these events, 56 were ventricular tachycardia (VT;
mean 3.5 ± 8.8 events/patient), 172 were ventricular tachycardia type 1 (VT1; mean
10.8 ± 23.6 events/patient), and 34 were ventricular fibrillation and ventricular tachycardia
(VF-VT) events (mean 2.1 ± 2.3 events/patient). The VA events by type for each patient are
presented in Appendix B.1.1 (Table A1).

Fitbit-recorded behavioral data were available for all 27 patients with a total of
11.769 days (mean 435.9 ± 316.3 days/patient, median 357 days). The median ICD follow-
up period was 960 days (mean 991.3 ± 880.9 days/patient). The follow-up periods for each
patient are presented in Appendix B.1.1 (Table A2). The valid and invalid Fitbit days for
each patient are also available in Appendix B.1.1 (Tables A3–A5).

As previously mentioned, Fitbit-recorded behavioral markers for physical activity,
sleep, and heart rate were collected for the 27 patients. Mean daily physical activity
consisted of 7667.7 ± 3521.6 steps; 352.8 ± 89.8 min/patient in light activity duration;
43.4 ± 40.1 min/patient in fair activity duration; and 60.6 ± 33.0 min/patient in vigor-
ous activity duration. For heart rate, the Fitbits recorded a mean of 50.3 ± 6.7 beats/min
for the daily minimum, 69.3 ± 9.8 beats/min for the daily mean, a median mean of
66.2 ± 10.7 beats/min, a maximum mean of 124.9 ± 12.7 beats/min, and SD
mean 4.2 ± 0.9 beats/min. More details are available in Appendix B.1.2 (Tables A6–A8).

3.3. Inferential Analysis

Increases in light to fair physical activity duration and in heart rate resulted in an
increased risk probability of a VA event; conversely, increases in fair to vigorous physical ac-
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tivity duration and sleep duration that included the awake sleep type (i.e., asleep + awake)
resulted in a decreased risk probability of a VA event (Figures 5 and 6 and Table 5).
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of physical activity or sleep, and 10 extra beats per minute for the heart rate. The separate Fitbit
measurement periods of 1, 2, . . . 8 weeks are depicted on top. Below, informative estimations of the
odd ratios are represented. For all results, p < 0.05. Periods in the separate models (depicted in yellow
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ORs are depicted as bars: OR > 1 (red and upwards) and OR < 1 (green and downward). Bar height
corresponds to the distance between the OR and 1.
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Figure 6. Odd ratios obtained from the combined models for 1000 extra steps, 15 extra minutes
of physical activity or sleep, and 10 extra beats per minute for the heart rate. The combined Fitbit
measurement periods of 1, 1–2, . . . , 1–8 weeks are depicted on top. Below, informative estimations of
the odd ratios are represented. For all results, p < 0.05. All periods in the combined models (depicted
in yellow as sequences of weeks and stacked for each maximum duration of 1, 2, . . . , 8 weeks) are
followed by potential events (depicted at the end of the yellow sequences). ORs are depicted as
bars: OR > 1 (red and upwards) and OR < 1 (green and downwards). Bar height corresponds to the
distance between the OR and 1.
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Table 5. Summary of results from the conditional logistic regression models: odd ratios for a unit
increase in behavior.

Behavior Separate Models Combined Models Result

OR p Duration OR p Duration OR
Steps 0.987 <0.001 7 1.000 0.002 7–8 Inconclusive
Light 1.009 0.017 2–3 1.010 <0.001 4–5 OR > 1

Light + Fair 1.008 0.025 2 1.010 <0.001 5 OR > 1
Fair 0.001 <0.001 6 0.973 0.016 4–5, 8 OR < 1

Fair + Vig 0.260 <0.001 7 0.991 0.013 2–8 OR < 1
Vig 0.104 <0.001 7 0.988 0.024 2–6, 8 OR < 1

Asleep - - - - - - Inconclusive
Awake - - - 0.788 0.003 8 OR < 1
Restless - - - - - - Inconclusive

Asleep + Awake - - - 0.788 0.003 8 OR < 1
Awake + Restless - - - 0.791 0.003 8 OR < 1
Asleep + Restless - - - - - - Inconclusive

Sleep 0.001 <0.001 7 0.991 0.001 6–8 OR < 1
MinHR 1.107 0.046 1 1.119 <0.001 4–8 OR > 1

MeanHR 1.270 0.003 3 1.139 <0.001 8 OR > 1
MedianHR 1.244 0.016 3–4 1.140 <0.001 8 OR > 1

MaxHR 1.072 0.048 2 1.048 <0.001 4 OR > 1
SDHR - - - - - - Inconclusive

Period durations (in weeks) where odd ratios were at least as extreme as those reported are included. Color red
indicates OR > 1, green indicates OR < 1, and yellow indicates an inconclusive result. For all results, p < 0.05.

Spending more time in light to fair physical activity increases the risk of VA events. On
average, the odds increase by 9 to 20 percent when time spent in light-intensity physical ac-
tivity increases by 15 min per day, as measured over 1–3 weeks. Furthermore, 15 additional
minutes of light or fair activity led to an average odd increase of 9 to 12 percent, as measured
over 1–2 weeks.

However, fair to vigorous activity reduces the risk of VA events. The odds decreased
by 32 to 34 percent on average with every 15 extra minutes of fair activity per day, measured
over 4–8 weeks. The odds also decreased by 16 to 21 percent on average with every 15 extra
minutes of vigorous activity, measured over 2–8 weeks. Furthermore, 15 more minutes of
combined fair and vigorous activity reduced the odds by 12 to 16 percent, as measured
over 2–8 weeks.

A higher heart rate increases the risk of VA events. Ten extra beats per minute increase
the odds of a VA event as follows: minimum heart rate measured over one week doubled
the odds, mean heart rate measured over 2–3 weeks increased the odds four to ten times,
median heart rate measured over 2–4 weeks increased the odds four to sixteen times, and
maximum heart rate measured over two weeks doubled the odds of a VA event. More
findings are available in Appendix B.2 (Tables A9–A12).

4. Discussion
4.1. Key Findings Compared to Prior Work

This exploratory observational study assessed the relationship between behavioral
activity changes and the risk probability of potentially life-threatening VA events by com-
paring data from ICDs and Fitbit wearable activity trackers. We found that higher heart
rates and spending more time in light to fair physical activity increased the risk of imminent
VA events, whereas fair to vigorous activity reduced the risk. Few previous studies have
assessed the risk probability of VA events using technology-reported data from ICDs and
wearable activity trackers, especially with longer follow up times. By assessing the utility
of consumer-grade wearable activity trackers for early risk assessment of VA events, the
aim is to build towards the validation of interpreting significant behavior changes (activity
levels, sleep) as a vital clinical sign for early clinical intervention among patients at risk of
life-threatening heart arrhythmias.



J. Pers. Med. 2022, 12, 942 13 of 34

Our cohort was representative of an ICD population with regards to age and gender,
with a predominance of males. The results indicated that increased duration of light or
light + fair physical activity increased the risk probability of a VA. Conversely, a decrease
in fair, fair + vigorous, or vigorous activity levels increased the risk probability of a VA.
Our results therefore support a cardioprotective effect of exercise [45] and suggest that
there is an increased risk of developing arrhythmia with decreased activity levels. Few
previous studies have focused on the outcome of VA and its relationship to physical
activity measured by an ICD device [46]. For example, in one study among an all-female
cohort, ICD device-measured physical activity started to decline 16 days before a VA and
defibrillator shock [47]. Moreover, declining physical activity has been previously used as
a predictor for outcomes such as heart failure and mortality [46]. An inverse relationship
between activity level and cardiovascular events has been found using a wearable activity
tracker for activity monitoring in a cohort without a prior or concurrent cardiovascular
disease [48].

Based on our findings, future studies could measure light physical activity over
shorter time intervals (1–3 weeks). They may consider 9 percent as a baseline odd increase
for 15 extra minutes of light to fair activity. Fair and vigorous physical activity could be
measured between 2 and 8 weeks, where future studies may consider the average odds
decreases of 32% and 16% for every 15 extra minutes of these activity intensities. Heart
rate yielded significant effects within 1–3 weeks of monitoring. Ten extra beats per minute
increased the odds twofold on average. Heart rate could be monitored closest, as changes
associated with the minimum and maximum heart rates were visible in short periods (one
and two weeks, respectively).

This study does not report key findings related to sleep. This choice was made because
we noted that Fitbit may not always have reported sleep durations for the patients, as the
awake, sleeping, and non-wear times were accumulated in the dataset. Nevertheless, prior
literature has described an association between sleep behavior and physical activity for
patient-reported physical function, quality of life, and cognitive function, though often with
the limiting factor of self-reported sleep outcomes in homogeneous populations [49,50].
As there are interactions between physical activity and sleep throughout the day [51],
we suggest that sleep measurements should be included in future studies; the validation
of technology-reported sleep duration with self-reported sleep duration could ensure
realistic measurements.

4.2. Implications for Designing Systems for Ventricular Arrhythmia Risk Assessment Using
Wearable Activity Data

The results from this study and similar previous studies suggest that several critical
aspects may influence the quality of data collected and pose potential scaling issues when
leveraging consumer-wearable activity trackers for VA risk assessment among ICD patients.
Although the results are indicative, they suggest that consumer-wearable activity trackers
can be leveraged for VA event risk assessment, potentially enabling better (self-) manage-
ment of activities contributing to health (especially physical activity), and may ultimately
lead to improved health outcomes.

There are several implications for systems designed for risk prediction of VAs. First,
there is, on the one hand, the potential derived from using external research-grade wearable
activity trackers, which can capture high-granularity and high-accuracy data [52]. Such
devices have produced more accurate measures of daily activity compared to activity
tracking using accelerometers embedded in ICDs, which is limited to daily summaries of
physical activity [53]. On the other hand, the consumer-wearable data must be accurate
enough for the clinical purpose; in our case, the sleep datasets were deemed unreliable.
Second, in the larger context of current developments, comparisons between research-
grade and consumer-wearable activity trackers have shown strong validity, although the
validity ranged widely between devices [25]. Third, there is a need for consensus on
many levels regarding the use of wearable accelerometers, such as ways to manage the
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differences among proprietary algorithms for behavioral markers [15,16]. Finally, to identify
implications for technology and system design, exploration of the benefits of long-term use
of external activity trackers is eminent.

For patients who accept consumer-wearable activity trackers, the accuracy of the
predictive performance and the timeliness of notifications are critical for the success of
usage and collected data quality [54]. In an era of remote, decentralized, and increasingly
personalized patient care, our results indicate that physical activity measured through
consumer-wearable activity trackers can play a role in cardiovascular event risk assessment.
However, there is an evident need for more extensive, prospective, and well-designed
studies to quantify the utility of physical activity as a vital signal of clinical deterioration
and VA.

4.3. Strengths and Limitations

A strength of this study is that it is the first to examine the outcome of VA, using
raw data from ICDs and compare it to data from a consumer-wearable activity tracker.
Second, the activity tracker wear time was on average over one year, which far exceeds
the average wear time in previous studies [16]. Third, the wearable trackers measured
multiple daily behaviors continuously, allowing behaviors to unfold over extended periods
of time. Fourth, an accurate, user-friendly, and data collection-friendly device was used.
The selected device may have positively contributed to the data quality to a greater extent
possible than other consumer-wearable activity trackers [19,20].

This study has several limitations. First, the small sample size of unique patients
prevents a separate analysis based on age or gender and limits our confidence regarding
the generalizability of the findings to a larger population. The results are based on a
large amount of longitudinal data with several time epochs per individual patient. This
approach poses a risk of bias by carry-over, but arguably resulted in a conservative analysis
given that any association between exposure and outcome had to be robust to nullify
inverse or null associations during parts of the same time epoch. We allowed a permissive
significance threshold of α = 0.05 without adjustments for multiple tests, but also found
highly significant results (e.g., p < 0.001). These results would therefore remain visible with
statistically significant corrections up to 50×. Furthermore, patient-effect was adjusted for
by means of distinguishing each behavior-time-event data point as unique to the patient,
and no additional variables could be added, avoiding collinearity.

Second, the definitions of behaviors reported by Fitbit, specifically the thresholds in the
Fitbit activity recognition algorithm, are unknown for different physical activity intensities,
as well as for sleep. This limitation was accounted for by including cumulative variables for
physical intensities (e.g., light + fair) and sleep (e.g., asleep + awake). In addition, Fitbit did
not distinguish sedentary duration as time awake, sleeping, or non-wear. This limitation
made it difficult to delineate and thereby analyze these behaviors and may explain the
mean recorded sleep duration of under four hours. This limitation was accounted for by
excluding the sedentary duration from the analysis.

Third, feedback about behaviors (e.g., visualizations of the number of steps) and
observations reported to patients by the Fitbit device and associated application might
have influenced the behaviors under study. The patients may have changed their physical
activity patterns, or sleep patterns based on the feedback provided by the device.

Finally, the patient data did not contain baseline characteristics—such as concurrent
heart disease, presence of heart failure, medications, or comorbidities (e.g., hyperten-
sion or diabetes)—that may be confounders, influencing the behavioral, as well as the
VA outcomes.

5. Conclusions

In the light of the increased availability and reliability of consumer-wearable activity
trackers, this study explored the extent to which daily behaviors reported by such trackers
can assist in VA risk assessment in ICD patients. The results indicated that increased levels
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of activity are cardioprotective, decreasing the odds of experiencing a VA event. Future
studies using consumer-wearable activity trackers in a larger population can further refine
our findings to assess the risk of VA.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Term
Active Cumulative light, fair, and vigorous-intensity physical activity duration
Asleep Duration of sleep in the asleep type
Asleep + Awake Cumulative duration of sleep in the asleep and awake types
Asleep + Restless Cumulative duration of sleep in the asleep and restless types
Awake Duration of sleep of the awake type
Awake + Restless Cumulative duration of sleep in the awake and restless types
CA California
CRT Cardiac resynchronization therapy defibrillator
CSV Comma-separated value format
Fair Fair-intensity physical activity duration
Fair + Vig Cumulative fair and vigorous-intensity physical activity duration
FDA United States Food and Drug Administration
HR Heart rate
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ICD Implantable cardioverter-defibrillator
JSON JavaScript object notation format
Light Light-intensity physical activity duration
Light + Fair Cumulative light and fair-intensity physical activity duration
MaxHR Maximum heart rate
MeanHR Mean heart rate
MedianHR Median heart rate
MinHR Minimum heart rate
OR Odds ratio
Restless Duration of sleep in the restless type
SCAUT Self-, Collaborative- and AUTo-detection of signs and symptoms of deterioration
SD Standard deviation
SDHR Standard deviation of heart rate
Sed Sedentary duration
Sed + Light Cumulative sedentary and light-intensity physical activity duration
Sleep Duration of sleep
Unknown Duration of sleep of an unknown type
USA United States of America
VA Ventricular arrhythmia
Vig Vigorous-intensity physical activity duration
VF-VT Ventricular tachycardia into ventricular fibrillation
VT Ventricular tachycardia
VT1 Ventricular tachycardia in Zone 1
VT2 Ventricular tachycardia in Zone 2

Appendix A

Appendix A.1 Fitbit as a Consumer Wearable Activity Tracker

From a space of consumer wearable activity trackers with over 200 models [22], we
selected Fitbit for this study driven by three considerations: Fitbit embraces human factors
for extended wear, reports daily life behavioral markers accurately, and allows researchers
to collect data reliably. First, in past usability studies, participants found Fitbit “easy to use,
useful, and acceptable” and the most usable compared to other wearables [23,24]. Second,
Fitbit aims to motivate consumers to “reach health and fitness goals by tracking activity,
exercise, sleep, weight, and more” [25]. Previous studies measured the accuracy of Fitbit
consumer-friendly devices in reporting daily life behaviors of physical activity [26–28] and
sleep [29,30]. Furthermore, Fitbit was selected for Digital Health software pre-certification
by the US FDA [55]. Third, Fitbit reliably exposes behavioral markers for physical activity,
sleep, and heart rate multiple times per day (sufficient for longitudinal studies) in the JSON
and CSV formats, easy to read by both humans and machines. We selected the Fitbit Alta
HR wearable for our study, a lightweight activity tracker that can monitor physical activity,
sleep, and heart rate throughout the day.

Appendix A.2 Data Quality Validation

We evaluated the quality of our data under three types of scenarios; for each the data is
called ‘valid’ if its quality is above the threshold, and ‘invalid’ otherwise. The main results
of the paper are based on the third scenario type for days and all scenarios for weeks and
periods. The remainder of scenario types for days are elaborated on below.

A day was deemed valid if it did not include a VA event and:

• Scenario type 1: had a minimum of 18, 21, or 23 h of physical activity or sedentarism
(three separate scenarios).

• Scenario type 2: had a minimum of 15, 30, or 45 min of physical activity (three
separate scenarios).

• Scenario type 3: had a minimum of one, two, four, or eight hours of physical activity
between 8 a.m. and 8 p.m. (four separate scenarios).
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The scenario types permitted missing data for device battery charging and handling
(1), the presence of at least some physical activity (2), and extended sedentary behaviors
expected from older patients during the day (3). Contrary, the scenario types aimed at
reducing the impact of missing measurements by modeling the day as a period of 24 h [45].

A week was deemed valid if it did not include a VA event and had at least four, six, or
seven valid days (three separate scenarios). These thresholds were meant to ensure enough
days during the week while allowing for a few days without monitoring. These thresholds
are concordant with previous studies using Fitbit consumer wearables [31].

A 1–8-week period was deemed valid if it did not include a VA event and had at least
50%, 75%, or 100% valid weeks (three separate scenarios). We chose at least one week for
the analysis to monitor data representative of daily life since Fitbit’s accuracy of the active
minutes improves from one day to seven days [26].

Appendix B

Appendix B.1 Descriptive Analysis

Appendix B.1.1 Data Quality

This Appendix reports several time intervals measured in days, derived as follows:

• Event observation time interval: the difference between the patient’s earliest and latest
days with VA events.

• Fitbit observation time interval: the difference between the patient’s earliest and latest
days with any Fitbit monitoring.

• Total observation interval: the difference between the patient’s earliest and latest days
with either VA event, Fitbit monitoring, or both.

An example is visible in Figure A1.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 17 of 34 
 

 

The scenario types permitted missing data for device battery charging and handling 
(1), the presence of at least some physical activity (2), and extended sedentary behaviors 
expected from older patients during the day (3). Contrary, the scenario types aimed at 
reducing the impact of missing measurements by modeling the day as a period of 24 h 
[45]. 

A week was deemed valid if it did not include a VA event and had at least four, six, 
or seven valid days (three separate scenarios). These thresholds were meant to ensure 
enough days during the week while allowing for a few days without monitoring. These 
thresholds are concordant with previous studies using Fitbit consumer wearables [31]. 

A 1–8-week period was deemed valid if it did not include a VA event and had at least 
50%, 75%, or 100% valid weeks (three separate scenarios). We chose at least one week for 
the analysis to monitor data representative of daily life since Fitbit’s accuracy of the active 
minutes improves from one day to seven days [26]. 

Appendix B 
Appendix B.1. Descriptive Analysis 
Appendix B.1.1. Data Quality 

This Appendix reports several time intervals measured in days, derived as follows: 
• Event observation time interval: the difference between the patient’s earliest and lat-

est days with VA events. 
• Fitbit observation time interval: the difference between the patient’s earliest and lat-

est days with any Fitbit monitoring. 
• Total observation interval: the difference between the patient’s earliest and latest 

days with either VA event, Fitbit monitoring, or both. 
An example is visible in Figure A1. 

 
Figure A1. Observation time intervals. Fitbit-monitored days (green) and events (magenta) are de-
picted on a timeline. The first and last event days delimit the event observation time interval. The 
first and last Fitbit monitoring days delimit the Fitbit observation time interval. The first event or 
first Fitbit-monitored day (whichever occurs first) and the last event or last Fitbit-monitored day 
(whichever occurs last) delimit the total observation time interval. 

Figure A1. Observation time intervals. Fitbit-monitored days (green) and events (magenta) are
depicted on a timeline. The first and last event days delimit the event observation time interval. The
first and last Fitbit monitoring days delimit the Fitbit observation time interval. The first event or
first Fitbit-monitored day (whichever occurs first) and the last event or last Fitbit-monitored day
(whichever occurs last) delimit the total observation time interval.
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Table A1 illustrates the VA events by type. Table A2 shows the monitoring days for
the patients.

Table A1. VA events by type and monitoring days (16 patients). The remaining 11 patients (up to 27)
did not have VA events of the types included in this analysis.

Patient ID Device Type
Events of Type Event Observation

Time Interval (Days)VT VT1 VT2 VF-VT Total

1 ICD 0 6 0 0 6 4
4 ICD 1 0 0 0 1 1
5 ICD 1 0 0 5 6 419
7 ICD 0 0 0 1 1 1
9 ICD 0 0 0 1 1 1
11 ICD 0 2 0 3 5 1019
12 CRT-D 5 12 0 6 23 1034
13 CRT-D 2 0 0 3 5 642
14 ICD 0 0 0 1 1 1
15 ICD 0 0 0 6 6 2714
16 ICD 0 11 0 0 11 809
18 ICD 9 6 0 5 20 972
19 ICD 3 42 0 0 45 1718
20 ICD 35 90 0 2 127 869
22 ICD 0 0 0 1 1 1
25 ICD 0 3 0 0 3 829

Sum 56 172 0 34 262 11,034

Minimum 0 0 0 0 1 1

Quartile 1 0 0 0 0 1 1

Quartile 2 0 1 0 1 5.5 725.5

Quartile 3 2.3 7.3 0 3.5 13.3 983.8

Maximum 35 90 0 6 127 2714

Mean 3.5 10.8 0 2.13 16.4 689.6

SD 8.8 23.6 0 2.25 31.7 750.3

Table A2. Monitoring days for events, Fitbit, and overall (27 patients).

Patient ID Event Observation
Time Interval (Days)

Fitbit Observation
Time Interval (Days)

Total Observation
Time Interval (Days)

1 4 193 330
2 0 966 966
3 0 120 120
4 1 960 960
5 419 364 1331
6 0 79 79
7 1 65 3428
8 0 567 567
9 1 519 519
10 0 261 261
11 1019 60 1019
12 1034 647 1147
13 642 357 1725
14 1 317 449
15 2714 332 3352
16 809 980 1092
17 0 99 99
18 972 326 993
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Table A2. Cont.

Patient ID Event Observation
Time Interval (Days)

Fitbit Observation
Time Interval (Days)

Total Observation
Time Interval (Days)

19 1718 450 1718
20 869 801 1079
21 0 148 148
22 1 395 1739
23 0 98 98
24 0 136 136
25 829 842 1723
26 0 891 891
27 0 796 796

Sum 11,034 11,769 26,765

Minimum 0 60 79

Quartile 1 0 142 295.5

Quartile 2 1 357 960.0

Quartile 3 819 721.5 1239

Maximum 2714 980 3428

Mean 408.7 435.9 991.3

SD 666.4 316.3 880.9

Tables A3–A5 depict the Fitbit valid days for the three scenario types for days. For
scenario type one (Table A3), the thresholds did not change the numbers of valid days due
to the reporting of sedentary duration for any non-physically active duration. For scenario
types two and three, increasingly strict thresholds diminished the number of valid days for
some patients (Tables A4 and A5).

Table A3. Valid Fitbit days for day validation scenario type 1 (27 patients).

Patient ID Min. 18 h Min. 21 h Min. 23 h

Valid Days Valid Days Valid Days

1 122 122 122
2 0 0 0
3 0 0 0
4 819 819 819
5 57 57 57
6 0 0 0
7 37 37 37
8 0 0 0
9 185 185 185
10 0 0 0
11 45 45 45
12 543 543 543
13 105 105 105
14 306 306 306
15 5 5 5
16 890 890 890
17 0 0 0
18 218 218 218
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Table A3. Cont.

Patient ID Min. 18 h Min. 21 h Min. 23 h

Valid Days Valid Days Valid Days

19 263 263 263
20 167 167 167
21 0 0 0
22 329 329 329
23 0 0 0
24 0 0 0
25 51 51 51
26 0 0 0
27 0 0 0

Sum 4142 4142 4142

Minimum 0 0 0

Quartile 1 0 0 0

Quartile 2 45 45 45

Quartile 3 201.5 201.5 201.5

Maximum 890 890 890

Mean 153.4 153.4 153.4

SD 243.2 243.2 243.2

Table A4. Valid Fitbit days for day validation scenario type 2 (27 patients).

Patient ID Min. 15 min Min. 30 min Min. 45 min

Valid Days Valid Days Valid Days

1 122 119 116
2 866 866 865
3 50 50 50
4 819 805 796
5 57 53 51
6 53 52 52
7 37 35 35
8 448 448 446
9 185 182 176
10 211 211 210
11 45 44 42
12 543 543 540
13 105 104 102
14 306 303 303
15 5 5 5
16 890 890 890
17 96 96 96
18 218 217 212
19 263 254 243
20 167 165 161
21 145 145 145
22 329 328 328
23 88 88 86
24 132 132 131
25 51 50 47
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Table A4. Cont.

Patient ID Min. 15 min Min. 30 min Min. 45 min

Valid Days Valid Days Valid Days

26 794 793 788
27 652 650 642

Sum 7677 7628 7558

Minimum 5 5 5

Quartile 1 72.5 70.5 69

Quartile 2 167 165 161

Quartile 3 388.5 388 387

Maximum 890 890 890

Mean 284.3 282.5 279.9

SD 284.3 283.6 282.7

Table A5. Valid Fitbit days for day validation scenario type 3 (27 patients).

Patient ID Min. 1 h Min. 2 h Min. 4 h Min. 8 h

Valid Days Valid Days Valid Days Valid Days

1 115 112 96 13
2 864 843 468 0
3 48 47 31 0
4 787 740 531 72
5 50 44 33 4
6 47 44 22 0
7 32 31 23 10
8 442 425 286 0
9 166 157 148 60
10 204 170 28 0
11 42 36 28 1
12 537 505 278 2
13 101 92 33 0
14 303 302 250 5
15 4 4 3 0
16 890 890 883 606
17 96 89 15 0
18 207 176 52 2
19 238 222 180 29
20 159 152 135 27
21 143 139 54 0
22 327 324 306 128
23 80 59 3 0
24 128 74 5 0
25 46 44 39 1
26 769 645 148 0
27 611 407 8 0

Sum 7436 6773 4086 960

Minimum 4 4 3 0

Quartile 1 65 53 25.5 0

Quartile 2 159 152 52 1

Quartile 3 384.5 365.5 215 11.5

Maximum 890 890 883 606

Mean 275.4 250.9 151.3 35.6

SD 280.0 262.3 205.2 117.7
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Appendix B.1.2 Behavioral Markers

Tables A6–A8 illustrate the mean Fitbit behavioral markers for physical activity, sleep,
and heart rate, respectively.

Table A6. Mean Fitbit steps and durations of physical activity intensities over the entire Fitbit
observation time (27 patients).

Patient ID Steps Sed Sed + Light Light Light + Fair Fair Fair + Vig Vig Active

1 8178.3 1060.4 1356.7 296.3 306.1 32.4 88.3 81.6 365.0
2 6677.4 828.1 1364.0 537.1 538.8 21.0 59.8 58.3 577.6
3 14,322.4 746.6 1136.4 390.0 457.2 88.5 223.8 151.2 597.2
4 4743.4 952.8 1243.3 292.7 307.4 32.3 73.9 56.4 351.8
5 6641.7 1094.7 1370.3 275.8 281.1 23.1 60.7 57.6 319.5
6 7019.0 968.8 1239.3 270.8 379.7 122.5 193.0 81.5 456.7
7 10,293.7 909.1 1373.3 464.6 465.4 15.0 70.6 72.4 510.4
8 16,683.7 563.8 947.1 444.3 628.3 198.6 339.0 148.0 769.7
9 6269.9 737.3 1171.1 437.0 446.5 34.4 88.1 76.7 510.3
10 4256.0 775.0 1104.1 330.6 339.2 31.0 58.9 47.9 371.7
11 4402.0 870.7 1212.4 348.3 349.0 15.0 30.0 33.0 356.3
12 3377.2 851.3 1118.7 275.1 282.3 23.6 45.8 38.1 310.4
13 2879.0 1085.9 1313.4 228.0 228.1 15.0 21.0 20.0 231.0
14 9990.4 942.5 1222.0 280.6 294.7 31.5 81.6 67.2 356.4
15 5297.6 1018.4 1351.4 333.0 333.0 0.0 15.0 15.0 336.0
16 14,794.4 762.7 1317.4 554.8 582.4 40.1 121.2 93.7 672.2
17 8528.1 938.3 1372.3 434.1 440.0 21.1 67.8 62.5 494.1
18 4347.6 969.4 1195.7 227.2 232.5 27.2 42.2 33.0 246.5
19 5126.9 794.0 1111.8 321.2 325.6 28.2 41.6 34.7 342.0
20 5763.7 943.0 1368.3 425.5 426.5 20.0 39.3 38.5 443.2
21 7978.4 810.3 1266.1 459.2 470.4 24.2 52.3 41.6 507.9
22 11,148.7 945.2 1296.2 351.1 392.0 53.1 136.8 96.5 483.7
23 6012.7 1058.1 1351.7 294.4 320.1 52.5 79.4 48.9 354.4
24 9588.3 1037.7 1325.3 287.6 347.3 69.7 110.0 51.1 391.8
25 8115.4 1064.1 1391.4 327.4 330.3 25.0 41.5 37.1 355.0
26 9570.8 962.3 1344.3 382.2 407.9 52.3 83.7 55.4 455.4
27 5021.6 1070.5 1327.9 257.8 273.3 31.3 55.9 39.5 302.6

Minimum 2879.0 563.8 947.1 227.2 228.1 0.0 15.0 15.0 231.0

Quartile 1 5074.3 819.2 1204.1 284.1 306.8 22.1 44.0 38.3 346.9

Quartile 2 6677.4 943.0 1313.4 330.6 347.3 31.0 67.8 55.4 371.7

Quartile 3 9579.6 1028.1 1354.2 429.8 443.3 46.2 88.2 74.6 501.0

Maximum 166,83.7 1094.7 1391.4 554.8 628.3 198.6 339.0 151.2 769.7

Mean 7667.7 917.1 1266.4 352.8 377.2 43.4 86.0 60.6 424.8

SD 3521.6 132.0 111.2 89.8 101.6 40.1 69.6 33.0 127.2

Table A7. Mean Fitbit sleep duration over the entire Fitbit observation time (27 patients).

Patient ID Asleep Awake Restless Asleep + Awake Awake + Restless Asleep + Restless Sleep

1 276.3 9.0 19.2 280.8 24.6 292.3 296.8
2 186.4 6.6 10.8 192.3 16.5 196.7 199.8
3 294.7 3.0 10.5 295.8 11.5 305.2 306.2
4 290.6 4.7 13.2 292.4 17.1 302.0 303.1
5 152.6 4.0 9.1 155.7 12.2 161.7 164.8
6 124.0 4.0 10.0 125.3 11.6 132.3 133.7
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Table A7. Cont.

Patient ID Asleep Awake Restless Asleep + Awake Awake + Restless Asleep + Restless Sleep

7 180.0 4.7 10.0 183.5 13.5 190.0 193.5
8 245.8 5.6 11.0 250.2 15.4 256.7 261.0
9 264.4 4.5 20.9 268.2 24.6 285.1 289.4
10 420.9 8.0 21.2 426.6 27.0 441.9 447.6
11 231.1 9.0 21.7 238.9 29.7 252.2 260.1
12 370.3 11.1 35.5 380.8 46.2 405.2 414.9
13 171.0 4.0 11.4 172.4 12.9 181.4 182.8
14 206.4 4.9 9.5 208.6 11.8 214.4 216.6
15 102.3 1.0 4.5 102.5 4.8 106.8 107.0
16 109.5 2.6 9.9 110.9 11.4 119.2 119.1
17 78.5 1.7 4.8 80.0 6.3 83.3 82.0
18 288.6 2.5 19.7 290.0 21.1 308.3 309.7
19 353.9 5.8 15.0 357.7 18.9 368.4 372.2
20 112.4 2.3 9.1 113.2 9.9 121.1 121.1
21 113.8 4.0 15.3 115.9 17.3 128.6 130.6
22 159.3 3.6 10.2 161.8 12.6 169.5 166.9
23 130.7 2.3 8.1 131.8 9.2 138.8 139.9
24 127.0 2.3 5.4 127.7 6.1 132.4 126.5
25 101.3 2.5 7.4 101.8 8.1 106.5 107.0
26 138.1 2.3 10.7 138.9 11.7 148.1 146.8
27 214.1 5.7 12.7 216.6 15.4 225.3 226.1

Minimum 78.5 1.0 4.5 80.0 4.8 83.3 82.0

Quartile 1 125.5 2.5 9.3 126.5 11.5 132.4 132.2

Quartile 2 180.0 4.0 10.7 183.5 12.9 190.0 193.5

Quartile 3 270.4 5.7 15.2 274.5 18.1 288.7 293.1

Maximum 420.9 11.1 35.5 426.6 46.2 441.9 447.6

Mean 201.6 4.5 12.8 204.5 15.8 213.8 215.8

SD 92.4 2.5 6.7 94.0 8.8 97.5 99.6

Table A8. Mean Fitbit heart rate over the entire Fitbit observation time (27 patients).

Patient ID MinHR MeanHR MedianHR MaxHR SDHR

1 45.1 57.2 50.9 115.3 4.2
2 62.3 94.0 94.5 134.8 3.7
3 49.9 73.7 69.1 129.2 5.8
4 51.6 69.1 65.8 125.0 4.8
5 46.7 65.0 61.1 116.7 5.4
6 43.5 65.4 58.6 123.5 5.8
7 56.4 85.5 84.7 135.1 4.1
8 54.8 84.0 81.1 148.1 4.7
9 58.2 81.1 78.2 127.3 4.2
10 43.3 61.8 58.7 122.5 3.8
11 48.0 63.6 62.5 102.9 2.8
12 50.9 67.1 63.8 120.0 4.2
13 53.0 63.1 60.4 111.4 3.6
14 39.6 54.7 51.7 115.8 3.9
15 45.2 63.6 63.0 102.0 2.9
16 53.2 75.6 72.1 152.5 5.1
17 48.4 69.4 65.7 126.9 4.5
18 43.5 57.0 55.4 111.1 3.8
19 52.7 65.8 61.3 114.0 3.5
20 68.0 82.9 81.2 118.7 2.6
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Table A8. Cont.

Patient ID MinHR MeanHR MedianHR MaxHR SDHR

21 60.3 77.6 75.7 131.0 3.2
22 49.7 69.2 63.4 132.0 4.8
23 47.7 67.5 63.8 136.8 4.0
24 39.5 55.6 50.4 144.8 6.1
25 47.5 63.7 61.3 116.6 4.1
26 49.9 71.2 69.1 137.0 3.9
27 49.5 65.6 63.7 120.8 3.8

Minimum 39.5 54.7 50.4 102.0 2.6

Quartile 1 46.0 63.6 60.8 116.2 3.8

Quartile 2 49.7 67.1 63.7 123.5 4.1

Quartile 3 53.1 74.7 70.6 133.4 4.8

Maximum 68.0 94.0 94.5 152.5 6.1

Mean 50.3 69.3 66.2 124.9 4.2

SD 6.7 9.8 10.7 12.7 0.9

Appendix B.1.3 Fitbit Wear and VA Events: Examples of Patient Behavioral Patterns

Patient 4 (male, 55-year-old, device type ICD) were monitored over a period of
960 days (Table A2). He experienced one VA event of type VT (Table A1). He is a com-
pliant user with 960 Fitbit days (Table A2) from which up to 819 are valid Fitbit days
(Tables A3–A5). Patient 4 belonged to the lower half of physical activity levels of our
sample (Table A6), had sleep monitored with higher compliance than average (Table A7),
and did not experience extreme Fitbit-reported heart rates (Table A8). He self-reported that
he used the Fitbit device to learn that “heart disease increases one’s average resting heart rate”
and that “activity improves one’s average heart rate” [20]. He set exercise goals for walking and
was keen on monitoring his heart rate while resting; reporting that “it makes a difference
whether [his] heart rate is 70 or 60 beats per minute when resting” [20].

The Fitbit activity tracker for Patient 4 recorded only a few days of sleep before a
VA. The daily heart rate kept increasing for two weeks before the event. Then, right after
the event and for three months, Fitbit recorded daily sleep durations almost every day.
Then, Fitbit recorded sleep more sporadically, as before the event. Figure A2 shows the
measurement period in extenso for Patient 4.

Upon experiencing the VA event, Patient 4 may have decided to extend the wear of his
activity tracker during the awake sedentary time (as self-reported) and during the sleeping
time to monitor his heart rate in expectation of a future VA event. The absence of a second
VA event within three months may have contributed to his effort’s decay.

Patient 12 (male, 66-year-old, device type CRT-D) was monitored over a period of
1147 days (Table A2). He experienced 23 VA events, five of type VT, 12 of type VT1, and
six of type VF-VT (Table A1) over a period of 1034 days (Table A2). He is also a compliant
Fitbit user with 647 days (Table A2) from which up to 543 valid days (Tables A3–A5). His
physical activity was below average (Table A6), his sleep was above average (Table A7),
and his Fitbit-reported heart rate was not extreme (Table A8). However, he suffered from
disease-related anxiety, was very alert to bodily signs, and had difficulty sleeping: “as soon
as there is even a little thing in these zones [in his chest region], and I would even say just one,
like a sprain, I get nervous” [20]. He self-reported that Fitbit helped him feel safe: “now I get
certainty. Is something wrong or not” [20], but he also evoked doubts about its usefulness
after he and his wife saw it overestimate sleep: “we could not make the numbers fit because I
had been awake a lot” [20].
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This patient wore the device compliantly for one year, measuring physical activity
and sleep. The Fitbit tracker measured sleep for about nine months before the initial VA
event. Right before the event, the heart rate increased for about one week. For three months
after the initial VA event, the patient wore the tracker with interruptions. A series of other
VA events led to a similar interruption of wear. His steps decreased in the time intervals
following VA events. Figure A3 shows the measurement period in extenso for Patient 12.

After experiencing the first VA event, the compliance of Patient 12 decreased with
interrupted wear time lasting several weeks and he performed fewer steps, potentially
recovering from the event. However, before the second event, reduced compliance was
observed again, with partial Fitbit wear during the day. The change in wear indicates that
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his behaviors or physical state may have changed (e.g., he started a new type of activity
that may have contributed to the VA event).
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Patient 18 (male, 47-year-old, device type ICD) was monitored over a period of
993 days (Table A2). He experienced 20 VA events, nine of type VT, six of type VT1,
and five of type VF-VT (Table A1) over a period of 972 days (Table A2). He wore the Fitbit
for 326 days (Table A2) of which up to 218 were valid (Tables A3–A5). He was less active
than average (Table A6), measured more sleep than average (Table A7), and had a lower
heart rate than average (Table A8). He only evoked doubts about using the Fitbit device,
indicating that “sensing is more useful than activity data” [20], but was otherwise compliant
in wearing it.

We first observed a decrease in wear after a series of VA events for Patient 18. He was
compliant in the first three months when both physical activity and sleep were measured.
Then, wear continued for one month, but almost without sleep. During this period, an
event occurred. After the event, Fitbit recorded one month of similar compliance and three
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months of reduced compliance. A second event was followed by increased compliance for
less than two months. Finally, the third series of events along 15–20 days coincided with
the cessation of compliant wear. Figure A4 shows the measurement period in extenso for
Patient 18.

Before the event, the wearing pattern changed, indicating that Patient 18 may have
begun a new activity or entered a physical state that reduced wear at night or natural
sleep and culminated in a VA. One month after the event, the wearing pattern continued,
indicating that the patient may have continued daily life without changing his activity
or state that contributed to the first event. Towards the end of the monitoring period,
the patient may have experienced too many events or lost faith in using the device for
self-monitoring.
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Appendix B.2 Inferential Analysis

Tables A9–A11 illustrate the results across all conditional logistic regression mod-
els for the three validation scenario types for days. Table A12 summarizes the results
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across all validation scenario types for days, in agreement with the results reported in the
main paper. Additionally, Table A13 presents the results by period duration in the third
validation scenario.

Table A9. Results across all conditional logistic regression models in validation scenario type 1.

Behavior
Separate Combined Result

OR p OR p OR
Steps - - 1.000 <0.001 Inconclusive
Sed 1 - - 1.004 0.003 OR > 1

Sed + Light 1 - - 1.004 0.003 OR > 1
Light 1.013 0.008 1.004 0.003 OR > 1

Light + Fair 1.012 0.012 1.008 <0.001 OR > 1
Fair - - - - Inconclusive

Fair + Vig - - - - Inconclusive
Vig - - - - Inconclusive

Asleep - - - - Inconclusive
Awake - - 0.800 0.001 OR < 1
Restless - - - - Inconclusive

Asleep + Awake - - 0.800 0.001 OR < 1
Awake + Restless - - 0.802 0.001 OR < 1
Asleep + Restless - - - - Inconclusive

Sleep 0.014 0.023 0.991 <0.001 OR < 1
MinHR 2.307 0.003 1.119 <0.001 OR > 1

MeanHR 1.591 0.002 1.126 <0.001 OR > 1
MedianHR 1.605 0.010 1.129 <0.001 OR > 1

MaxHR 33.909 <0.001 1.045 <0.001 OR > 1
SDHR - - - - Inconclusive

1 Durations including sedentary may include non-wear time—discarded from the main results. Color red depicts
OR > 1, green depicts OR < 1, and yellow depicts an inconclusive result. All results p < 0.05.

Table A10. Results across all conditional logistic regression models in validation scenario type 2.

Behavior
Separate Combined Result

OR p OR p OR
Steps - - 1.000 <0.001 Inconclusive
Sed 1 - - 1.004 0.007 OR > 1

Sed + Light 1 - - 1.004 0.006 OR > 1
Light 1.013 0.014 1.009 <0.001 OR > 1

Light + Fair 1.012 0.019 1.008 <0.001 OR > 1
Fair - - - - Inconclusive

Fair + Vig - - - - Inconclusive
Vig - - - - Inconclusive

Asleep - - - - Inconclusive
Awake - - 0.815 0.003 OR < 1
Restless - - - - Inconclusive

Asleep + Awake - - 0.802 0.001 OR < 1
Awake + Restless - - 0.817 0.001 OR < 1
Asleep + Restless - - - - Inconclusive

Sleep 0.014 0.023 0.991 <0.001 OR < 1
MinHR 2.307 0.003 1.119 <0.001 OR > 1

MeanHR 1.591 0.002 1.126 <0.001 OR > 1
MedianHR 1.605 0.010 1.129 <0.001 OR > 1

MaxHR 33.909 <0.001 1.046 <0.001 OR > 1
SDHR - - - - Inconclusive

1 Durations including sedentary may include non-wear time—discarded from the main results. Color red depicts
OR > 1, green depicts OR < 1, and yellow depicts an inconclusive result. All results p < 0.05.
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Table A11. Results across all conditional logistic regression models in validation scenario type 3.

Behavior
Separate Combined Result

OR p OR p OR
Steps 0.987 <0.001 1.000 0.002 Inconclusive
Sed 1 0.065 <0.001 1.004 0.007 Inconclusive

Sed + Light 1 0.063 0.012 1.004 0.006 Inconclusive
Light 1.009 0.017 1.010 <0.001 OR > 1

Light + Fair 1.008 0.025 1.010 <0.001 OR > 1
Fair 0.001 <0.001 0.973 0.016 OR < 1

Fair + Vig 0.260 <0.001 0.991 0.013 OR < 1
Vig 0.104 <0.001 0.988 0.024 OR < 1

Asleep - - - - Inconclusive
Awake - - 0.788 0.003 OR < 1
Restless - - - - Inconclusive

Asleep + Awake - - 0.788 0.003 OR < 1
Awake + Restless - - 0.791 0.003 OR < 1
Asleep + Restless - - - - Inconclusive

Sleep 0.001 <0.001 0.991 0.001 OR < 1
MinHR 1.107 0.046 1.119 <0.001 OR > 1

MeanHR 1.270 0.003 1.139 <0.001 OR > 1
MedianHR 1.244 0.016 1.140 <0.001 OR > 1

MaxHR 1.072 0.048 1.048 <0.001 OR > 1
SDHR - - - - Inconclusive

1 Durations including sedentary may include non-wear time—discarded from the main results. Color red depicts
OR > 1, green depicts OR < 1, and yellow depicts an inconclusive result. All results p < 0.05.

Table A12. Results across all conditional logistic regression models in all validation scenario types.

Behavior
Scenario Type 1 Scenario Type 2 Scenario Type 3 Result

OR OR OR OR
Steps Inconclusive Inconclusive Inconclusive Inconclusive
Sed 1 OR > 1 OR > 1 Inconclusive OR > 1

Sed + Light 1 OR > 1 OR > 1 Inconclusive OR > 1
Light OR > 1 OR > 1 OR > 1 OR > 1

Light + Fair OR > 1 OR > 1 OR > 1 OR > 1
Fair Inconclusive Inconclusive OR < 1 OR < 1

Fair + Vig Inconclusive Inconclusive OR < 1 OR < 1
Vig Inconclusive Inconclusive OR < 1 OR < 1

Asleep Inconclusive Inconclusive Inconclusive Inconclusive
Awake OR < 1 OR < 1 OR < 1 OR < 1
Restless Inconclusive Inconclusive Inconclusive Inconclusive

Asleep + Awake OR < 1 OR < 1 OR < 1 OR < 1
Awake + Restless OR < 1 OR < 1 OR < 1 OR < 1
Asleep + Restless Inconclusive Inconclusive Inconclusive Inconclusive

Sleep OR < 1 OR < 1 OR < 1 OR < 1
MeanHR OR > 1 OR > 1 OR > 1 OR > 1

MedianHR OR > 1 OR > 1 OR > 1 OR > 1
MinHR OR > 1 OR > 1 OR > 1 OR > 1
MaxHR OR > 1 OR > 1 OR > 1 OR > 1
SDHR Inconclusive Inconclusive Inconclusive Inconclusive

1 Durations including sedentary may include non-wear time—discarded from the main results. Color red depicts
OR > 1, green depicts OR < 1, and yellow depicts an inconclusive result. All results p < 0.05.
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Table A13. Results by period duration across all conditional logistic regression models in validation
scenario type 3.

Behavior Duration
Separate Combined

OR p Model OR p Model

Steps

4 weeks - - - 1.000 0.036 2
5 weeks - - - 1.000 0.019 2
6 weeks 0.997 <0.001 2 1.000 0.008 2
7 weeks 0.987 <0.001 2 1.000 0.002 2
8 weeks - - - 1.000 0.002 2

Light

1 weeks 1.006 0.033 2 1.006 0.033 2
2 weeks 1.009 0.017 3 1.008 0.001 2
3 weeks 1.013 0.038 3 1.009 <0.001 3
4 weeks - - - 1.010 <0.001 1
5 weeks - - - 1.010 <0.001 1
6 weeks - - - 1.008 <0.001 3
7 weeks - - - 1.009 <0.001 3
8 weeks - - - 1.009 <0.001 3

Light + Fair

1 weeks 1.006 0.048 2 1.006 0.048 2
2 weeks 1.008 0.025 2 1.008 0.002 2
3 weeks - - - 1.008 <0.001 2
4 weeks - - - 1.009 <0.001 1
5 weeks - - - 1.010 <0.001 1
6 weeks - - - 1.008 <0.001 3
7 weeks 1.076 0.015 1 1.008 <0.001 3
8 weeks - - - 1.008 <0.001 3

Fair

4 weeks - - - 0.972 0.033 1
5 weeks - - - 0.972 0.022 1
6 weeks 0.001 <0.001 2 0.974 0.021 1
7 weeks 0.028 <0.001 2 0.975 0.021 1
8 weeks - - - 0.973 0.016 1

Fair + Vig

2 weeks - - - 0.988 0.042 1
3 weeks - - - 0.989 0.029 1
4 weeks - - - 0.990 0.021 1
5 weeks - - - 0.990 0.015 1
6 weeks 0.819 <0.001 2 0.991 0.017 1
7 weeks 0.260 <0.001 2 0.991 0.019 1
8 weeks - - - 0.991 0.013 1

Vig

2 weeks - - - 0.984 0.044 3
3 weeks - - - 0.986 0.036 3
4 weeks - - - 0.987 0.029 1
5 weeks - - - 0.987 0.025 1
6 weeks - - - 0.988 0.028 1
7 weeks 0.104 <0.001 2 0.989 0.034 1
8 weeks - - - 0.988 0.024 1

Awake

3 weeks - - - 0.831 0.031 2
4 weeks - - - 0.823 0.019 3
5 weeks - - - 0.813 0.011 3
6 weeks - - - 0.803 0.007 3
7 weeks - - - 0.793 0.004 3
8 weeks - - - 0.788 0.003 3

Asleep + Awake

3 weeks - - - 0.831 0.031 2
4 weeks - - - 0.823 0.019 3
5 weeks - - - 0.813 0.011 3
6 weeks - - - 0.803 0.007 3
7 weeks - - - 0.793 0.004 3
8 weeks - - - 0.788 0.003 3
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Table A13. Cont.

Behavior Duration
Separate Combined

OR p Model OR p Model

Awake + Restless

3 weeks - - - 0.834 0.031 2
4 weeks - - - 0.826 0.019 3
5 weeks - - - 0.816 0.011 3
6 weeks - - - 0.806 0.007 3
7 weeks - - - 0.796 0.004 3
8 weeks - - - 0.791 0.003 3

Sleep

3 weeks - - - 0.993 0.025 2
4 weeks - - - 0.993 0.013 1
5 weeks - - - 0.992 0.007 3
6 weeks - - - 0.991 0.004 3
7 weeks 0.001 <0.001 2 0.991 0.002 3
8 weeks - - - 0.991 0.001 3

MinHR

1 weeks 1.107 0.046 2 1.107 0.046 2
2 weeks - - - 1.108 0.011 1
3 weeks - - - 1.114 0.003 1
4 weeks - - - 1.119 0.001 3
5 weeks - - - 1.119 <0.001 3
6 weeks - - - 1.118 <0.001 3
7 weeks - - - 1.116 <0.001 3
8 weeks - - - 1.116 <0.001 3

MeanHR

2 weeks 1.165 0.036 3 1.104 0.015 2
3 weeks 1.270 0.031 2 1.122 0.002 2
4 weeks - - - 1.128 <0.001 3
5 weeks - - - 1.133 <0.001 3
6 weeks - - - 1.136 <0.001 3
7 weeks - - - 1.137 <0.001 3
8 weeks - - - 1.139 <0.001 3

MedianHR

2 weeks 1.171 0.016 3 1.111 0.003 1
3 weeks 1.244 0.016 3 1.125 <0.001 1
4 weeks 1.322 0.040 3 1.131 <0.001 3
5 weeks - - - 1.134 <0.001 3
6 weeks - - - 1.136 <0.001 3
7 weeks - - - 1.137 <0.001 3
8 weeks - - - 1.140 <0.001 3

MaxHR

2 weeks 1.072 0.048 2 1.040 0.006 2
3 weeks - - - 1.047 0.001 2
4 weeks - - - 1.048 <0.001 2
5 weeks - - - 1.038 <0.001 2
6 weeks - - - 1.041 <0.001 2
7 weeks - - - 1.044 <0.001 2
8 weeks - - - 1.045 <0.001 2

Color blue depicts the lowest P-value found, green depicts the corresponding OR < 1, red depicts the corresponding
OR > 1, and yellow depicts the corresponding inconclusive OR. All results p < 0.05. Durations without statistically
significant results were excluded.
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