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How do people learn the meanings of the words they 
encounter from their exposure to language? More point-
edly, how is it that we seem to be able to pick up the mean-
ings of new words easily, without being told what they 
mean? Landauer and Dumais (1997) offered an answer to 
the question with latent semantic analysis (LSA).

LSA is a computational model that derives vector-based 
semantic representations for words from large corpuses of 
text. A word’s semantic representation in LSA is a vector 
describing how often the word occurs in, potentially, thou-
sands of contexts or documents. The basic idea behind the 
model is that words that have similar meanings will tend 
to appear in the same or similar contexts (see Burgess, 
Livesay, & Lund, 1998, for a model that works on similar 
principles). For example, key words appearing in docu-
ments about automobiles tend not to appear in documents 
about telephones. The semantic similarity between words, 
then, reflects the amount of contextual overlap between 
them.

Semantic similarity between two words goes beyond 
their co-occurring in the same document or context (i.e., 
raw co-occurrences), however. The terms general and ad-
miral, for example, would seem to have a clear semantic 
similarity by virtue of the fact that they are both military 
ranks. Despite any similarity the terms may have in se-
mantic space, however, they may rarely occur in the same 
document; admirals are specific to the navy, whereas 
generals exist in the other military branches. If the two 
rarely occur together in the same document, a semantic 
representation characterized by the extent to which they 

appear in the same contexts would fail to reveal the extent 
of their similarity. To uncover general and admiral’s latent 
semantic relationship, the system requires a mechanism 
that can exploit higher order associations between the two 
terms. For example, the semantic system needs to figure 
out that general and admiral are related because, even if 
the terms rarely occur in the same documents, they ap-
pear in contexts that share terms associating them, such 
as military, commanding, and officer.

How LSA Creates Vector Representations 
for Words

Landauer, Foltz, and Laham (1998; see also Landauer 
& Dumais, 1997) provide detailed accounts on how LSA 
forms semantic representations for words. Briefly, how-
ever, LSA starts by entering thousands of documents into 
its memory. For each document (which could be an ency-
clopaedia entry or a newspaper article), it tabulates the 
number of times each word appears in each document. To 
store word frequency information over several thousand 
documents, a term � document matrix is formed in which 
each word is described as a vector, the elements of which 
contain the number of times the word occurred in each 
document. One can think of each word’s vector as a point 
in d-dimensional space, where d is the number of docu-
ments, or contexts, in the training corpus. 

LSA uncovers the latent higher order information by per-
forming two operations on the term � document matrix. 
First, during a preprocessing stage, raw cell frequencies of 
a term are transformed by the formula ln(frequency � 1) 
and are divided by the entropy of the term across all the 
documents in which the term occurs. Entropy is calculated 
as �Σ p ln p, where p is the transformed frequency of a 
term in one document, divided by the total transformed 
frequency of a term across all documents. According to 
Landauer and Dumais (1997), the logarithmic transforma-
tion “approximates the standard empirical growth func-
tions of simple learning” (p. 216). In weighting an entry 
by its entropy, each cell also provides information about 
how strongly a term is anchored to a context.
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 After preprocessing, a statistical technique called sin-
gular value decomposition (SVD) is applied to the term � 
document matrix. SVD is a form of factor analysis. With 
it, a rectangular matrix is decomposed into three com-
ponent matrices. When the three matrices are multiplied 
together, the original (transformed) matrix is nearly per-
fectly reconstructed.

The key to constructing semantic representations in 
LSA lies in one of the component matrices—a diagonal 
matrix containing d singular values. The singular values 
express how important each of the d dimensions is in re-
creating the original term � document matrix. The greater 
the magnitude of a singular value, the more variance in the 
original matrix it captures and, hence, the more important 
the dimension is to the reconstruction. 

The next step for LSA is dimension reduction, wherein 
only a handful (e.g., 200) of the highest singular values are 
retained during the reconstruction, whereas the remaining 
ones are ignored (i.e., set to zero). Now all the terms must 
be differentiated on only 200 dimensions. Dimension re-
duction collapses the component matrices in such a way 
that the system loses some of its ability to discriminate 
among documents that share terms and among terms that 
are shared across documents. When reconstruction of the 
original matrix is attempted, the reduced dimensionality 
can cause terms that never occurred in the same docu-
ments to appear related. For example, general and admi-
ral may never appear in the same document; however, if 
their respective documents share several words (e.g., mili-
tary, officer, etc.) and the model has trouble distinguish-
ing the documents, LSA conflates the terms general and 
admiral.

How well does the technique work? LSA’s power has 
been demonstrated in a variety of domains. Thus far, it has 
been able to perform as well as a foreign student on the 
Test of English as a Foreign Language (TOEFL; Landauer 
& Dumais, 1997), classify documents in a meaning-based 
query system (Dumais, 1994), match reviewers to sub-
mitted papers (Dumais & Nielsen, 1992), and predict 
some semantic priming data collected in the laboratory 
(Landauer et al., 1998). 

Landauer and Dumais (1997) were quick to point out 
that they did not believe that the brain performed SVD on 
co-occurrence information stored in memory. They did, 
however, make two fairly strong theoretical claims. First, 
they claimed that whatever psychological mechanisms are 
involved in creating semantic representations, they do so 
by reprocessing input to memory and that the resultant se-
mantic representations are similar to what is accomplished 
by SVD. Second, as was discussed above, they claimed 
that semantic representations are formed from the higher 
order associations that exist between words. In what fol-
lows, I will describe a basic process model that uncovers 
higher order associations between words to form seman-
tic representations for them. Instead of using SVD or any 
other dimension reduction technique, however, I will use 
a retrieval mechanism borrowed from a well-known ac-
count of episodic memory.

THE SEMANTICS MODEL

The model is an example of a global-matching model 
of memory. Global matching refers to the way in which 
information about a probe/cue stimulus is extracted from 
memory. Specifically, retrieving an item entails summing 
over the reactions of memory traces after they have been 
presented with a probe stimulus.

The model borrows its basic architecture from  MINERVA 2 
(Hintzman, 1984, 1986, 1988). MINERVA 2 was designed 
to explain memory phenomena in episodic memory tasks; 
this article applies the architecture to semantic memory. 
To the extent that the application is successful, it suggests 
that the primary distinction between episodic and seman-
tic memory is not architectural but a reflection of the type 
of data that are stored. 

MINERVA 2 postulates that every time one encounters 
a word, its representation is placed in lexical memory. Part 
of the word’s representation uniquely defines the context 
in which the word was encountered. The term context is 
vague and, in general, refers to several circumstances in 
which a reader or listener encounters or processes words. 
In what follows, however, the issue will be finessed by 
operationally defining contexts as documents. 

A word’s context is treated as a vector of features. I 
will refer to the vector as the word’s context vector (cf. 
Dennis & Humphreys, 2001). It uses a localist representa-
tion. For the simulation reported here, the context vector 
of a word encountered in a document was represented as a 
vector made up almost entirely of 0s, with a 1 placed at a 
cell location corresponding to the document number. For 
example, the context vector for any word that appeared 
in the first document was [1, 0, . . . , 0, 0]. As a word is 
encountered repeatedly over the set of documents, its con-
text vector is added to that of the word in memory that 
it matches. Done in this way, when training is complete, 
the context vector for a word in memory contains the fre-
quencies with which the word occurred in each document 
of the training corpus. After all the documents have been 
processed, memory is identical to the term � document 
matrix used by LSA.

I assume that a target word is used as a cue to retrieve its 
associated context vector from memory (see Dennis & 
Humphreys, 2001, for a computational example of the idea). 
The semantics model uses the retrieved context vector as a 
probe (P) to construct a semantic representation of the tar-
get word. The vector is applied to, and resonates with, the 
context vector of each trace in lexical memory (T). As in 
MINERVA 2, the extent to which a context vector in mem-
ory resonates with, or is activated by, the probe is a func-
tion of their similarity. Similarity (S) in the semantics 
model is measured as the cosine between the two vectors:
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The N represents the number of elements contained in the 
P and T vectors. The formula for similarity differs slightly 
from the one used in MINERVA 2. Both models use the 
dot product between two vectors as the numerator of the 
equation. The denominator of the equation is different 
across the two models, because they use different ways 
to represent knowledge. MINERVA 2 represents items as 
vectors containing the integers, �1, 0, and 1. To normal-
ize the similarity metric, Hintzman (1984, 1986, 1988) 
divides the dot product by the number of nonzero feature 
pairs. The semantics model represents an item as a vector 
of frequencies; hence, the same strategy will not work. 

In MINERVA 2, a trace’s activation is measured as its 
similarity to the probe raised to an exponent. In most pub-
lished simulations that have used MINERVA 2, activation 
(A) is defined as

 A � S3. (2)

The purpose of raising S to an exponent, instead of using S 
itself as a measure of activation, is to reduce the influence 
that traces with very low similarity to the probe have on 
the contents that are retrieved from memory.

The semantic model derives A differently. Following 
Dougherty, Gettys, and Ogden (1999), it reduces the im-
pact of poor matches between the probe and the traces 
by imposing a lower limit to a trace’s activation. For the 
simulation reported below, A � S. However, the similarity 
between the probe and a trace must reach .1 to contribute 
to the output of the model; otherwise, A is set to zero. 
The use of a cutoff was chosen for two reasons. First, the 
model’s memory contains around 86,000 traces. Because 
there are so many, even if S is raised to an exponent, the 
impact of several thousand poor matches introduces con-
siderable noise into the model’s output. Second, from a 
more practical perspective, ignoring traces that contribute 
little or nothing to the model’s output saves a great deal of 
simulation time.

Memory traces are then weighted by their activations 
and summed across the contents of memory to form a 
composite of the probe vector, C. 
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The M represents the number of traces in memory. C is 
akin to MINERVA 2’s calculation of what Hintzman (1984, 
1986, 1988) refers to as the echo content from memory. 
The vector that is created by Equation 3 may be thought 
of as a semantic representation of the word. To illustrate 
how the model works, an example is worked out in detail 
in the Appendix.

MINERVA 2 was designed to describe the information 
that humans retrieve from episodic memory in laboratory 
tasks. In what follows, the basic ideas behind MINERVA 2 
are applied to semantic memory. Specifically, a simula-
tion was run to establish that semantic information about 
words could be constructed from contextual information 
stored in memory.

A SIMULATION

The model was applied to 1 year’s worth of news ar-
ticles from the Sydney Morning Herald. The corpus con-
tains approximately two million words of text over about 
38,000 articles. Before going on to discuss the simulation 
results, I will go over some details pertaining to the pre-
processing on the term � document matrix (i.e., memory) 
that occurs before retrieval.

Similar to LSA, the first stage of preprocessing in-
volved excluding terms (so-called stop words) on the basis 
of three properties:

1. Promiscuity. A word that occurs in almost every doc-
ument carries little information about the message’s topic 
(e.g., function words such as the, is, or was).

2. Monogamy. A word that occurs often, but only in one 
document, carries little information about what it could 
mean. In order to get a good semantic representation of a 
word, there needs to be variety in the contexts/documents 
in which it appears. In the simulation reported below, a 
word needed to appear in at least two contexts to be en-
coded.

3. Celibacy. A word that virtually never occurs in the 
corpus of text does not carry much information about what 
it could mean. Only words that occurred at least twice in 
the corpus were included.

After filtering, the resultant matrix contained 86,125 
unique terms taken from 38,525 newspaper articles. Then, 
following Landauer and Dumais (1997), the cells of the 
term � document matrix were submitted to the same loga-
rithmic transformation. Unlike in Landauer and Dumais, 
however, the cells were not weighted by the inverse of the 
term’s entropy across documents.

Forty-two words representing three semantic categories 
( finance, legal, and sports) were selected. The model re-
trieved the semantic vector for each word. Then, by using 
the vector cosine as a measure of similarity, a matrix of 
the similarities between every possible pair of test words 
was constructed.

RESULTS

Following Burgess et al. (1998), the matrix of similari-
ties was analyzed, using multidimensional scaling (MDS). 
MDS is a technique that reduces coordinates from high- to 
low-dimensional space while simultaneously attempting 
to maintain the appropriate distance among points. For 
the simulation reported here, MDS reduced the similarity 
matrix to two dimensions, so that the distances between 
words could be plotted in (x, y) coordinates and easily vi-
sualized. Figure 1 shows the solution yielded by the re-
duction. As is clear from the figure, words from the same 
semantic category are clustered close together, as com-
pared with unrelated words. Words that are unrelated tend 
to be separated in semantic space. 

To show that it was not the MDS itself that created the 
grouping of words, Figure 2 shows the average similar-
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ity between words within and between categories. For ex-
ample, the leftmost group of columns graphs the average 
similarity of finance terms to other finance terms (exclud-
ing word matches such as mortgage–mortgage), finance 
terms to legal terms, and finance terms to sports terms. 
The figure shows clearly that, on average, words within 
the same semantic category are much more similar than 
words between categories. 

DISCUSSION

Two words may appear in the same context, but they 
may or may not be semantically related. By the same 
token, two words that rarely appear in the same document 
are not necessarily unrelated. In order to capture semantic 
relationships, the semantics model draws on higher order 
associations between words. In the example in the Appen-
dix, human and user were considered to be related con-
cepts, despite not occurring in the same document. Their 
relationship developed because the documents that they 
appeared in shared other words, such as interface and sys-
tem. Put simply, the semantics model takes what it knows 
about a word’s contexts and uses retrieval to estimate what 
other contexts might also contain the word.

Semantically related words tend to appear in the same 
contexts. If such raw co-occurrence information drives 
semantic similarity in the model, it is unclear whether 
the retrieval process adds anything useful. To address the 
issue, the similarities among all the test items’ context 
vectors were calculated. If, for example, two words never 
occurred in the same document, their context vectors had 
a similarity of 0. On the other extreme, if two words al-
ways occurred together in the documents, their similarity 
was 1.

Thirty-two pairs of context vectors from related words 
were chosen from the test materials. Each pair of context 
vectors had a cosine between .01 and .03. For each of the 
32 pairs of related words, an unrelated pair with the same 
cosine was selected. Furthermore, one member of the un-
related pair came from the same category as the words in 
the related pair. For example, the cosine between the con-
text vectors for the financial terms mortgage and stocks 
was .01. They were yoked to an unrelated pair comprising 
the financial term funds and the sports term soccer, a pair 
whose context vectors also had a similarity of .01. The 
end result was a set of related word pairs and unrelated 
word pairs that were matched on co-occurrence similar-
ity. When similarity based on raw co-occurrence was held 

Figure 1. The two-dimensional multidimensional scaling solution for the items used in the simulation. The inserted 
plots are enlargements of those areas containing overprinted labels.
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constant, the semantic vectors for related words were reli-
ably more similar to each other (M � .64) than those for 
unrelated words [M � .45; F(1,31) � 12.0, p � .0001]. 
The analysis confirms that higher order associations, not 
just raw co-occurrences, play a central role in driving the 
similarity between words’ semantic vectors.

To what extent is the semantics model a process model 
for the ideas embodied in LSA? For one, both models de-
scribe a semantic representation in terms of the contexts in 
which a word is expected to appear. The important feature 
that they share, however, is the belief that a semantic repre-
sentation is characterized by more than raw co-occurrence 
information. Two terms are related because, in addition to 
any first-order co-occurrence information, their represen-
tations include contextual information from other words 
that link them indirectly.

The present semantics model and LSA differ in how 
they gain access to higher order co-occurrence infor-
mation. LSA uses dimension reduction through SVD to 
pull in higher order associations. Although Landauer and 
Dumais (1997) stated that they did not believe that the 
brain/mind performed SVD, they did implicate dimen-
sion reduction as the process driving the creation of se-
mantic representations. The semantics model substitutes 
dimension reduction with a retrieval mechanism based 
on a well-known account of episodic memory. Hence, al-
though it may be true that both the semantics model and 
LSA exploit higher order relationships between words to 
create semantic representations, they do so by implicating 
different types of psychological processes. 

The semantics model also takes a unique perspective 
on the representation of semantic knowledge. LSA treats 
semantic representations as the result of a process that 
transforms “associative data into a condensed representa-
tion [that] captures indirect, higher-order associations” 
(Landauer & Dumais, 1997, p. 217). By contrast, the 

semantics model postulates that there is a limited need 
to represent semantic information in memory. Instead, if 
memory stores contextual information associated with 
the objects we encounter, a semantic representation for an 
item can be constructed during retrieval.

The idea that semantics are constructed, rather than 
stored, may serve as an explanation for how a person’s 
own definition of a word can evolve over time. Imagine 
a banker who switches occupations to that of ferryboat 
captain. What does the word bank mean to that person? 
Before taking a job on the ferry, bank was associated with 
money, but now it is associated more with the part of the 
river that the ferry must avoid hitting. What changed? 
Over time, the frequency with which the word bank was 
used in financial contexts became overshadowed by boat-
ing contexts—a change that, in turn, perhaps influenced 
which sense of its constructed meaning was dominant. An 
appealing feature of the interpretation is that the system 
requires no mechanism for changing a meaning other than 
the addition of new contextual information to memory. Of 
course, a banker who becomes a ferryboat captain does 
not forget where to deposit a paycheck; the semantic rep-
resentations for both senses of the word bank must still 
be accessible. The system just needs a way to selectively 
construct semantic vectors for either sense of a polyse-
mous word.

One possible way to arrive at the appropriate meaning 
of a polysemous target word was suggested by Hintzman 
(1986). He recommended activating a subset of traces in 
memory that contain relevant context information (e.g., 
memory traces having to do with finance) by presenting 
the model with a related word. Then, when the system re-
trieves the vector for a word such as bank, memory traces 
having to do with finance and the like will contribute more 
heavily to the resulting semantic representation than will 
traces having to do with boats or rivers.
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To explore the idea, semantic vectors were retrieved for 
the following polysemous words: bank, light, race, and 
play. Without reference to a specific context, the seman-
tic representation that is retrieved from memory contains 
information about every sense of a word. For example, the 
semantic vector of bank should be similar to those of the 
associates river and mortgage. To control which sense of 
bank dominates the semantic vector, memory traces were 
primed by a disambiguating context vector (e.g., boat or 
interest) during the retrieval of bank’s semantic vector. In 
more formal terms, the semantic vector (C) was formed 
by collapsing across the memory traces after being ac-
tivated by both the prime (Aprime) and the probe (Aprobe) 
words. That is,
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The disambiguating context word was used separately in a 
congruent (interest–bank � mortgage) and an incongru-
ent (interest–bank � river) case.

Table 1 contains the cosines between the semantic vec-
tors for the target words and their associates after memory 
has been primed by a context word. To show that the ac-
tivation of memory with the context word does not cause 
the similarity between the targets and the associates, the 
table also contains the similarities of the targets and the 
associates without memory’s being primed with context 
words. In each case, the similarity between the target and the 
associate is higher when it is preceded by a congruent context 
word than when it is preceded by an incongruent one.

The idea that we are capable of storing contextual in-
formation associated with an item is not new. Dennis and 
Humphreys (2001) proposed a model of episodic memory 
that uses the interaction between experimental context and 
preexisting contextual information in memory to explain 
how prior experience with test materials (e.g., printed 
word frequency) affects performance on those items in 
episodic memory tasks. It is exciting to consider that the 
same context information that can cause interference or 
facilitation in an episodic memory task can also be used 
to build semantic representations.

The model described here is far from a complete expla-
nation of how people develop semantic representations. 
First, like LSA, the model knows nothing about morphol-
ogy. It does not know, for example, that toes is the plural 
of toe. Indeed, apart from the information that it gets from 
contextual usage, the model has no way of knowing that 
the two are even related. Second, also like LSA, the se-
mantic representations constructed by the model are very 
crude and contain no information about how two terms are 
related. For example, the semantic representations for car-
buretor and car may be similar, but they contain no infor-
mation about the functional relationship between them.

Finally, it is worth speculating about how well the model 
could account for some human data. Steyvers, Shiffrin, and 
Nelson (2005) compared the ability of LSA’s semantic vec-
tors and those created from free association data to predict 
semantic similarity effects in three different memory tasks. 
They found that a semantic representation based on free 
associations (Nelson, McEvoy, & Schreiber, 1999) did the 
better job of predicting human performance. The model 
described in this article creates semantic representations 
that are similar in form to those in LSA: A word is treated 
as a list of contexts in which the word would be expected to 
appear. Given the similarity between LSA and the seman-
tics model, future work should examine the extent to which 
the two models share the same shortcomings.

At this time, the semantic model does not possess 
representations for the orthography or phonology of the 
words it knows. As a result, a fair test of the model’s abil-
ity to simulate human performance in experimental tasks, 
such as lexical decision or recognition memory, is beyond 
its capability. Kwantes and Mewhort (1999) documented 
some success in building a model of printed word identifi-
cation from a MINERVA 2–style architecture. Given their 
success, future extensions of the semantics model may 
include orthographic and phonological representations. 
However, before a word identification module is joined 
to the semantics model, the first, necessary step will be a 
demonstration that a process model of semantics can be 
constructed using the same basic retrieval mechanism.

CONCLUSION

LSA is a powerful theory of human knowledge acquisi-
tion. It works by uncovering higher order associations be-
tween words to create semantic representations for them. 
The semantics model also constructs semantic represen-
tations for words by enlisting higher order information. 
It does so, however, by using a retrieval mechanism in-
spired by a well-known account of episodic memory. The 
retrieval mechanism was proposed as a plausible alterna-
tive to the mechanism set forth by Landauer and Dumais 
(1997) that, while unspecified, “reprocesses . . . input in 
some manner that has approximately the same effect [as 
SVD]” (p. 218). Apart from its alignment with LSA, the 
similarity between the semantic model and its episodic 
ancestor, MINERVA 2, suggests strongly that the same 
basic memory system could underlie the retrieval of both 
episodic and semantic knowledge.

Table 1
Similarities Between Polysemous Words 

and Two Related Associates

Target  No Context Word

Word Associates Context Boat Interest

Bank River .73 .81 .67
 Mortgage .86 .75 .89

   Dark Heavy

Light Bright .93 .95 .91
 Weight .83 .81 .84

   Color Champion

Race Ethnic .54 .65 .48
 Winner .99 .85 .96

   Director Sport

Play Actor .80 .84 .75
 Baseball .66 .54 .74
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APPENDIX
A Worked-Out Example

Consider the following nine short documents used for illustration purposes by Landauer and Dumais (1997). 
The first five documents have to do with human–computer interaction, and the last four have to do with math-
ematical graph theory.

Human machine interface for ABC computer applications
A survey of user opinion of computer system response time
The EPS user interface management system
System and human system engineering testing of EPS
Relation of user perceived response time to error measurement
The generation of random, binary, ordered trees
The intersection graph of paths in trees
Graph minors IV: Widths of trees and well-quasi-ordering
Graph minors: A survey

The matrix in Table A1 contains the frequency information for all the content words that occur in at least two 
documents (i.e., the italicized words in the documents). The matrix also represents the contents of memory for 
the semantics model. That is, each term is described in memory as a vector of frequencies across documents (a 
context vector). In the next step, the frequencies in the cells of the matrix ( f ) are transformed by the formula, 
ln( f � 1). The transformed matrix is shown in Table A2.

Consider the word human. After human is identified, we construct the semantic vector by using its context 
vector as a probe (P) to activate the contents of memory. The extent to which a trace (T) is activated by the probe 
is a function of their similarity, as calculated by Equation 1 in the text. The final column contains the activation 
of each trace when the context vector for human is used as a probe. Notice that the activation of the memory 
trace for human is 1, because the two are perfectly matched.

Table A1
Raw Co-Occurrence Frequencies From the Nine Documents in 

the Training Corpus

Content Document

Word c1 c2 c3 c4 c5 m1 m2 m3 m4

Human 1 0 0 1 0 0 0 0 0
Interface 1 0 1 0 0 0 0 0 0
Computer 1 1 0 0 0 0 0 0 0
User 0 1 1 0 1 0 0 0 0
System 0 1 1 2 0 0 0 0 0
Response 0 1 0 0 1 0 0 0 0
Time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
Trees 0 0 0 0 0 1 1 1 0
Graph 0 0 0 0 0 0 1 1 1
Minors 0 0 0 0 0 0 0 1 1
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In the next step, the features of each trace are weighted by their activations. In the matrix shown in Table A3, 
each cell in a trace represents the corresponding cell from Table A2, multiplied by the trace’s activation found 
in the final column. The semantic vector, C, is created by summing the activated features across all the traces, 
using Equation 3 in the text. Continuing with the example in which human is the probe, when the columns in 
Table A3 are summed, the resulting vector, [1.4, 0.7, 1.1, 1.6, 0.0, 0.0, 0.0, 0.0, 0.0], is the semantic representa-
tion for human.

Table A4 shows the semantic vectors for the terms human, user, and minors after separate retrievals from 
memory. If we measure the similarity of the semantic vectors to each other, using the vector cosine, we find that 
cosine(human, user) �.62 and cosine(human, minor) �.04. The semantics model deduced that human and user 
were related because, although the two terms never co-occurred in a document, both of them appeared in docu-
ments that used terms such as system and interface. Likewise, the system deduced that human and minors were 
much less related because, in addition to never co-occurring in a document, the terms are used in documents 
that use different types of words and, therefore, belong to different topics.

(Manuscript received October 8, 2003;
revision accepted for publication September 29, 2004.)

Table A2
Matrix in Table A1 After Its Cells Have Been Transformed

Content Document

Word c1 c2 c3 c4 c5 m1 m2 m3 m4

Human 0.69 0 0 0.69 0 0 0 0 0 A = 1.0
Interface 0.69 0 0.69 0 0 0 0 0 0 A = 0.5
Computer 0.69 0.69 0 0 0 0 0 0 0 A = 0.5
User 0 0.69 0.69 0 0.69 0 0 0 0 A = 0.0
System 0 0.69 0.69 1.10 0 0 0 0 0 A = 0.53
Response 0 0.69 0 0 0.69 0 0 0 0 A = 0.0
Time 0 0.69 0 0 0.69 0 0 0 0 A = 0.0
EPS 0 0 0.69 0.69 0 0 0 0 0 A = 0.5
Survey 0 0.69 0 0 0 0 0 0 0.69 A = 0.0
Trees 0 0 0 0 0 0.69 0.69 0.69 0 A = 0.0
Graph 0 0 0 0 0 0 0.69 0.69 0.69 A = 0.0
Minors 0 0 0 0 0 0 0 0.69 0.69 A = 0.0

Note—The rows are context vectors (i.e., memory traces) for the 12 content words. The column on the right side contains the 
activation (A) of each trace when probed with the word human.

Table A3
Contents of Memory After Being Activated by the Context Vector, P, for the Term Human

Content Document

Word c1 c2 c3 c4 c5 m1 m2 m3 m4

Human 0.69 0 0 0.69 0 0 0 0 0
Interface 0.35 0 0.35 0 0 0 0 0 0
Computer 0.35 0.35 0 0 0 0 0 0 0
User 0 0 0 0 0 0 0 0 0
System 0 0.37 0.37 0.58 0 0 0 0 0
Response 0 0 0 0 0 0 0 0 0
Time 0 0 0 0 0 0 0 0 0
EPS 0 0 0.35 0.35 0 0 0 0 0
Survey 0 0 0 0 0 0 0 0 0
Trees 0 0 0 0 0 0 0 0 0
Graph 0 0 0 0 0 0 0 0 0
Minors 0 0 0 0 0 0 0 0 0

Note—The values in the cells of each trace are those of the corresponding cells in Table A2, multiplied by 
the A for each trace.

Table A4
Retrieved Semantic Vectors, C, for the Terms Human, User, and Minors

Content Document

Word c1 c2 c3 c4 c5 m1 m2 m3 m4

Human 1.4 0.7 1.1 1.6 0.0 0.0 0.0 0.0 0.0
User 0.6 2.8 1.6 0.9 1.8 0.0 0.0 0.0 0.3
Minors 0.0 0.3 0.0 0.0 0.0 0.3 0.8 1.5 1.6
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